1
|
Saad-Naguib MH, Kenfack Y, Sherman LS, Chafitz OB, Morelli SS. Impaired receptivity of thin endometrium: therapeutic potential of mesenchymal stem cells. Front Endocrinol (Lausanne) 2024; 14:1268990. [PMID: 38344687 PMCID: PMC10854221 DOI: 10.3389/fendo.2023.1268990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
The endometrium is a resilient and highly dynamic tissue, undergoing cyclic renewal in preparation for embryo implantation. Cyclic endometrial regeneration depends on the intact function of several cell types, including parenchymal, endothelial, and immune cells, as well as adult stem cells that can arise from endometrial or extrauterine sources. The ability of the endometrium to undergo rapid, repeated regeneration without scarring is unique to this tissue. However, if this tissue renewal process is disrupted or dysfunctional, women may present clinically with infertility due to endometrial scarring or persistent atrophic/thin endometrium. Such disorders are rate-limiting in the treatment of female infertility and in the success of in vitro fertilization because of a dearth of treatment options specifically targeting the endometrium. A growing number of studies have explored the potential of adult stem cells, including mesenchymal stem cells (MSCs), to treat women with disorders of endometrial regeneration. MSCs are multipotent adult stem cells with capacity to differentiate into cells such as adipocytes, chondrocytes, and osteoblasts. In addition to their differentiation capacity, MSCs migrate toward injured sites where they secrete bioactive factors (e.g. cytokines, chemokines, growth factors, proteins and extracellular vesicles) to aid in tissue repair. These factors modulate biological processes critical for tissue regeneration, such as angiogenesis, cell migration and immunomodulation. The MSC secretome has therefore attracted significant attention for its therapeutic potential. In the uterus, studies utilizing rodent models and limited human trials have shown a potential benefit of MSCs and the MSC secretome in treatment of endometrial infertility. This review will explore the potential of MSCs to treat women with impaired endometrial receptivity due to a thin endometrium or endometrial scarring. We will provide context supporting leveraging MSCs for this purpose by including a review of mechanisms by which the MSC secretome promotes regeneration and repair of nonreproductive tissues.
Collapse
Affiliation(s)
- Michael H. Saad-Naguib
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Yannick Kenfack
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Lauren S. Sherman
- Department of Medicine, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| | - Olivia B. Chafitz
- Department of Obstetrics & Gynecology, Hackensack University Medical Center, Hackensack, NJ, United States
| | - Sara S. Morelli
- Department of Obstetrics, Gynecology & Reproductive Health, Rutgers Biomedical and Health Sciences, Rutgers, The State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
2
|
Strategies to Improve the Efficiency of Transplantation with Mesenchymal Stem Cells for the Treatment of Ischemic Stroke: A Review of Recent Progress. Stem Cells Int 2021; 2021:9929128. [PMID: 34490053 PMCID: PMC8418553 DOI: 10.1155/2021/9929128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
Cerebral ischemia is a common global disease that is characterized by a loss of neurological function and a poor prognosis in many patients. However, only a limited number of treatments are available for this condition at present. Given that the efficacies of these treatments tend to be poor, cerebral ischemia can create a significant burden on patients, families, and society. Mesenchymal stem cell (MSC) transplantation treatment has shown significant potential in animal models of ischemic stroke; however, the specific mechanisms underlying this effect have yet to be elucidated. Furthermore, clinical trials have yet to yield promising results. Consequently, there is an urgent need to identify new methods to improve the efficiency of MSC transplantation as an optimal treatment for ischemic stroke. In this review, we provide an overview of recent scientific reports concerning novel strategies that promote MSC transplantation as an effective therapeutic approach, including physical approaches, chemical agents, traditional Chinese medicines and extracts, and genetic modification. Our analyses showed that two key factors need to be considered if we are to improve the efficacy of MSC transplantation treatments: survival ability and homing ability. We also highlight the importance of other significant mechanisms, including the enhanced activation of MSCs to promote neurogenesis and angiogenesis, and the regulation of permeability in the blood-brain barrier. Further in-depth investigations of the specific mechanisms underlying MSC transplantation treatment will help us to identify effective methods that improve the efficiency of MSC transplantation for ischemic stroke. The development of safer and more effective methods will facilitate the application of MSC transplantation as a promising adjuvant therapy for the treatment of poststroke brain damage.
Collapse
|
3
|
Saeedi M, Nezhad MS, Mehranfar F, Golpour M, Esakandari MA, Rashmeie Z, Ghorbani M, Nasimi F, Hoseinian SN. Biological Aspects and Clinical Applications of Mesenchymal Stem Cells: Key Features You Need to be Aware of. Curr Pharm Biotechnol 2021; 22:200-215. [PMID: 32895040 DOI: 10.2174/1389201021666200907121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022]
Abstract
Mesenchymal Stem Cells (MSCs), a form of adult stem cells, are known to have a selfrenewing property and the potential to specialize into a multitude of cells and tissues such as adipocytes, cartilage cells, and fibroblasts. MSCs can migrate and home to the desired target zone where inflammation is present. The unique characteristics of MSCs in repairing, differentiation, regeneration, and the high capacity of immune modulation have attracted tremendous attention for exerting them in clinical purposes, as they contribute to the tissue regeneration process and anti-tumor activity. The MSCs-based treatment has demonstrated remarkable applicability towards various diseases such as heart and bone malignancies, and cancer cells. Importantly, genetically engineered MSCs, as a stateof- the-art therapeutic approach, could address some clinical hurdles by systemic secretion of cytokines and other agents with a short half-life and high toxicity. Therefore, understanding the biological aspects and the characteristics of MSCs is an imperative issue of concern. Herein, we provide an overview of the therapeutic application and the biological features of MSCs against different inflammatory diseases and cancer cells. We further shed light on MSCs' physiological interaction, such as migration, homing, and tissue repairing mechanisms in different healthy and inflamed tissues.
Collapse
Affiliation(s)
- Mohammad Saeedi
- Department of Laboratory Science, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Muhammad S Nezhad
- Stem Cells and Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehranfar
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Mahdieh Golpour
- School of Paramedical Sciences, Semnan University of Medical Sciences, Sorkheh, Semnan, Iran
| | - Mohammad A Esakandari
- Student Research Committee, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Zahra Rashmeie
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Ghorbani
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nasimi
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Seyed N Hoseinian
- Department of Laboratory Science, Faculty of medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
4
|
Wang X, Wang H, Lu J, Feng Z, Liu Z, Song H, Wang H, Zhou Y, Xu J. Erythropoietin-Modified Mesenchymal Stem Cells Enhance Anti-fibrosis Efficacy in Mouse Liver Fibrosis Model. Tissue Eng Regen Med 2020; 17:683-693. [PMID: 32621283 PMCID: PMC7333789 DOI: 10.1007/s13770-020-00276-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Background: Mesenchymal stem cell (MSC)-based cell transplantation is an effective means of treating chronic liver injury, fibrosis and end-stage liver disease. However, extensive studies have found that only a small number of transplanted cells migrate to the site of injury or lesion, and repair efficacy is very limited.
Methods: Bone marrow-derived MSCs (BM-MSCs) were generated that overexpressed the erythropoietin (EPO) gene using a lentivirus. Cell Counting Kit-8 was used to detect the viability of BM-MSCs after overexpressing EPO. Cell migration and apoptosis were verified using Boyden chamber and flow cytometry, respectively. Finally, the anti-fibrosis efficacy of EPO-MSCs was evaluated in vivo using immunohistochemical analysis. Results: EPO overexpression promoted cell viability and migration of BM-MSCs without inducing apoptosis, and EPO-MSC treatment significantly alleviated liver fibrosis in a carbon tetrachloride (CCl4) induced mouse liver fibrosis model. Conclusion: EPO-MSCs enhance anti-fibrotic efficacy, with higher cell viability and stronger migration ability compared with treatment with BM-MSCs only. These findings support improving the efficiency of MSCs transplantation as a potential therapeutic strategy for liver fibrosis.
Collapse
Affiliation(s)
- Xianyao Wang
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China.,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.,Department of Immunology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China
| | - Huizhen Wang
- Department of Stomatology, Nanyang Medical College, Nanyang, 473000, China
| | - Junhou Lu
- Department of Cell Biology, Medical College of Soochow University, Suzhou, 215123, China
| | - Zhanhui Feng
- Neurological Department, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Zhongshan Liu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550025, China
| | - Hailiang Song
- Department of General Surgery, Dalang Hospital, Dongguan, 523000, China
| | - Heng Wang
- Department of Pharmacology, Qiannan Medical College for Nationalities, Duyun, 558000, China
| | - Yanhua Zhou
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China.
| | - Jianwei Xu
- National Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique/Center for Tissue Engineering and Stem Cell Research/Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Beijing Road 9, Guiyang, 550004, Guizhou Province, China. .,Key Laboratory of Adult Stem Cell Translational Research, Chinese Academy of Medical Sciences, Guiyang, 550004, China. .,Department of Pharmacology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Trallori E, Ghelardini C, Di Cesare Mannelli L. Mesenchymal stem cells, implications for pain therapy. Neural Regen Res 2019; 14:1915-1916. [PMID: 31290448 PMCID: PMC6676889 DOI: 10.4103/1673-5374.259615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Elena Trallori
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Neurofarba - Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Florence, Italy
| | - Carla Ghelardini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Neurofarba - Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino - Neurofarba - Sezione di Farmacologia e Tossicologia, Università degli Studi di Firenze, Florence, Italy
| |
Collapse
|
6
|
Sherman LS, Romagano MP, Williams SF, Rameshwar P. Mesenchymal stem cell therapies in brain disease. Semin Cell Dev Biol 2019; 95:111-119. [PMID: 30922957 DOI: 10.1016/j.semcdb.2019.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Accepted: 03/19/2019] [Indexed: 12/19/2022]
Abstract
As treatments for diseases throughout the body progress, treatment for many brain diseases has been at a standstill due to difficulties in drug delivery. While new drugs are being discovered in vitro, these therapies are often hindered by inefficient tissue distribution and, more commonly, an inability to cross the blood brain barrier. Mesenchymal stem cells are thus being investigated as a delivery tool to directly target therapies to the brain to treat wide array of brain diseases. This review discusses the use of mesenchymal stem cells in hypoxic disease (hypoxic ischemic encephalopathy), an inflammatory neurodegenerative disease (multiple sclerosis), and a malignant condition (glioma).
Collapse
Affiliation(s)
- Lauren S Sherman
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA; School of Graduate Studies, Biomedical Sciences Programs - Newark, Rutgers University, Newark, NJ, USA
| | - Matthew P Romagano
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Shauna F Williams
- Department of Obstetrics, Gynecology and Women's Health, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Pranela Rameshwar
- Division of Hematology/Oncology, Department of Medicine, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA.
| |
Collapse
|
7
|
Piotto C, Julier Z, Martino MM. Immune Regulation of Tissue Repair and Regeneration via miRNAs-New Therapeutic Target. Front Bioeng Biotechnol 2018; 6:98. [PMID: 30057898 PMCID: PMC6053520 DOI: 10.3389/fbioe.2018.00098] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 06/26/2018] [Indexed: 12/13/2022] Open
Abstract
The importance of immunity in tissue repair and regeneration is now evident. Thus, promoting tissue healing through immune modulation is a growing and promising field. Targeting microRNAs (miRNAs) is an appealing option since they regulate immunity through post-transcriptional gene fine-tuning in immune cells. Indeed, miRNAs are involved in inflammation as well as in its resolution by controlling immune cell phenotypes and functions. In this review, we first discuss the immunoregulatory role of miRNAs during the restoration of tissue homeostasis after injury, focusing mainly on neutrophils, macrophages and T lymphocytes. As tissue examples, we present the immunoregulatory function of miRNAs during the repair and regeneration of the heart, skeletal muscles, skin and liver. Secondly, we discuss recent technological advances for designing therapeutic strategies which target miRNAs. Specifically, we highlight the possible use of miRNAs and anti-miRNAs for promoting tissue regeneration via modulation of the immune system.
Collapse
Affiliation(s)
- Celeste Piotto
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Ziad Julier
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Eltoukhy HS, Sinha G, Moore CA, Sandiford OA, Rameshwar P. Immune modulation by a cellular network of mesenchymal stem cells and breast cancer cell subsets: Implication for cancer therapy. Cell Immunol 2017; 326:33-41. [PMID: 28779846 DOI: 10.1016/j.cellimm.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/28/2017] [Accepted: 07/29/2017] [Indexed: 02/07/2023]
Abstract
The immune modulatory properties of mesenchymal stem cells (MSCs) are mostly controlled by the particular microenvironment. Cancer stem cells (CSCs), which can initiate a clinical tumor, have been the subject of intense research. This review article discusses investigative studies of the roles of MSCs on cancer biology including on CSCs, and the potential as drug delivery to tumors. An understanding of how MSCs behave in the tumor microenvironment to facilitate the survival of tumor cells would be crucial to identify drug targets. More importantly, since CSCs survive for decades in dormancy for later resurgence, studies are presented to show how MSCs could be involved in maintaining dormancy. Although the mechanism by which CSCs survive is complex, this article focus on the cellular involvement of MSCs with regard to immune responses. We discuss the immunomodulatory mechanisms of MSC-CSC interaction in the context of therapeutic outcomes in oncology. We also discuss immunotherapy as a potential to circumventing this immune modulation.
Collapse
Affiliation(s)
- Hussam S Eltoukhy
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Garima Sinha
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Caitlyn A Moore
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Oleta A Sandiford
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA
| | - Pranela Rameshwar
- Rutgers, New Jersey Medical School, Department of Medicine-Hematology-Oncology, Newark, NJ 07103, USA.
| |
Collapse
|
9
|
Sherman LS, Shaker M, Mariotti V, Rameshwar P. Mesenchymal stromal/stem cells in drug therapy: New perspective. Cytotherapy 2016; 19:19-27. [PMID: 27765601 DOI: 10.1016/j.jcyt.2016.09.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/17/2022]
Abstract
Mesenchymal stromal/stem cells (MSC) have emerged as a class of cells suitable for cellular delivery of nanoparticles, drugs and micro-RNA cargo for targeted treatments such as tumor and other protective mechanisms. The special properties of MSC underscore the current use for various clinical applications. Examples of applications include but are not limited to regenerative medicine, immune disorders and anti-cancer therapies. In recent years, there has been intense research in modifying MSC to achieve targeted and efficient clinical outcomes. This review discusses effects of MSC in an inflammatory microenvironment and then explains how these properties could be important to the overall application of MSC in cell therapy. The article also advises caution in the application of these cells because of their role in tumorigenesis. The review stresses the use of MSC as vehicles for drug delivery and discusses the accompanying challenges, based on the influence of the microenvironment on MSC.
Collapse
Affiliation(s)
- Lauren S Sherman
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Maran Shaker
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Veronica Mariotti
- Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Pranela Rameshwar
- Graduate School of Biomedical Sciences, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA; Department of Medicine, Division of Hematology/Oncology, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA.
| |
Collapse
|
10
|
Yang L, Zhang Y, Cheng L, Yue D, Ma J, Zhao D, Hou X, Xiang R, Cheng P. Mesenchymal Stem Cells Engineered to Secrete Pigment Epithelium-Derived Factor Inhibit Tumor Metastasis and the Formation of Malignant Ascites in a Murine Colorectal Peritoneal Carcinomatosis Model. Hum Gene Ther 2016; 27:267-77. [PMID: 26756933 DOI: 10.1089/hum.2015.135] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The therapeutic effects of conventional treatments for advanced colorectal cancer with colorectal peritoneal carcinomatosis (CRPC) and malignant ascites are not very encouraging. Vascular endothelial growth factor-A/vascular permeability factors (VEGF-A/VPF) play key roles in the formation of malignant ascites. In previous work, we demonstrated that pigment epithelium-derived factor (PEDF) antagonized VEGF-A and could repress tumor growth and suppress metastasis in several cancer types. Thus, PEDF may be a therapeutic candidate for treating malignant ascites. Mesenchymal stem cells (MSCs) are promising tools for delivering therapeutic agents in cancer treatment. In the study, MSCs derived from bone marrow were efficiently engineered to secrete human PEDF by adenoviral transduction. Then, intraperitoneal Ad-PEDF-transduced MSCs were analyzed with respect to CRPC and malignant ascites in a CT26 CRPC model. MSCs engineered to secrete PEDF through adenoviral transduction significantly inhibited tumor metastasis and malignant ascites formation in CT26 CRPC mice. Antitumor mechanisms of MSCs-PEDF (MSCs transduced with Ad-PEDF: MOI 500) were associated with inhibiting tumor angiogenesis, inducing apoptosis, and restoring the VEGF-A/sFLT-1 ratio in ascites. Moreover, MSC-mediated Ad-PEDF delivery reduced production of adenovirus-neutralizing antibodies, prolonged PEDF expression, and induced MSCs-PEDF migration toward tumor cells. As a conclusion, MSCs engineered to secrete PEDF by adenoviral transduction may be a therapeutic approach for suppressing tumor metastasis and inhibiting malignant ascites production in CRPC.
Collapse
Affiliation(s)
- Liping Yang
- 1 Tumor Biotherapy Center/Key Laboratory of Biological Therapy and Regenerative Medicine Transformation, Gansu Province, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Yuwei Zhang
- 2 Division of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Liuliu Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Dan Yue
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Jinhu Ma
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Da Zhao
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Xiaoming Hou
- 4 Oncology Medicine Department, Donggang Branch of The First Hospital of Lanzhou University, Lanzhou, People's Republic of China
| | - Rong Xiang
- 5 School of Medicine/Collaborative Innovation Center for Biotherapy, Nankai University , Tianjin, People's Republic of China
| | - Ping Cheng
- 3 State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy/Cancer Center, West China Hospital of Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|