1
|
Molinero-Fernández Á, Casanova A, Wang Q, Cuartero M, Crespo GA. In Vivo Transdermal Multi-Ion Monitoring with a Potentiometric Microneedle-Based Sensor Patch. ACS Sens 2022; 8:158-166. [PMID: 36475628 PMCID: PMC9887649 DOI: 10.1021/acssensors.2c01907] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microneedle sensor technology offers exciting opportunities for decentralized clinical analyses. A novel issue puts forward herein is to demonstrate the uniqueness of membrane-based microneedles to accomplish real-time, on-body monitoring of multiple ions simultaneously. The use of multi-ion detection is clinically relevant since it is expected to provide a more complete and reliable assessment of the clinical status of a subject concerning electrolyte disorders and others. We present a microneedle system for transdermal multiplexed tracing of pH, Na+, K+, Ca2+, Li+, and Cl-. The device consists of an array of seven solid microneedles externally modified to provide six indicator electrodes, each selective for a different ion, and a common reference electrode, all integrated into a wearable patch read in a potentiometric mode. We show in vitro measurements at the expected clinical levels, resulting in a fast response time, excellent reversibility and repeatability, and adequate selectivity. Close-to-Nernstian sensitivity, sufficient stability and resiliency to skin penetration guarantee the sensor's success in transdermal measurements, which we demonstrate through ex vivo (with pieces of rat skin) and in vivo (on-body measurements in rats) tests. Accuracy is evaluated by comparison with gold standard techniques to characterize collected dermal fluid, blood, and serum. In the past, interstitial fluid (ISF) analysis has been challenging due to difficult sample collection and analysis. For ions, this has resulted in extrapolations from blood concentrations (invasive tests) rather than pure measurements in ISF. The developed microneedle patch is a relevant analytical tool to address this information gap.
Collapse
Affiliation(s)
- Águeda Molinero-Fernández
- Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44Stockholm, Sweden
| | - Ana Casanova
- Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44Stockholm, Sweden
| | - Qianyu Wang
- Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44Stockholm, Sweden
| | - María Cuartero
- UCAM-SENS, Universidad Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107Murcia, Spain,Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44Stockholm, Sweden,
| | - Gastón A. Crespo
- UCAM-SENS, Universidad Católica San Antonio de Murcia,
UCAM HiTech, Avda. Andres
Hernandez Ros 1, 30107Murcia, Spain,Department
of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology
and Health, KTH Royal Institute of Technology, Teknikringen 30, SE-100 44Stockholm, Sweden,
| |
Collapse
|
2
|
Research progress of microneedles in the treatment of melanoma. J Control Release 2022; 348:631-647. [PMID: 35718209 DOI: 10.1016/j.jconrel.2022.06.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 06/12/2022] [Indexed: 11/24/2022]
Abstract
Melanoma is an aggressive malignancy deriving from melanocytes, which is characterized by high tendency of metastases and mortality rate. Current therapies for melanoma, like chemotherapy, immunotherapy and targeted therapy, have the problem of systemic exposure of drugs, which will lead to many side effects and premature degradation of drugs. The resulting low drug accumulation at the lesion limits the therapeutic effect on melanoma and makes the cure rate low. As an emerging drug delivery system, microneedles (MNs) can efficiently deliver drugs through the skin, increase the drug distribution in deeper tumor sites and minimize the leakage of therapeutic drugs into adjacent tissues, thus improving the therapeutic effect. In addition, compared with traditional drug delivery methods, MN-based drug delivery system has the advantages of simplicity, safety and little pain. So MNs can be developed for the treatment of melanoma, which can relieve the pain of patients and improve the survival rate. This review aims to introduce an update on the progress of MNs as an innovative strategy for melanoma, especially when MNs combining with different therapies against melanoma, such as chemotherapy, targeted therapy, immunotherapy, photothermal therapy (PTT), photodynamic therapy (PDT) and synergic therapy.
Collapse
|
3
|
Valdivia-Olivares RY, Rodriguez-Fernandez M, Álvarez-Figueroa MJ, Kalergis AM, González-Aramundiz JV. The Importance of Nanocarrier Design and Composition for an Efficient Nanoparticle-Mediated Transdermal Vaccination. Vaccines (Basel) 2021; 9:vaccines9121420. [PMID: 34960166 PMCID: PMC8705631 DOI: 10.3390/vaccines9121420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that the pandemic caused by the SARS-CoV-2 virus claimed more than 3 million lives in 2020 alone. This situation has highlighted the importance of vaccination programs and the urgency of working on new technologies that allow an efficient, safe, and effective immunization. From this perspective, nanomedicine has provided novel tools for the design of the new generation of vaccines. Among the challenges of the new vaccine generations is the search for alternative routes of antigen delivery due to costs, risks, need for trained personnel, and low acceptance in the population associated with the parenteral route. Along these lines, transdermal immunization has been raised as a promising alternative for antigen delivery and vaccination based on a large absorption surface and an abundance of immune system cells. These features contribute to a high barrier capacity and high immunological efficiency for transdermal immunization. However, the stratum corneum barrier constitutes a significant challenge for generating new pharmaceutical forms for transdermal antigen delivery. This review addresses the biological bases for transdermal immunomodulation and the technological advances in the field of nanomedicine, from the passage of antigens facilitated by devices to cross the stratum corneum, to the design of nanosystems, with an emphasis on the importance of design and composition towards the new generation of needle-free nanometric transdermal systems.
Collapse
Affiliation(s)
- Rayen Yanara Valdivia-Olivares
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Maria Rodriguez-Fernandez
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - María Javiera Álvarez-Figueroa
- Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; (R.Y.V.-O.); (M.J.Á.-F.)
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Av. Libertador Bernardo O’Higgins No. 340, Santiago 7810000, Chile
- Departamento de Endocrinología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| | - José Vicente González-Aramundiz
- Millennium Institute on Immunology and Immunotherapy, Departamento de Farmacia, Escuela de Química y Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados “CIEN-UC”, Pontificia Universidad Católica de Chile, Santiago 7810000, Chile
- Correspondence: (A.M.K.); (J.V.G.-A.)
| |
Collapse
|
4
|
Bozorgi A, Fahimnia B. Micro array patch (MAP) for the delivery of thermostable vaccines in Australia: A cost/benefit analysis. Vaccine 2021; 39:6166-6173. [PMID: 34489130 DOI: 10.1016/j.vaccine.2021.08.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND It is anticipated that transforming the vaccine supply chain from syringe-and-needle to thermostable vaccines enabled by Micro Array Patch (MAP) will result in reduced supply chain costs as well as reduced wastes (environmental impact) and improved safety. This paper provides a thorough cost comparison of the conventional syringe-and-needle vaccine supply chain versus the MAP vaccine supply chain for influenza vaccine delivery in Australia. OBJECTIVE To determine the potential cost implications and general benefits of replacing syringe-and-needle flu vaccine with MAP-enabled thermostable flu vaccine in Australia. METHODS We first provide a snapshot of the existing flu vaccine supply chain in Australia including its limitations and opportunities for improvement. Data/information is collected through interviewing the key stakeholders across vaccine supply chain including vaccine manufacturers, logistics providers, clinics, hospitals, and pharmacies. A cost/benefit analysis of the anticipated supply chain of the MAP-enabled vaccine will reveal the opportunities and challenges of supply chain transformation for flu vaccine delivery in Australia. FINDINGS Our high-level practice-informed cost/benefit analysis identifies cold chain removal as an important source of cost saving, but administrative cost savings appear to be even more significant (e.g., time saving for nurses and those involved in cold chain management). Our analysis also identifies the key benefits and limitations of vaccine supply chain transformation in Australia. CONCLUSION We conclude that the benefits of moving from syringe-and-needle vaccines to thermostable MAP-delivered vaccines are beyond transportation and storage cost saving. Potential benefits through cost saving, waste reduction, and service level improvement are discussed along with various safety and wellbeing consequences as well as directions for future research in this area.
Collapse
Affiliation(s)
- Ali Bozorgi
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| | - Behnam Fahimnia
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| |
Collapse
|
5
|
Bozorgi A, Fahimnia B. Transforming the vaccine supply chain in Australia: Opportunities and challenges. Vaccine 2021; 39:6157-6165. [PMID: 34489129 DOI: 10.1016/j.vaccine.2021.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Analyzing potential benefits of thermostable vaccines delivered through Micro Array Patch (MAP) has received great attention in low and middle-income countries. The experience may or may not be the same in developed countries where the infrastructure is more developed. It is anticipated that transforming the vaccine supply chain from syringe-and-needle to thermostable MAP-delivered vaccines will result in reduced supply chain costs - including manufacturing/supply, logistics/distribution, and administration costs - as well as reduced wastes and improved safety. This paper provides an end-to-end supply chain analysis comparing the key aspects (cost, safety and environmental aspects) of the conventional syringe-and-needle vaccine supply chain with those of the MAP vaccine supply chain for influenza vaccine delivery in Australia. Directions for future research in this area will be provided. OBJECTIVE To determine the potential supply chain impacts of replacing syringe-and-needle flu vaccine with MAP-enabled thermostable flu vaccine in Australia. METHODS We analyze the current flu vaccine supply chain in Australia to identify practical limitations and opportunities for improvement. Data/information is collected through interviewing the key stakeholders across vaccine supply chain including vaccine manufacturers, logistics providers, clinics, hospitals, and pharmacies. FINDINGS A detailed practice-informed analysis is completed on the key operations of the flu vaccine supply chain. Barriers and limitations of the conventional flu vaccine are discussed, along with potential improvements that can be achieved through the implementation of MAP-enabled flu vaccine delivery. We discuss how technology-driven innovations can help advance vaccine supply chains, improve vaccine visibility, reduce wastes, and enable informed decision-making. CONCLUSION We find that the benefits of moving from syringe-and-needle vaccines to thermostable MAP-delivered vaccines are beyond transportation and storage cost saving. Potential benefits through cost saving, waste reduction, and service level improvement are discussed along with various safety and wellbeing consequences followed by directions for future research in this area.
Collapse
Affiliation(s)
- Ali Bozorgi
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| | - Behnam Fahimnia
- Institute of Transport and Logistics Studies, The University of Sydney Business School, Sydney, Australia.
| |
Collapse
|
6
|
Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Characterization of microneedles and microchannels for enhanced transdermal drug delivery. Ther Deliv 2021; 12:77-103. [DOI: 10.4155/tde-2020-0096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microneedle (MN)-based technologies are currently one of the most innovative approaches that are being extensively investigated for transdermal delivery of low molecular weight drugs, biotherapeutic agents and vaccines. Extensive research reports, describing the fabrication and applications of different types of MNs, can be readily found in the literature. Effective characterization tools to evaluate the quality and performance of the MNs as well as for determination of the dimensional and kinetic properties of the microchannels created in the skin, are an essential and critical part of MN-based research. This review paper provides a comprehensive account of all such tools and techniques.
Collapse
|
8
|
Xie L, Zeng H, Sun J, Qian W. Engineering Microneedles for Therapy and Diagnosis: A Survey. MICROMACHINES 2020; 11:E271. [PMID: 32150866 PMCID: PMC7143426 DOI: 10.3390/mi11030271] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Microneedle (MN) technology is a rising star in the point-of-care (POC) field, which has gained increasing attention from scientists and clinics. MN-based POC devices show great potential for detecting various analytes of clinical interests and transdermal drug delivery in a minimally invasive manner owing to MNs' micro-size sharp tips and ease of use. This review aims to go through the recent achievements in MN-based devices by investigating the selection of materials, fabrication techniques, classification, and application, respectively. We further highlight critical aspects of MN platforms for transdermal biofluids extraction, diagnosis, and drug delivery assisted disease therapy. Moreover, multifunctional MNs for stimulus-responsive drug delivery systems were discussed, which show incredible potential for accurate and efficient disease treatment in dynamic environments for a long period of time. In addition, we also discuss the remaining challenges and emerging trend of MN-based POC devices from the bench to the bedside.
Collapse
Affiliation(s)
- Liping Xie
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Hedele Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China;
| | - Jianjun Sun
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Wei Qian
- Department of Electrical and Computer Engineering, University of Texas, EI Paso, TX 79968, USA;
| |
Collapse
|
9
|
Tan CWX, Tan WD, Srivastava R, Yow AP, Wong DWK, Tey HL. Dissolving Triamcinolone-Embedded Microneedles for the Treatment of Keloids: A Single-Blinded Intra-Individual Controlled Clinical Trial. Dermatol Ther (Heidelb) 2019; 9:601-611. [PMID: 31376063 PMCID: PMC6704225 DOI: 10.1007/s13555-019-00316-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Keloids are a prevalent chronic skin disorder with significant psychosocial morbidity. Intralesional corticosteroid injections are the first-line treatment but are painful and require repeated injections by medical professionals. Dissolving microneedles are a novel method of cutaneous drug delivery that induces minimal/no pain and can be self-administered. The objective of the study was to evaluate the efficacy and safety of triamcinolone-embedded dissolving microneedles in treatment of keloids. METHODS This was a single-blind, intra-individual controlled two-phase clinical trial of 8-week duration each. Two keloids per subject were selected for (1) once-daily 2-min application with microneedles for 4 weeks, followed by no treatment for the next 4 weeks, or (2) non-intervention as control. Primary outcome was change in keloid volume as assessed by a high-resolution 3D scanner. RESULTS There was significant reduction in keloid volume compared with controls after 4 weeks of treatment. This reduction was greater with a higher dosage of triamcinolone used. CONCLUSIONS Once-daily application of dissolving triamcinolone-embedded microneedles significantly reduced the volume of keloids. The treatment was safe, can be self-administered and can serve as an alternative for patients unsuitable for conventional treatments. TRIAL REGISTRATION Trial Registry: Health Science Authority (Singapore) Clinical Trials Register Registration number: 2015/00440.
Collapse
Affiliation(s)
| | | | - Ruchir Srivastava
- Institute of Infocomm Research, Agency for Science, Technology and Research, Singapore, Singapore
| | - Ai Ping Yow
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Damon W K Wong
- SERI-NTU Advanced Ocular Engineering (STANCE), Singapore, Singapore
| | - Hong Liang Tey
- National Skin Centre, Singapore, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore. .,Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
10
|
Bhatnagar S, Bankar NG, Kulkarni MV, Venuganti VVK. Dissolvable microneedle patch containing doxorubicin and docetaxel is effective in 4T1 xenografted breast cancer mouse model. Int J Pharm 2019; 556:263-275. [DOI: 10.1016/j.ijpharm.2018.12.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/09/2018] [Accepted: 12/12/2018] [Indexed: 01/20/2023]
|
11
|
Krajišnik D, Ilić T, Nikolić I, Savić S. Established and advanced adjuvants in vaccines' formulation: Mineral adsorbents, nanoparticulate carriers and microneedle delivery systems. ARHIV ZA FARMACIJU 2019. [DOI: 10.5937/arhfarm1906420k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Pereira IB, Oliveira MMMD, Ferreira PBP, Coutinho RP, Cameron LE, Porto IS. Ultra-structural evaluation of needles and their role for comfort during subcutaneous drug administration. Rev Esc Enferm USP 2018; 52:e03307. [PMID: 29846480 DOI: 10.1590/s1980-220x2017024003307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/13/2017] [Indexed: 11/22/2022] Open
Abstract
Objective To evaluate the morphology of hypodermic needle bevels after drug aspiration, and the perception of comfort caused by the change or not of needles between preparation and subcutaneous drug administration. Method Experimental research carried out in two moments. Initially, hypodermic needles were analyzed by scanning electron microscopy, and then a pilot trial was conducted with the participants, which indicated the level of comfort perceived at the time of needle bevel penetration during subcutaneous administration. Results Forty-one adult inpatients participated in the study. Although the needles presented a slight to significant morphological alteration when evaluated by ultramicroscopy, the participants in this study were not able to report significant sensory changes during their penetration in the two techniques used. Conclusions The standardization of fixed needle syringes, or the use of a single needle for both the preparation and the subcutaneous drug administration should be considered as strategies to reduce the production of sharp-perforating residues, to decrease the cost per procedure, and to limit the risk of contamination of critical devices.
Collapse
Affiliation(s)
| | - Mair Machado Medeiros de Oliveira
- Centro e Ciências da Saúde, Departamento de Histologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | | | - Lys Eiras Cameron
- Departamento de Enfermagem Médico-Cirúrgica, Escola de Enfermagem Anna Nery, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Isaura Setenta Porto
- Departamento de Enfermagem Médico-Cirúrgica, Escola de Enfermagem Anna Nery, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Kashef N, Huang YY, Hamblin MR. Advances in antimicrobial photodynamic inactivation at the nanoscale. NANOPHOTONICS 2017; 6:853-879. [PMID: 29226063 PMCID: PMC5720168 DOI: 10.1515/nanoph-2016-0189] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The alarming worldwide increase in antibiotic resistance amongst microbial pathogens necessitates a search for new antimicrobial techniques, which will not be affected by, or indeed cause resistance themselves. Light-mediated photoinactivation is one such technique that takes advantage of the whole spectrum of light to destroy a broad spectrum of pathogens. Many of these photoinactivation techniques rely on the participation of a diverse range of nanoparticles and nanostructures that have dimensions very similar to the wavelength of light. Photodynamic inactivation relies on the photochemical production of singlet oxygen from photosensitizing dyes (type II pathway) that can benefit remarkably from formulation in nanoparticle-based drug delivery vehicles. Fullerenes are a closed-cage carbon allotrope nanoparticle with a high absorption coefficient and triplet yield. Their photochemistry is highly dependent on microenvironment, and can be type II in organic solvents and type I (hydroxyl radicals) in a biological milieu. Titanium dioxide nanoparticles act as a large band-gap semiconductor that can carry out photo-induced electron transfer under ultraviolet A light and can also produce reactive oxygen species that kill microbial cells. We discuss some recent studies in which quite remarkable potentiation of microbial killing (up to six logs) can be obtained by the addition of simple inorganic salts such as the non-toxic sodium/potassium iodide, bromide, nitrite, and even the toxic sodium azide. Interesting mechanistic insights were obtained to explain this increased killing.
Collapse
Affiliation(s)
- Nasim Kashef
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ying-Ying Huang
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
14
|
Statistically optimized fast dissolving microneedle transdermal patch of meloxicam: A patient friendly approach to manage arthritis. Eur J Pharm Sci 2017; 104:114-123. [DOI: 10.1016/j.ejps.2017.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/30/2017] [Accepted: 04/01/2017] [Indexed: 02/06/2023]
|
15
|
Abstract
Microneedling is a very simple, safe, effective, and minimally invasive therapeutic technique. It was initially introduced for skin rejuvenation, however, now it is being used for a very wide range of indications including acne scar, acne, post-traumatic/burn scar, alopecia, skin rejuvenation, drug delivery, hyperhidrosis, stretch marks, and many more. Moreover, during the last 10 years, many new innovations have been made to the initial instrument, which was used for microneedling. This technique can be combined with other surgical techniques to provide better results. In particular, it is a very safe technique for dark skin types, where risk of postinflammatory pigmentation is very high with other techniques that damage the epidermis. In this review article, we are updating on the different instruments now available for this procedure, and its efficacy when performed alone or in combination with other techniques for various indications.
Collapse
Affiliation(s)
- Aashim Singh
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| | - Savita Yadav
- Department of Dermatology and Venereology, AIIMS, New Delhi, India
| |
Collapse
|
16
|
Jeong HR, Lee HS, Choi IJ, Park JH. Considerations in the use of microneedles: pain, convenience, anxiety and safety. J Drug Target 2016; 25:29-40. [DOI: 10.1080/1061186x.2016.1200589] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Wang X, Wang N, Li N, Zhen Y, Wang T. Multifunctional particle-constituted microneedle arrays as cutaneous or mucosal vaccine adjuvant-delivery systems. Hum Vaccin Immunother 2016; 12:2075-2089. [PMID: 27159879 DOI: 10.1080/21645515.2016.1158368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
To overcome drawbacks of current injection vaccines, such as causing needle phobia, needing health professionals for inoculation, and generating dangerous sharps wastes, researchers have designed novel vaccines that are combined with various microneedle arrays (MAs), in particular, with the multifunctional particle-constructed MAs (MPMAs). MPMAs prove able to enhance vaccine stability through incorporating vaccine ingredients in the carrier, and can be painlessly inoculated by minimally trained workers or by self-administration, leaving behind no metal needle pollution while eliciting robust systemic and mucosal immunity to antigens, thanks to delivering vaccines to cutaneous or mucosal compartments enriched in professional antigen-presenting cells (APCs). Especially, MPMAs can be easily integrated with functional molecules fulfilling targeting vaccine delivery or controlling immune response toward a Th1 or Th2 pathway to generate desired immunity against pathogens. Herein, we introduce the latest research and development of various MPMAs which are a novel but promising vaccine adjuvant delivery system (VADS).
Collapse
Affiliation(s)
- Xueting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ning Wang
- b School of Medical Engineering, Hefei University of Technology , Hefei , China
| | - Ning Li
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Yuanyuan Zhen
- a School of Pharmacy, Anhui Medical University , Hefei , China
| | - Ting Wang
- a School of Pharmacy, Anhui Medical University , Hefei , China
| |
Collapse
|
18
|
Li N, Wang N, Wang X, Zhen Y, Wang T. Microneedle arrays delivery of the conventional vaccines based on nonvirulent viruses. Drug Deliv 2016; 23:3234-3247. [DOI: 10.3109/10717544.2016.1165311] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Affiliation(s)
- Ning Li
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ning Wang
- School of Medical Engineering, Hefei University of Technology, Hefei, China
| | - Xueting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Yuanyuan Zhen
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| | - Ting Wang
- School of Pharmacy, Anhui Medical University, Hefei, China, and
| |
Collapse
|
19
|
Surmounting the barrier: advances and challenges in transdermal drug delivery. Ther Deliv 2015; 6:1031-2. [DOI: 10.4155/tde.15.70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|