1
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
2
|
Manome T, Hara Y, Ishibashi M. A new 1,2-diketone physalin isolated from Physalis minima and TRAIL-resistance overcoming activity of physalins. J Nat Med 2023; 77:370-378. [PMID: 36495388 DOI: 10.1007/s11418-022-01670-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
A new 1,2-diketone physalin, physalin XII (1), and 13 known compounds were isolated from the methanol extract of Physalis minima whole plant collected in Thailand. Among them, five physalins (2-6) had tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-resistance overcoming activity, and physalin F (3) was the most active with an IC50 value of 0.39 µM against human gastric adenocarcinoma cell line AGS in the presence of TRAIL (100 ng/mL). An investigation of the TRAIL-resistance overcoming activity of physalins using western blot analysis showed that 3 promoted TRAIL-induced apoptosis by suppressing anti-apoptotic proteins c-FLIP and Bcl-2.
Collapse
Affiliation(s)
- Teruhisa Manome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Yasumasa Hara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| | - Masami Ishibashi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| |
Collapse
|
3
|
García-Martínez A, Pérez-Balaguer A, Ortiz-Martínez F, Pomares-Navarro E, Sanmartín E, García-Escolano M, Montoyo-Pujol YG, Castellón-Molla E, Peiró G. Hedgehog gene expression patterns among intrinsic subtypes of breast cancer: Prognostic relevance. Pathol Res Pract 2021; 223:153478. [PMID: 34022683 DOI: 10.1016/j.prp.2021.153478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Hedgehog (Hh) signaling is a crucial developmental regulatory pathway recognized as a primary oncogenesis driver in various human cancers. However, its role in breast carcinoma (BC) has been underexplored. METHODS We analyzed the expression of several Hh associated genes in a clinical series and breast cancer cell lines. We included 193 BC stratified according to intrinsic immunophenotypes. Gene expression profiling ofBOC, PTCH, SMO, GLI1, GLI2, and GLI3 was performed by qRT-PCR. Results were correlated with clinical-pathological variables and outcome. RESULTS We observed expression ofGLI2 in triple-negative/basal-like (TN/BL) and GLI3 in luminal cells. In samples, BOC, GLI1, GLI2, and GLI3 expression correlated significantly with luminal tumors and good prognostic factors. In contrast, PTCH and SMO correlated with TN/BL phenotype and nodal involvement. Patients whose tumors expressed SMO had a poorer outcome, especially those with HER2 phenotype. Positive lymph-node status and high SMO remained independent poor prognostic factors. CONCLUSION Our results support a differential Hh pathway activation in BC phenotypes.SMO levels stratified patients at risk of recurrence and death in HER2 phenotype, and it showed an independent prognostic value. Therefore, SMO could be a potential therapeutic target for a subset of BC patients.
Collapse
Affiliation(s)
- Araceli García-Martínez
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain.
| | - Ariadna Pérez-Balaguer
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Fernando Ortiz-Martínez
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Eloy Pomares-Navarro
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Elena Sanmartín
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Marta García-Escolano
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Yoel G Montoyo-Pujol
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Elena Castellón-Molla
- Pathology Dept., University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| | - Gloria Peiró
- Research Unit, University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain; Pathology Dept., University General Hospital of Alicante, and Alicante Institute for Health and Biomedical Research (ISABIAL), Pintor Baeza 12, 03010 Alicante, Spain
| |
Collapse
|
4
|
Liu L, Huang Y, Feng X, Chen J, Duan Y. Overexpressed Hsp70 alleviated formaldehyde-induced apoptosis partly via PI3K/Akt signaling pathway in human bronchial epithelial cells. ENVIRONMENTAL TOXICOLOGY 2019; 34:495-504. [PMID: 30600586 DOI: 10.1002/tox.22703] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 12/05/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
Formaldehyde (FA) is a ubiquitous environmental pollutant, which can induce apoptosis in lung cell and is related to the pathogenesis of asthma, pneumonia, and chronic obstructive pulmonary disease. Heat shock protein 70 (Hsp70) is an ATP-dependent molecular chaperone and exhibits an anti-apoptosis ability in a variety of cells. Previous studies reported that the expression of Hsp70 was induced when organisms were exposed to FA. Whether Hsp70 plays a role in the FA-induced apoptosis and the involved cell signaling pathway remain largely unknown. In this study, human bronchial epithelial cells with overexpressed Hsp70 and the control were exposed to different concentrations of FA (0, 40, 80, and 160 μmol/L) for 24 hours. Apoptosis and the expression levels of PI3K, Akt, p-Akt, MEK, p-MEK, and GLI2 were detected by Annexin-APC/7AAD double-labeled flow cytometry and western blot. The results showed that overexpression of Hsp70 decreased the apoptosis induced by FA and alleviated the decline of PI3k and p-Akt significantly. Inhibitor (LY 294002, a specific inhibitor of PI3K-Akt) test result indicated that PI3K-Akt signaling pathway was involved in the inhibition of FA-induced apoptosis by Hsp70 overexpression and also active in the maintenance of GLI2 level. However, it also suggested that other signaling pathways activated by overexpressed Hsp70 participated in this process, which was needed to be elucidated in further research.
Collapse
Affiliation(s)
- Lulu Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yun Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xiangling Feng
- Experimental Center for Preventive Medicine, Xiangya School of Public Health, Central South University, Changsha, China
| | - Jihua Chen
- Department of Nutrition and Food Hygiene, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yanying Duan
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
5
|
Bessone F, Razori MV, Roma MG. Molecular pathways of nonalcoholic fatty liver disease development and progression. Cell Mol Life Sci 2019; 76:99-128. [PMID: 30343320 PMCID: PMC11105781 DOI: 10.1007/s00018-018-2947-0] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a main hepatic manifestation of metabolic syndrome. It represents a wide spectrum of histopathological abnormalities ranging from simple steatosis to nonalcoholic steatohepatitis (NASH) with or without fibrosis and, eventually, cirrhosis and hepatocellular carcinoma. While hepatic simple steatosis seems to be a rather benign manifestation of hepatic triglyceride accumulation, the buildup of highly toxic free fatty acids associated with insulin resistance-induced massive free fatty acid mobilization from adipose tissue and the increased de novo hepatic fatty acid synthesis from glucose acts as the "first hit" for NAFLD development. NAFLD progression seems to involve the occurrence of "parallel, multiple-hit" injuries, such as oxidative stress-induced mitochondrial dysfunction, endoplasmic reticulum stress, endotoxin-induced, TLR4-dependent release of inflammatory cytokines, and iron overload, among many others. These deleterious factors are responsible for the triggering of a number of signaling cascades leading to inflammation, cell death, and fibrosis, the hallmarks of NASH. This review is aimed at integrating the overwhelming progress made in the characterization of the physiopathological mechanisms of NAFLD at a molecular level, to better understand the factor influencing the initiation and progression of the disease.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570, 2000, Rosario, Argentina.
| |
Collapse
|
6
|
Zhu H, Xia L, Shen Q, Zhao M, Gu X, Bouamar H, Wang B, Sun LZ, Zhu X. Differential effects of GLI2 and GLI3 in regulating cervical cancer malignancy in vitro and in vivo. J Transl Med 2018; 98:1384-1396. [PMID: 29967343 PMCID: PMC6386554 DOI: 10.1038/s41374-018-0089-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/18/2022] Open
Abstract
Advanced, recurrent, or persistent cervical cancer is often incurable. Therefore, in-depth insights into the molecular mechanisms are needed for the development of novel therapeutic targets and the improvement of current therapeutic strategies. In this study, we investigated the role of GLI2 and GLI3 in the regulation of the malignant properties of cervical cancer. We showed that down-regulation of GLI2, but not GLI3, with an inducible GLI2 shRNA inhibited the growth and migration of cervical cancer cell lines, which could be rescued by ectopic expression of GLI2. GLI2 appeared to support cell growth by regulating the mitosis, but not the apoptosis, of the cervical cancer cells. Mechanistically, these functions of GLI2 were in part mediated by the activation of AKT pathway. Knockdown of GLI2, but not GLI3, also inhibited xenograft growth of cervical cancer cells in vivo. Finally, analysis of TCGA data showed that high levels of GLI2, but not GLI3, conferred a poor prognosis in cervical cancer patients. These observations for the first time suggest that GLI2, but not GLI3, exerts a tumor-promoting role in cervical cancer and may be targeted as a novel therapeutic strategy.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Lu Xia
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA.,Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - Qi Shen
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Menghuang Zhao
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Xiang Gu
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Hakim Bouamar
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Bingzhi Wang
- Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, Texas, USA.,Xiangya Hospital and Xiangya School of Medicine, Central South University, Hunan, China
| | - Lu-Zhe Sun
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China. .,Departments of Cell Systems & Anatomy, School of Medicine, University of Texas Health Science Center, San Antonio, TX, USA.
| | - Xueqiong Zhu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
7
|
Zhao XZ, Wu XH. A small compound spindlactone A sensitizes human endometrial cancer cells to TRAIL-induced apoptosis via the inhibition of NAD(P)H dehydrogenase quinone 1. Onco Targets Ther 2018; 11:3609-3617. [PMID: 29950865 PMCID: PMC6016593 DOI: 10.2147/ott.s165723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Introduction Spindlactone A (SPL-A) is a novel small molecule inhibitor of TACC3 that selectively
inhibits the nucleation of centrosome microtubules and induces mitotic arrest in ovarian
cancer cells. SPL-A is derived from dicoumarol which inhibits the activity of NAD(P)H
dehydrogenase quinone oxidoreductase 1 (NQO1). This study aimed to investigate the
mechanism by which SPL-A enhances TRAIL-induced apoptosis in endometrial carcinoma
cells. Materials and methods Endometrial carcinoma cells were treated with SPL-A and/or TRAIL, and the apoptosis and
protein expression in the treated cells were examined. Results Combined treatment with SPL-A and TRAIL significantly induced apoptosis in various
human endometrial carcinoma cells, but not in normal human endometrial stromal cells and
endometrial epithelial cells. Notably, both NQO1 inhibitor ES936 and NQO1 siRNA enhanced
TRAIL-induced apoptosis of endometrial carcinoma cells. Furthermore, SPL-A downregulated
the expression of c-FLIP, Bcl-2, Bcl-xl, and Mcl-1, while increasing p53 expression. Conclusion In particular, luciferase assay showed that SPL-A inhibited Bcl-2 promoter activity,
and p53 inhibitor PFT-α could reverse the effect of SPL-A on Bcl-2 expression.
Moreover, Bcl-2 overexpression inhibited the apoptosis induced by SPL-A and TRAIL. Taken
together, our results suggest that SPL-A sensitizes endometrial cancer cells to
TRAIL-induced apoptosis via the regulation of apoptosis-related proteins and the
inhibition of NQO1 activity.
Collapse
Affiliation(s)
- Xiang-Zhai Zhao
- Department of Gynecology and Obstetrics, The Third Hospital of Hebei Medical University, Hebei 050051, People's Republic of China
| | - Xiao-Hua Wu
- Department of Gynecology and Obstetrics, Hebei Medical University, Hebei 050017, People’s Republic of China.,Department of Gynecology and Obstetrics, Shijiazhuang Obstetrics and Gynecology Hospital, Hebei Medical University, Hebei 050000, People's Republic of China
| |
Collapse
|
8
|
Verdelho Machado M, Diehl AM. The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 2018; 53:264-278. [PMID: 29557675 DOI: 10.1080/10409238.2018.1448752] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of obesity-associated liver diseases and it has become the major cause of cirrhosis in the Western world. The high prevalence of NAFLD-associated advanced liver disease reflects both the high prevalence of obesity-related fatty liver (hepatic steatosis) and the lack of specific treatments to prevent hepatic steatosis from progressing to more serious forms of liver damage, including nonalcoholic steatohepatitis (NASH), cirrhosis, and primary liver cancer. The pathogenesis of NAFLD is complex, and not fully understood. However, compelling evidence demonstrates that dysregulation of the hedgehog (Hh) pathway is involved in both the pathogenesis of hepatic steatosis and the progression from hepatic steatosis to more serious forms of liver damage. Inhibiting hedgehog signaling enhances hepatic steatosis, a condition which seldom results in liver-related morbidity or mortality. In contrast, excessive Hh pathway activation promotes development of NASH, cirrhosis, and primary liver cancer, the major causes of liver-related deaths. Thus, suppressing excessive Hh pathway activity is a potential approach to prevent progressive liver damage in NAFLD. Various pharmacologic agents that inhibit Hh signaling are available and approved for cancer therapeutics; more are being developed to optimize the benefits and minimize the risks of inhibiting this pathway. In this review we will describe the Hh pathway, summarize the evidence for its role in NAFLD evolution, and discuss the potential role for Hh pathway inhibitors as therapies to prevent NASH, cirrhosis and liver cancer.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Department of Gastroenterology , Hospital de Santa Maria, CHLN , Lisbon , Portugal
| | - Anna Mae Diehl
- a Division of Gastroenterology, Department of Medicine , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
9
|
Xiao B, Liu C, Liu BT, Zhang X, Liu RR, Zhang XW. TTF1-NPs Induce ERS-Mediated Apoptosis and Inhibit Human Hepatoma Cell Growth In Vitro and In Vivo. Oncol Res 2017; 23:311-20. [PMID: 27131317 PMCID: PMC7838666 DOI: 10.3727/096504016x14567549091341] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies have shown that 5,2',4'-trihydroxy-6,7,5'-trimethoxyflavone (TTF1) is the primary anticancer constituent of the traditional Chinese medicinal plant Sorbaria sorbifolia (SS), which has been applied to treat cancer in China. In this study, we investigated the in vitro and in vivo antitumor effects and biological mechanisms of small-molecule TTF1 nanoparticles (TTF1-NPs). The effects of TTF1-NPs on cell growth and apoptosis were investigated using human hepatoma cells. The molecular changes associated with the effects of TTF1-NPs were analyzed by immunocytochemistry and Western blot analysis. The in vivo effect of TTF1-NPs was investigated using the HepG2 tumor xenograft model. We found that TTF1-NPs exhibited antitumor effects in vitro accompanied by induction of apoptosis in human hepatoma cells. Mechanistically, our data showed that TTF1-NPs induced apoptosis via endoplasmic reticulum stress (ERS) pathway in hepatoma cells. Moreover, inhibition of ERS activation blocked TTF1-NP-induced apoptosis in HepG2 cells. Finally, TTF1-NPs inhibited the growth of HepG2 xenograft tumors. Taken together, our results demonstrated that TTF1-NP-induced apoptosis was mediated at least in part by the ERS pathway and thus inhibited hepatoma tumor growth.
Collapse
Affiliation(s)
- Bin Xiao
- College of Medicine, Yanbian University, Yanji, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
10
|
Vlčková K, Réda J, Ondrušová L, Krayem M, Ghanem G, Vachtenheim J. GLI inhibitor GANT61 kills melanoma cells and acts in synergy with obatoclax. Int J Oncol 2016; 49:953-60. [PMID: 27572939 DOI: 10.3892/ijo.2016.3596] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
MEK kinase inhibitors (trametinib and selumetinib) or kinase inhibitors directed against mutated BRAF(V600E) (vemurafenib and dabrafenib) have initial encouraging effects in the treatment of melanoma but acquired resistance appears almost invariably after some months. Studies revealed mutually exclusive NRAS and BRAF activating mutations driving the MAPK/ERK pathway among human melanomas. Although combination therapy exerts significantly better antitumor cell efficacy, complete remission is rarely achieved. To employ an alternative approach, we have targeted the Hedgehog/GLI pathway, which is deregulated in melanomas, through the GLI1/2 inhibitor GANT61, alone or accompanied with the treatment by the BCL2 family inhibitor obatoclax in 9 melanoma cell lines. Thus, we targeted melanoma cells irrespective of their NRAS or BRAF mutational status. After GANT61 treatment, the cell viability was drastically diminished via apoptosis, as substantial nuclear DNA fragmentation was detected. In all tested melanoma cell lines, the combined treatment was more efficient than the application of each drug alone at the end of the cell growth with inhibitors. GANT61 was efficient also alone in most cell lines without the addition of obatoclax, which had only a limited effect when used as a single drug. In most cell lines, tumor cells were eradicated after 5-9 days of combined treatment in colony outgrowth assay. To conclude, GANT61 treatment might become a hopeful and effective anti-melanoma targeted therapy, especially when combined with the BCL2 family inhibitor obatoclax.
Collapse
Affiliation(s)
- Kateřina Vlčková
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jiri Réda
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Lubica Ondrušová
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Mohammad Krayem
- LOCE-Institut Jules Bordet, Université Libre de Bruxelles, B-1000 Brussels, Belgium
| | - Ghanem Ghanem
- LOCE-Institut Jules Bordet, Université Libre de Bruxelles, B-1000 Brussels, Belgium
| | - Jiri Vachtenheim
- Laboratory of Transcription and Cell Signaling, Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| |
Collapse
|
11
|
Zhang S, Qiu D, Liu J, Li Z. Active Components of Fungus Shiraia bambusiscola Can Specifically Induce BGC823 Gastric Cancer Cell Apoptosis. CELL JOURNAL 2016; 18:149-58. [PMID: 27540519 PMCID: PMC4988413 DOI: 10.22074/cellj.2016.4309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/06/2016] [Indexed: 11/04/2022]
Abstract
Objective Gastric cancer is a major health issue worldwide. Using a therapeutic approach, with minor side-effects, is very essential for the treatment of the gastric cancer.
Shiraia bambusicola is a parasitic fungus which is widely used in China for curing several
diseases with little side-effects. However, the mechanisms are not well understood yet.
The aim of this study was to further understand the pharmacological mechanisms of Shiraia bambusicola and investigate whether it can be used for curing gastric cancer.
Materials and Methods In this experimental study, we mainly tested the effect of active
components extracted from Shiraia bambusicola on BGC823, A549 and HepG2 cells. We used
MTT assay to test cell viability. We also analyzed morphologic changes caused by apoptosis
using Hoechst 33342 fluorescence staining, as well as cell cycle status and apoptosis ratio using flow-cytometer. In addition, protein expression level was tested by Western-blotting assay.
Results BGC-823 cell proliferation was specifically inhibited by active components of
Shiraia bambusicola. Meanwhile, these active components could induce BGC-823 cells
apoptosis and retard the cell cycle in S/G2 phase. We also determined that two critical
protein markers cleaved Poly(ADP-ribose) polymerase-1 (PARP-1) and FLICE-inhibitory
protein (FLIP), involved in apoptosis process, were regulated by these active components.
Conclusion These data shed light on the treatment of human gastric cancer and conclude
that Shiraia bambusicola can be a good therapeutic candidate for treatment of this malignancy.
Collapse
Affiliation(s)
- Shubing Zhang
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China; Department of Cell Biology, State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Dewen Qiu
- Department of Cell Biology, State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jingjiang Liu
- Department of Cell Biology, State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zhijian Li
- Department of Anesthesiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
12
|
Luo Y, Jin H, Wen GR, Tuo BG. Advances in differentiation therapy of hepatocellular carcinoma. Shijie Huaren Xiaohua Zazhi 2015; 23:4665-4672. [DOI: 10.11569/wcjd.v23.i29.4665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignancy of the digestive system, which shows obvious disorders of differentiation. Currently, its pathogenesis is still elusive. Therefore, to figure out the mechanism of disturbed differentiation in HCC is the key to finding out precise therapeutic targets for differentiation therapy. Differentiation therapy of hepatocellular carcinoma refers to making hepatocellular carcinoma cells differentiate into mature hepatocytes, and rebuilding their normal phenotype and normal biological function through promoting HCC cell apoptosis and inhibiting their proliferation in the presence of specific differentiation-inducing agents or signals. In recent years, increasing research results about HCC differentiation therapy have been reported. This article reviews differentiation-inducing agents or targets, differentiation-related signaling pathways and microRNAs, with an aim to provide some clues for HCC differentiation therapy.
Collapse
|
13
|
Li J, Sun RR, Yu ZJ, Liang H, Shen S, Kan Q. Galectin-1 Modulates the Survival and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) Sensitivity in Human Hepatocellular Carcinoma Cells. Cancer Biother Radiopharm 2015; 30:336-41. [PMID: 26348206 DOI: 10.1089/cbr.2015.1857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Ran-ran Sun
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Zu-jiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Hongxia Liang
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Shen Shen
- Department of Infectious Disease, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of ZhengZhou University, ZhengZhou, China
| |
Collapse
|