1
|
Gou L, Zhao L, Song W, Wang L, Liu J, Zhang H, Huang Y, Lau CW, Yao X, Tian XY, Wong WT, Luo JY, Huang Y. Inhibition of miR-92a Suppresses Oxidative Stress and Improves Endothelial Function by Upregulating Heme Oxygenase-1 in db/db Mice. Antioxid Redox Signal 2018; 28:358-370. [PMID: 28683566 DOI: 10.1089/ars.2017.7005] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
AIMS Inhibition of microRNA-92a (miR-92a) is reported to suppress endothelial inflammation and delay atherogenesis. We hypothesize that miR-92a inhibition protects endothelial function through suppressing oxidative stress in diabetic db/db mice. RESULTS In this study, we found elevated expression of miR-92a in aortic endothelium from db/db mice and in renal arteries from diabetic subjects. Endothelial cells (ECs) exposed to advanced glycation end products (AGEs) and oxidized low-density lipoprotein express higher level of miR-92a. Overexpression of miR-92a impairs endothelium-dependent relaxations (EDRs) in C57BL/6 mouse aortas. Overexpression of miR-92a suppresses expression of heme oxygenase-1 (HO-1), a critical cytoprotective enzyme, whereas inhibition of miR-92a increases HO-1 expression in human umbilical vein ECs (HUVECs) and db/db mouse aortas. Importantly, miR-92a inhibition by Ad-anti-miR-92a improved EDRs and reduced reactive oxygen species (ROS) production in db/db mouse aortas. HO-1 inhibition by SnMP or HO-1 knockdown by shHO-1 reversed the suppressive effect of miR-92a inhibition on ROS production induced by AGE treatment in C57BL/6 mouse aortas. In addition, SnMP reversed miR-92a inhibition-induced improvement of EDRs in AGE-treated C57BL/6 mouse aortas and in db/db mouse aortas. INNOVATION Expression of miR-92a is increased in diabetic aortic endothelium and inhibition of miR-92a exerts vasoprotective effect in diabetic mice through HO-1 upregulation in ECs. CONCLUSION MiR-92a expression is elevated in diabetic ECs. MiR-92a overexpression impairs endothelial function and suppresses HO-1 expression in ECs. Inhibition of miR-92a attenuates oxidative stress and improves endothelial function through enhancing HO-1 expression and activity in db/db mouse aortas. Antioxid. Redox Signal. 28, 358-370.
Collapse
Affiliation(s)
- Lingshan Gou
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Lei Zhao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wencong Song
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Li Wang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jian Liu
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Hongsong Zhang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yuhong Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Chi Wai Lau
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiaoqiang Yao
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Xiao Yu Tian
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Wing Tak Wong
- 3 School of Life Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Jiang-Yun Luo
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| | - Yu Huang
- 1 Institute of Vascular Medicine, Shenzhen Research Institute and Li Ka Shing Institute of Health Sciences , Hong Kong, China
- 2 School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong, China
| |
Collapse
|
2
|
Subramanian U, Ackermann RT, Brizendine EJ, Saha C, Rosenman MB, Willis DR, Marrero DG. Effect of advanced access scheduling on processes and intermediate outcomes of diabetes care and utilization. J Gen Intern Med 2009; 24:327-33. [PMID: 19132326 PMCID: PMC2642566 DOI: 10.1007/s11606-008-0888-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 11/06/2008] [Accepted: 11/25/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND The impact of open access (OA) scheduling on chronic disease care and outcomes has not been studied. OBJECTIVE To assess the effect of OA implementation at 1 year on: (1) diabetes care processes (testing for A1c, LDL, and urine microalbumin), (2) intermediate outcomes of diabetes care (SBP, A1c, and LDL level), and (3) health-care utilization (ED visits, hospitalization, and outpatient visits). METHODS We used a retrospective cohort study design to compare process and outcomes for 4,060 continuously enrolled adult patients with diabetes from six OA clinics and six control clinics. Using a generalized linear model framework, data were modeled with linear regression for continuous, logistic regression for dichotomous, and Poisson regression for utilization outcomes. RESULTS Patients in the OA clinics were older, with a higher percentage being African American (51% vs 34%) and on insulin. In multivariate analyses, for A1c testing, the odds ratio for African-American patients in OA clinics was 0.47 (CI: 0.29-0.77), compared to non-African Americans [OR 0.27 (CI: 0.21-0.36)]. For urine microablumin, the odds ratio for non-African Americans in OA clinics was 0.37 (CI: 0.17-0.81). At 1 year, in adjusted analyses, patients in OA clinics had significantly higher SBP (mean 6.4 mmHg, 95% CI 5.4 - 7.5). There were no differences by clinic type in any of the three health-care utilization outcomes. CONCLUSION OA scheduling was associated with worse processes of care and SBP at 1 year. OA clinic scheduling should be examined more critically in larger systems of care, multiple health-care settings, and/or in a randomized controlled trial.
Collapse
|