1
|
Sheva K, Roy Chowdhury S, Kravchenko-Balasha N, Meirovitz A. Molecular Changes in Breast Cancer Induced by Radiation Therapy. Int J Radiat Oncol Biol Phys 2024; 120:465-481. [PMID: 38508467 DOI: 10.1016/j.ijrobp.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 02/29/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Breast cancer treatments are based on prognostic clinicopathologic features that form the basis for therapeutic guidelines. Although the utilization of these guidelines has decreased breast cancer-associated mortality rates over the past three decades, they are not adequate for individualized therapy. Radiation therapy (RT) is the backbone of breast cancer treatment. Although a highly successful therapeutic modality clinically, from a biological perspective, preclinical studies have shown RT to have the potential to alter tumor cell phenotype, immunogenicity, and the surrounding microenvironment, potentially changing the behavior of cancer cells and resulting in a significant variation in RT response. This review presents the recent advances in revealing the complex molecular changes induced by RT in the treatment of breast cancer and highlights the complexities of translating this information into clinically relevant tools for improved prognostic insights and the revelation of novel approaches for optimizing RT. METHODS AND MATERIALS Current literature was reviewed with a focus on recent advances made in the elucidation of tumor-associated radiation-induced molecular changes across molecular, genetic, and proteomic bases. This review was structured with the aim of providing an up-to-date overview over the very broad and complex subject matter of radiation-induced molecular changes and radioresistance, familiarizing the reader with the broader issue at hand. RESULTS The subject of radiation-induced molecular changes in breast cancer has been broached from various physiological focal points including that of the immune system, immunogenicity and the abscopal effect, tumor hypoxia, breast cancer classification and subtyping, molecular heterogeneity, and molecular plasticity. It is becoming increasingly apparent that breast cancer clinical subtyping alone does not adequately account for variation in RT response or radioresistance. Multiple components of the tumor microenvironment and immune system, delivered RT dose and fractionation schedules, radiation-induced bystander effects, and intrinsic tumor physiology and heterogeneity all contribute to the resultant RT outcome. CONCLUSIONS Despite recent advances and improvements in anticancer therapies, tumor resistance remains a significant challenge. As new analytical techniques and technologies continue to provide crucial insight into the complex molecular mechanisms of breast cancer and its treatment responses, it is becoming more evident that personalized anticancer treatment regimens may be vital in overcoming radioresistance.
Collapse
Affiliation(s)
- Kim Sheva
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| | - Sangita Roy Chowdhury
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nataly Kravchenko-Balasha
- The Institute of Biomedical and Oral Research, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Amichay Meirovitz
- The Legacy Heritage Oncology Center & Dr Larry Norton Institute, Soroka University Medical Center, Ben Gurion University of the Negev, Faculty of Medicine, Be'er Sheva, Israel.
| |
Collapse
|
2
|
Sirek T, Sirek A, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Strojny D, Grabarek BO. Expression profile of messenger and micro RNAs related to the histaminergic system in patients with five subtypes of breast cancer. Front Oncol 2024; 14:1407538. [PMID: 39267843 PMCID: PMC11390352 DOI: 10.3389/fonc.2024.1407538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 08/08/2024] [Indexed: 09/15/2024] Open
Abstract
Disparities in estrogen receptor (ER), progesterone receptor, human epidermal growth factor receptor 2 (HER2), and Ki67 proliferation indices facilitate the categorization of breast cancer into four principal subtypes: luminal A, luminal B, HER2-positive, and triple-negative breast cancer (TNBC). Preclinical studies investigating the therapeutic potential of histaminergic system targeting in breast cancer have shown promising results. This study aimed to assess the expression profiles of messenger ribonucleic acid (mRNA) and micro RNA (miRNA) related to the histaminergic system in five subtypes of breast cancer among Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n =100; HER2+, n= 96), HER2+ (n = 36), and TNBC (n = 43). They underwent surgery during which the tumor tissue was removed along with a margin of healthy tissue (control material). Molecular analysis included the determination of a microarray profile of mRNAs and miRNAs associated with the histaminergic system, real-time polymerase chain reaction preceded by reverse transcription of selected genes, and determination of histamine receptors (human histamine H1 receptor [HRH1], human histamine H2 receptor [HRH2], and human histamine H4 receptor [HRH4]) using an enzyme-linked immunosorbent assay. Statistical analysis was performed with statistical significance at p < 0.05. Nine mRNAs were significantly differentiated in breast cancer sections, regardless of subtype, compared to control samples: HRH1, HRH2, HRH4, histamine N-methyltransferase (HNMT), 5-hydroxytryptamine receptor 6 (HTR6), endothelin 1 (EDN1), endothelin receptor type A (EDNRA), adenosine deaminase (ADA), solute carrier family 22 member 3 (SLC3A2). Predictive analysis showed that hsa-miR-34a potentially regulates HRH1 expression, whereas hsa-miR-3140-5p and hsa-miR-4251 potentially affect HRH2 expression. In contrast, HRH4 and EDN1 expression were regulated by hsa-miR-1-3p. The expression of HNMT is potentially regulated by one miRNA, hsa-miR-382, whereas EDNRA expression is regulated by two miRNA molecules: hsa-miR-34a and hsa-miR-16. In contrast, hsa-miR-650 is involved in the regulation of HTR6 expression, whereas hsa-miR-1275 potentially interacts with three mRNAs: ADA, SLC23A2, and HRH1. Molecular analysis confirmed that the selected mRNA and miRNA transcripts could be promising molecular markers and therapeutic targets.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, Bielsko-Biala, Poland
| | - Agata Sirek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, Kraków, Poland
| | - Dariusz Boroń
- Uczelnia Medyczna im, Marii Skłodowskiej-Curie, Warszawa, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, Poznan, Poland
- Bieńkowski Medical Center-Plastic Surgery, Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Konrad Dziobek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
| | - Damian Strojny
- Institute of Health Care, National Academy of Applied Sciences in Przemyśl, Przemyśl, Poland
- Department of Medical Science, New Medical Techniques Specjalist Hospital of St. Family in Rudna Mała, Rzeszów, Poland
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, Dabrowa Górnicza, Poland
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
| |
Collapse
|
3
|
Azimi H, Jafari A, Maralani M, Davoodi H. The role of histamine and its receptors in breast cancer: from pathology to therapeutic targets. Med Oncol 2024; 41:190. [PMID: 38951252 DOI: 10.1007/s12032-024-02437-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Breast cancer is the most common malignancy in women, and despite the development of new treatment methods and the decreasing mortality rate in recent years, one of the clinical problems in breast cancer treatment is chronic inflammation in the tumor microenvironment. Histamine, an inflammatory mediator, is produced by tumor cells and can induce chronic inflammation and the growth of some tumors by recruiting inflammatory cells. It can also affect tumor physiopathology, antitumor treatment efficiency, and patient survival. Antihistamines, as histamine receptor antagonists, play a role in modulating the effects of these receptors in tumor cells and can affect some treatment methods for breast cancer therapy; in this review, we investigate the role of histamine, its receptors, and antihistamines in breast cancer pathology and treatment methods.
Collapse
Affiliation(s)
- Hossein Azimi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Afifeh Jafari
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahafarin Maralani
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada
| | - Homa Davoodi
- Department of Immunology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Cancer Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
- Postdoctoral Fellow Atlantic Cancer Research Institute (ACRI) Dr.Georges-L.Dumont University Hospital Centre, Moncton, NewBrunswick, Canada.
| |
Collapse
|
4
|
Michaeli O, Luz I, Vatarescu M, Manko T, Weizman N, Korotinsky Y, Tsitrina A, Braiman A, Arazi L, Cooks T. APR-246 as a radiosensitization strategy for mutant p53 cancers treated with alpha-particles-based radiotherapy. Cell Death Dis 2024; 15:426. [PMID: 38890278 PMCID: PMC11189442 DOI: 10.1038/s41419-024-06830-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Radiation therapy (RT) remains a common treatment for cancer patients worldwide, despite the development of targeted biological compounds and immunotherapeutic drugs. The challenge in RT lies in delivering a lethal dose to the cancerous site while sparing the surrounding healthy tissues. Low linear energy transfer (low-LET) and high linear energy transfer (high-LET) radiations have distinct effects on cells. High-LET radiation, such as alpha particles, induces clustered DNA double-strand breaks (DSBs), potentially inducing cell death more effectively. However, due to limited range, alpha-particle therapies have been restricted. In human cancer, mutations in TP53 (encoding for the p53 tumor suppressor) are the most common genetic alteration. It was previously reported that cells carrying wild-type (WT) p53 exhibit accelerated senescence and significant rates of apoptosis in response to RT, whereas cells harboring mutant p53 (mutp53) do not. This study investigated the combination of the alpha-emitting atoms RT based on internal Radium-224 (224Ra) sources and systemic APR-246 (a p53 reactivating compound) to treat tumors with mutant p53. Cellular models of colorectal cancer (CRC) or pancreatic ductal adenocarcinoma (PDAC) harboring mutant p53, were exposed to alpha particles, and tumor xenografts with mutant p53 were treated using 224Ra source and APR-246. Effects on cell survival and tumor growth, were assessed. The spread of alpha emitters in tumors was also evaluated as well as the spatial distribution of apoptosis within the treated tumors. We show that mutant p53 cancer cells exhibit radio-sensitivity to alpha particles in vitro and to alpha-particles-based RT in vivo. APR-246 treatment enhanced sensitivity to alpha radiation, leading to reduced tumor growth and increased rates of tumor eradication. Combining alpha-particles-based RT with p53 restoration via APR-246 triggered cell death, resulting in improved therapeutic outcomes. Further preclinical and clinical studies are needed to provide a promising approach for improving treatment outcomes in patients with mutant p53 tumors.
Collapse
Affiliation(s)
- Or Michaeli
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Ishai Luz
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Maayan Vatarescu
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
- Translational Research Laboratory, Alpha Tau Medical, Jerusalem, Israel
| | - Tal Manko
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Noam Weizman
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yevgeniya Korotinsky
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexandra Tsitrina
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Lior Arazi
- Unit of Nuclear Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University, Beer-Sheva, Israel.
| |
Collapse
|
5
|
Nicoud MB, Ospital IA, Táquez Delgado MA, Riedel J, Fuentes P, Bernabeu E, Rubinstein MR, Lauretta P, Martínez Vivot R, Aguilar MDLÁ, Salgueiro MJ, Speisky D, Moretton MA, Chiappetta DA, Medina VA. Nanomicellar Formulations Loaded with Histamine and Paclitaxel as a New Strategy to Improve Chemotherapy for Breast Cancer. Int J Mol Sci 2023; 24:ijms24043546. [PMID: 36834958 PMCID: PMC9959774 DOI: 10.3390/ijms24043546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Triple negative breast cancer (TNBC) is the most aggressive breast cancer subtype. Currently, paclitaxel (PTX) represents the first-line therapy for TNBC; however it presents a hydrophobic behavior and produces severe adverse effects. The aim of this work is to improve the therapeutic index of PTX through the design and characterization of novel nanomicellar polymeric formulations composed of a biocompatible copolymer Soluplus® (S), surface-decorated with glucose (GS), and co-loaded either with histamine (HA, 5 mg/mL) and/or PTX (4 mg/mL). Their micellar size, evaluated by dynamic light scattering, showed a hydrodynamic diameter between 70 and 90 nm for loaded nanoformulations with a unimodal size distribution. Cytotoxicity and apoptosis assays were performed to assess their efficacy in vitro in human MDA-MB-231 and murine 4T1 TNBC cells rendering optimal antitumor efficacy in both cell lines for the nanoformulations with both drugs. In a model of TNBC developed in BALB/c mice with 4T1 cells, we found that all loaded micellar systems reduced tumor volume and that both HA and HA-PTX-loaded SG micelles reduced tumor weight and neovascularization compared with the empty micelles. We conclude that HA-PTX co-loaded micelles in addition to HA-loaded formulations present promising potential as nano-drug delivery systems for cancer chemotherapy.
Collapse
Affiliation(s)
- Melisa B. Nicoud
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Ignacio A. Ospital
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Mónica A. Táquez Delgado
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Jennifer Riedel
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Pedro Fuentes
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Ezequiel Bernabeu
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Mara R. Rubinstein
- Laboratorio de Psiconeuroendocrinoinmunología, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Paolo Lauretta
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - Rocío Martínez Vivot
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María de los Ángeles Aguilar
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
| | - María J. Salgueiro
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Daniela Speisky
- Servicio de Patología, Hospital Británico de Buenos Aires, Buenos Aires 1280, Argentina
| | - Marcela A. Moretton
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Diego A. Chiappetta
- Cátedra de Tecnología Farmacéutica I, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Instituto de Tecnología Farmacéutica y Biofarmacia (InTecFyB), Universidad de Buenos Aires, Buenos Aires 1113, Argentina
| | - Vanina A. Medina
- Laboratorio de Biología Tumoral e Inflamación, Instituto de Investigaciones Biomédicas (BIOMED), Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina (UCA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 1107, Argentina
- Laboratorio de Radioisótopos, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina
- Correspondence: ; Tel.: +54-0810-220-0822 (ext. 6091)
| |
Collapse
|
6
|
Hsieh WC, Budiarto BR, Wang YF, Lin CY, Gwo MC, So DK, Tzeng YS, Chen SY. Spatial multi-omics analyses of the tumor immune microenvironment. J Biomed Sci 2022; 29:96. [PMID: 36376874 PMCID: PMC9661775 DOI: 10.1186/s12929-022-00879-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
In the past decade, single-cell technologies have revealed the heterogeneity of the tumor-immune microenvironment at the genomic, transcriptomic, and proteomic levels and have furthered our understanding of the mechanisms of tumor development. Single-cell technologies have also been used to identify potential biomarkers. However, spatial information about the tumor-immune microenvironment such as cell locations and cell-cell interactomes is lost in these approaches. Recently, spatial multi-omics technologies have been used to study transcriptomes, proteomes, and metabolomes of tumor-immune microenvironments in several types of cancer, and the data obtained from these methods has been combined with immunohistochemistry and multiparameter analysis to yield markers of cancer progression. Here, we review numerous cutting-edge spatial 'omics techniques, their application to study of the tumor-immune microenvironment, and remaining technical challenges.
Collapse
Affiliation(s)
- Wan-Chen Hsieh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan
| | - Bugi Ratno Budiarto
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yi-Fu Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chih-Yu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Mao-Chun Gwo
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Dorothy Kazuno So
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Yi-Shiuan Tzeng
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shih-Yu Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
7
|
Clauzure M, Táquez Delgado MA, Phillip JM, Revuelta MV, Cerchietti L, Medina VA. Histamine H4 Receptor Agonism Induces Antitumor Effects in Human T-Cell Lymphoma. Int J Mol Sci 2022; 23:ijms23031378. [PMID: 35163302 PMCID: PMC8836034 DOI: 10.3390/ijms23031378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/09/2021] [Accepted: 01/16/2022] [Indexed: 02/01/2023] Open
Abstract
The discovery of the human histamine H4 receptor (H4R) has contributed to our understanding of the role of histamine in numerous physiological and pathological conditions, including tumor development and progression. The lymph nodes of patients with malignant lymphomas have shown to contain high levels of histamine, however, less is known regarding the expression and function of the H4R in T-cell lymphoma (TCL). In this work we demonstrate the expression of H4R isoforms (mRNA and protein) in three human aggressive TCL (OCI-Ly12, Karpas 299, and HuT78). Histamine and specific H4R agonists (VUF8430 and JNJ28610244) significantly reduced cell viability in a dose-dependent manner (p < 0.05). The combined treatment with the H4R antagonist (JNJ7777120, 10 µM) reversed the effects of the H4R ligands. Importantly, we screened a drug repurposing library of 433 FDA-approved compounds (1 μM) in combination with histamine (10 μM) in Hut78 cells. Histamine produced a favorable antitumor effect with 18 of these compounds, including the histone deacetylase inhibitor panobinostat. Apoptosis, proliferation, and oxidative stress studies confirmed the antitumoral effects of the combination. We conclude that the H4R is expressed in TCL, and it is involved in histamine-mediated responses.
Collapse
Affiliation(s)
- Mariángeles Clauzure
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Faculty of Veterinary Science, National University of La Pampa (UNLPam), General Pico 6360, Argentina
| | - Mónica A. Táquez Delgado
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
| | - Jude M. Phillip
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Maria V. Revuelta
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Leandro Cerchietti
- Hematology and Oncology Division, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA; (J.M.P.); (M.V.R.); (L.C.)
| | - Vanina A. Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET), Buenos Aires 1107, Argentina; (M.C.); (M.A.T.D.)
- Correspondence: ; Tel.: +54-11-4349-0200 (ext. 6091)
| |
Collapse
|
8
|
Ravichandran A, Clegg J, Adams MN, Hampson M, Fielding A, Bray LJ. 3D Breast Tumor Models for Radiobiology Applications. Cancers (Basel) 2021; 13:5714. [PMID: 34830869 PMCID: PMC8616164 DOI: 10.3390/cancers13225714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/28/2021] [Accepted: 11/07/2021] [Indexed: 12/17/2022] Open
Abstract
Breast cancer is a leading cause of cancer-associated death in women. The clinical management of breast cancers is normally carried out using a combination of chemotherapy, surgery and radiation therapy. The majority of research investigating breast cancer therapy until now has mainly utilized two-dimensional (2D) in vitro cultures or murine models of disease. However, there has been significant uptake of three-dimensional (3D) in vitro models by cancer researchers over the past decade, highlighting a complimentary model for studies of radiotherapy, especially in conjunction with chemotherapy. In this review, we underline the effects of radiation therapy on normal and malignant breast cells and tissues, and explore the emerging opportunities that pre-clinical 3D models offer in improving our understanding of this treatment modality.
Collapse
Affiliation(s)
- Akhilandeshwari Ravichandran
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Julien Clegg
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Mark N. Adams
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Madison Hampson
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
| | - Andrew Fielding
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Laura J. Bray
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (A.R.); (J.C.); (M.H.)
- ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| |
Collapse
|
9
|
Seebacher NA, Krchniakova M, Stacy AE, Skoda J, Jansson PJ. Tumour Microenvironment Stress Promotes the Development of Drug Resistance. Antioxidants (Basel) 2021; 10:1801. [PMID: 34829672 PMCID: PMC8615091 DOI: 10.3390/antiox10111801] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/18/2023] Open
Abstract
Multi-drug resistance (MDR) is a leading cause of cancer-related death, and it continues to be a major barrier to cancer treatment. The tumour microenvironment (TME) has proven to play an essential role in not only cancer progression and metastasis, but also the development of resistance to chemotherapy. Despite the significant advances in the efficacy of anti-cancer therapies, the development of drug resistance remains a major impediment to therapeutic success. This review highlights the interplay between various factors within the TME that collectively initiate or propagate MDR. The key TME-mediated mechanisms of MDR regulation that will be discussed herein include (1) altered metabolic processing and the reactive oxygen species (ROS)-hypoxia inducible factor (HIF) axis; (2) changes in stromal cells; (3) increased cancer cell survival via autophagy and failure of apoptosis; (4) altered drug delivery, uptake, or efflux and (5) the induction of a cancer stem cell (CSC) phenotype. The review also discusses thought-provoking ideas that may assist in overcoming the TME-induced MDR. We conclude that stressors from the TME and exposure to chemotherapeutic agents are strongly linked to the development of MDR in cancer cells. Therefore, there remains a vast area for potential research to further elicit the interplay between factors existing both within and outside the TME. Elucidating the mechanisms within this network is essential for developing new therapeutic strategies that are less prone to failure due to the development of resistance in cancer cells.
Collapse
Affiliation(s)
| | - Maria Krchniakova
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Alexandra E. Stacy
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic;
- International Clinical Research Center, St. Anne’s University Hospital, 65691 Brno, Czech Republic
| | - Patric J. Jansson
- Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia;
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St. Leonards, NSW 2065, Australia
| |
Collapse
|
10
|
Emerging role of ferroptosis in breast cancer: New dawn for overcoming tumor progression. Pharmacol Ther 2021; 232:107992. [PMID: 34606782 DOI: 10.1016/j.pharmthera.2021.107992] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/02/2021] [Accepted: 09/07/2021] [Indexed: 02/08/2023]
Abstract
Breast cancer has become a serious threat to women's health. Cancer progression is mainly derived from resistance to apoptosis induced by procedures or therapies. Therefore, new drugs or models that can overcome apoptosis resistance should be identified. Ferroptosis is a recently identified mode of cell death characterized by excess reactive oxygen species-induced lipid peroxidation. Since ferroptosis is distinct from apoptosis, necrosis and autophagy, its induction successfully eliminates cancer cells that are resistant to other modes of cell death. Therefore, ferroptosis may become a new direction around which to design breast cancer treatment. Unfortunately, the complete appearance of ferroptosis in breast cancer has not yet been fully elucidated. Furthermore, whether ferroptosis inducers can be used in combination with traditional anti- breast cancer drugs is still unknown. Moreover, a summary of ferroptosis in breast cancer progression and therapy is currently not available. In this review, we discuss the roles of ferroptosis-associated modulators glutathione, glutathione peroxidase 4, iron, nuclear factor erythroid-2 related factor-2, superoxide dismutases, lipoxygenase and coenzyme Q in breast cancer. Furthermore, we provide evidence that traditional drugs against breast cancer induce ferroptosis, and that ferroptosis inducers eliminate breast cancer cells. Finally, we put forward prospect of using ferroptosis inducers in breast cancer therapy, and predict possible obstacles and corresponding solutions. This review will deepen our understanding of the relationship between ferroptosis and breast cancer, and provide new insights into breast cancer-related therapeutic strategies.
Collapse
|
11
|
Down-Regulation of the Proteoglycan Decorin Fills in the Tumor-Promoting Phenotype of Ionizing Radiation-Induced Senescent Human Breast Stromal Fibroblasts. Cancers (Basel) 2021; 13:cancers13081987. [PMID: 33924197 PMCID: PMC8074608 DOI: 10.3390/cancers13081987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/13/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Ionizing radiation (a typical remedy for breast cancer) results in the premature senescence of the adjacent to the neoplastic cells stromal fibroblasts. Here, we showed that these senescent fibroblasts are characterized by the down-regulation of the small leucine-rich proteoglycan decorin, a poor prognostic factor for the progression of the disease. Decorin down-regulation is mediated by secreted growth factors in an autocrine and paracrine (due to the interaction with breast cancer cells) manner, with bFGF and VEGF being the key players of this regulation in young and senescent breast stromal fibroblasts. Autophagy activation increases decorin mRNA levels, indicating that impaired autophagy is implicated in the reduction in decorin in this cell model. Decorin down-regulation acts additively to the already tumor-promoting phenotype of ionizing radiation-induced prematurely senescent human stromal fibroblasts, confirming that stromal senescence is a side-effect of radiotherapy that should be taken into account in the design of anticancer treatments. Abstract Down-regulation of the small leucine-rich proteoglycan decorin in the stroma is considered a poor prognostic factor for breast cancer progression. Ionizing radiation, an established treatment for breast cancer, provokes the premature senescence of the adjacent to the tumor stromal fibroblasts. Here, we showed that senescent human breast stromal fibroblasts are characterized by the down-regulation of decorin at the mRNA and protein level, as well as by its decreased deposition in the pericellular extracellular matrix in vitro. Senescence-associated decorin down-regulation is a long-lasting process rather than an immediate response to γ-irradiation. Growth factors were demonstrated to participate in an autocrine manner in decorin down-regulation, with bFGF and VEGF being the critical mediators of the phenomenon. Autophagy inhibition by chloroquine reduced decorin mRNA levels, while autophagy activation using the mTOR inhibitor rapamycin enhanced decorin transcription. Interestingly, the secretome from a series of both untreated and irradiated human breast cancer cell lines with different molecular profiles inhibited decorin expression in young and senescent stromal fibroblasts, which was annulled by SU5402, a bFGF and VEGF inhibitor. The novel phenotypic trait of senescent human breast stromal fibroblasts revealed here is added to their already described cancer-promoting role via the formation of a tumor-permissive environment.
Collapse
|
12
|
Pesch AM, Pierce LJ, Speers CW. Modulating the Radiation Response for Improved Outcomes in Breast Cancer. JCO Precis Oncol 2021; 5:PO.20.00297. [PMID: 34250414 DOI: 10.1200/po.20.00297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Andrea M Pesch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Department of Pharmacology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Lori J Pierce
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Corey W Speers
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI.,Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Vedoya GM, López Nigro MM, Martín GA. The secretome of non-tumorigenic mammary cells MCF-10A elicits DNA damage in MCF-7 and MDA-MB-231 breast cancer cells. Toxicol In Vitro 2020; 70:105018. [PMID: 33049311 DOI: 10.1016/j.tiv.2020.105018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/23/2020] [Accepted: 10/06/2020] [Indexed: 11/17/2022]
Abstract
Radiotherapy is used in breast cancer to destroy tumor cells lingering after surgery. It is accepted that lethal effects of ionizing radiation occur as a result of damage to DNA in irradiated (IR) cells. However, response mechanisms may promote cell survival with efficient DNA repair or genomic alterations. Chromosomal aberrations are frequent in surviving cells and may enhance chromosomal instability (CIN) which is associated with increased risk of recurrence and metastasis. Intercellular communication can affect the response in IR cells and cause damage in non-irradiated (N-IR) cells. We evaluated the effect of the secretome of non-tumorigenic mammary cells (MCF-10A) on proliferation and DNA damage in breast cancer cells (MCF-7 and MDA-MB-231). Results showed that conditioned media from IR and N-IR MCF-10A cells produced cycles of DNA double-strand breaks in N-IR and IR tumor cells leaving them with residual damage. CIN markers (micronuclei, nucleoplasmic bridges, nuclear buds) were also increased in IR and N-IR tumor cells, being the effect of conditioned media from IR MCF-10A greater in many cases. The inhibition of phosphorylation/activation of Src kinase in cancer cells hindered CIN markers' increment. Besides, clonogenic survival of tumor cells was differentially modulated by conditioned media from MCF-10A: decreased in MCF-7 and enhanced in MDA-MB-231 cells. These results signal the relevance of tumor-host interaction in tumor behavior and the response to radiotherapy.
Collapse
Affiliation(s)
- Guadalupe M Vedoya
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatemática, Laboratorio de Radioisótopos, Buenos Aires, Argentina
| | - Marcela M López Nigro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Fisiopatología y Bioquímica Clínica, Laboratorio de Citogenética Humana y Citogenética Toxicológica, Buenos Aires, Argentina
| | - Gabriela A Martín
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Físicomatemática, Laboratorio de Radioisótopos, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| |
Collapse
|
14
|
Massari NA, Nicoud MB, Medina VA. Histamine receptors and cancer pharmacology: an update. Br J Pharmacol 2020; 177:516-538. [PMID: 30414378 PMCID: PMC7012953 DOI: 10.1111/bph.14535] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/23/2018] [Indexed: 12/25/2022] Open
Abstract
In the present review, we will discuss the recent advances in the understanding of the role of histamine and histamine receptors in cancer biology. The controversial role of the histaminergic system in different neoplasias including gastric, colorectal, oesophageal, oral, pancreatic, liver, lung, skin, blood and breast cancers will be reviewed. The expression of histamine receptor subtypes, with special emphasis on the histamine H4 receptor, in different cell lines and human tumours, the signal transduction pathways and the associated biological responses as well as the in vivo treatment of experimental tumours with pharmacological ligands will be described. The presented evidence demonstrates that histamine regulates cancer-associated biological processes during cancer development in multiple cell types, including neoplastic cells and cells in the tumour micro-environment. The outcome will depend on tumour cell type, the level of expression of histamine receptors, signal transduction associated with these receptors, tumour micro-environment and histamine metabolism, reinforcing the complexity of cancer disease. Findings show the pivotal role of H4 receptors in the development and progression of many types of cancers, and considering its immunomodulatory properties, the H4 receptor appears to be the most promising molecular therapeutic target for cancer treatment within the histamine receptor family. Furthermore, the H4 receptor is differentially expressed in tumours compared with normal tissues, and in most cancer types in which data are available, H4 receptor expression is associated with clinicopathological characteristics, suggesting that H4 receptors might represent a novel cancer biomarker. LINKED ARTICLES: This article is part of a themed section on New Uses for 21st Century. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.3/issuetoc.
Collapse
Affiliation(s)
- Noelia A Massari
- Department of Immunology, School of Natural and Health SciencesNational University of Patagonia San Juan BoscoComodoro RivadaviaArgentina
| | - Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical SciencesPontifical Catholic University of Argentina (UCA), National Scientific and Technical Research Council (CONICET)Buenos AiresArgentina
- Laboratory of Radioisotopes, School of Pharmacy and BiochemistryUniversity of Buenos AiresBuenos AiresArgentina
| |
Collapse
|
15
|
Nicoud MB, Sterle HA, Massari NA, Táquez Delgado MA, Formoso K, Herrero Ducloux MV, Martinel Lamas D, Cremaschi GA, Medina VA. Study of the antitumour effects and the modulation of immune response by histamine in breast cancer. Br J Cancer 2019; 122:348-360. [PMID: 31748740 PMCID: PMC7000401 DOI: 10.1038/s41416-019-0636-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/24/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The aim of this work was to improve the knowledge of the role of histamine in breast cancer by assessing the therapeutic efficacy of histamine and histamine H4 receptor (H4R) ligands in a triple-negative breast cancer (TNBC) model developed in immunocompetent hosts. By using publicly available genomic data, we further investigated whether histidine decarboxylase (HDC) could be a potential biomarker. METHODS Tumours of 4T1 TNBC cells were orthotopically established in BALB/c mice. Treatments employed (mg kg-1): histamine (1 and 5), JNJ28610244 (H4R agonist, 1 and 5) and JNJ7777120 (H4R antagonist, 10). RESULTS Increased HDC gene expression is associated with better relapse-free and overall survival in breast cancer patients. Histamine treatment (5 mg kg-1) of 4T1 tumour-bearing mice reduced tumour growth and increased apoptosis. Although no immunomodulatory effects were observed in wild-type mice, significant correlations between tumour weight and cytotoxic lymphocyte infiltration were detected in H4R knockout mice. H4R agonist or antagonist differentially modulated tumour growth and immunity in 4T1 tumour-bearing mice. CONCLUSIONS Histamine plays a complex role and stands out as a promising drug for TNBC treatment, which deserves to be tested in clinical settings. HDC expression level is associated with clinicopathological characteristics, suggesting a prognostic value in breast cancer.
Collapse
Affiliation(s)
- Melisa B Nicoud
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Helena A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Noelia A Massari
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Mónica A Táquez Delgado
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Karina Formoso
- Pharmacology and Function of Ionic Channels Laboratory, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Diego Martinel Lamas
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Graciela A Cremaschi
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumour Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
Radiation and Stemness Phenotype May Influence Individual Breast Cancer Outcomes: The Crucial Role of MMPs and Microenvironment. Cancers (Basel) 2019; 11:cancers11111781. [PMID: 31726667 PMCID: PMC6896076 DOI: 10.3390/cancers11111781] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/08/2019] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is the most common cancer in women. Radiotherapy (RT) is one of the mainstay treatments for cancer but in some cases is not effective. Cancer stem cells (CSCs) within the tumor can be responsible for recurrence and metastasis after RT. Matrix metalloproteases (MMPs), regulated mainly by tissue inhibitors of metalloproteinases (TIMPs) and histone deacetylases (HDACs), may also contribute to tumor development by modifying its activity after RT. The aim of this work was to study the effects of RT on the expression of MMPs, TIMPs and HDACs on different cell subpopulations in MCF-7, MDA-MB-231 and SK-BR-3 cell lines. We assessed the in vitro expression of these genes in different 3D culture models and induced tumors in female NSG mice by orthotopic xenotransplants. Our results showed that gene expression is related to the cell subpopulation studied, the culture model used and the single radiation dose administered. Moreover, the crucial role played by the microenvironment in terms of cell interactions and CSC plasticity in tumor growth and RT outcome is also shown, supporting the use of higher doses (6 Gy) to achieve better control of tumor development.
Collapse
|
17
|
He L, Lv Y, Song Y, Zhang B. The prognosis comparison of different molecular subtypes of breast tumors after radiotherapy and the intrinsic reasons for their distinct radiosensitivity. Cancer Manag Res 2019; 11:5765-5775. [PMID: 31303789 PMCID: PMC6612049 DOI: 10.2147/cmar.s213663] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 05/25/2019] [Indexed: 12/18/2022] Open
Abstract
Radiotherapy can increase the cell cycle arrest that promotes apoptosis, reduces the risk of tumor recurrence and has become an irreplaceable component of systematic treatment for patients with breast cancer. Substantial advances in precise radiotherapy unequivocally indicate that the benefits of radiotherapy vary depending on intrinsic subtypes of the disease; luminal A breast cancer has the highest benefit whereas human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) are affected to a lesser extent irrespective of the selection of radiotherapy strategies, such as conventional whole-breast irradiation (CWBI), accelerated partial-breast irradiation (APBI), and hypofractionated whole-breast irradiation (HWBI). The benefit disparity correlates with the differential invasiveness, malignance, and radiosensitivity of the subtypes. A combination of a number of molecular mechanisms leads to the strong radioresistant profile of HER2-positive breast cancer, and sensitization to irradiation can be induced by multiple drugs or compounds in luminal disease and TNBC. In this review, we aimed to summarize the prognostic differences between various subtypes of breast tumors after CWBI, APBI, and HWBI, the potential reasons for drug-enhanced radiosensitivity in luminal breast tumors and TNBC, and the robust radioresistance of HER2-positive cancer. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/ugTrSMuQVI8
Collapse
Affiliation(s)
- Lin He
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Yang Lv
- Department of Oncology, The PLA Navy Anqing Hospital, Anqing, Anhui Province, People's Republic of China
| | - Yuhua Song
- Breast Center B Ward, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| | - Biyuan Zhang
- Department of Radiotherapy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, People's Republic of China
| |
Collapse
|
18
|
Nicoud MB, Formoso K, Medina VA. Pathophysiological Role of Histamine H4 Receptor in Cancer: Therapeutic Implications. Front Pharmacol 2019; 10:556. [PMID: 31231212 PMCID: PMC6560177 DOI: 10.3389/fphar.2019.00556] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 05/03/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer is a leading cause of death in both developed and developing countries. Although advances in cancer research lead to improved anti-neoplastic therapies, they continue to have unfavorable outcomes, including poor response and severe toxicity. Thus, the challenge for the new therapeutic approaches is to increase anti-tumor efficacy by targeting different molecules encompassed in the tumor and its microenvironment, as well as their specific interactions. The histamine H4 receptor (H4R) is the last discovered histamine receptor subtype and it modulates important immune functions in innate and in adaptive immune responses. Several ligands have been developed and some of them are being used in clinical trials for immune disorders with promising results. When searched in The Cancer Genome Atlas (TCGA) database, human H4R gene was found to be expressed in bladder cancer, kidney cancer, breast cancer, gastrointestinal cancers, lung cancer, endometrial cancer, and skin cancer. In the present work, we aimed to briefly summarize current knowledge in H4R's pharmacology and in the clinical use of H4R ligands before focusing on recent data reporting the expression of H4R and its pathophysiological role in cancer, representing a potential molecular target for cancer therapeutics. H4R gene and protein expression in different types of cancers compared with normal tissue as well as its relationship with patient prognosis in terms of survival will be described.
Collapse
Affiliation(s)
- Melisa B Nicoud
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Karina Formoso
- Pharmacology and Function of Ionic Channels Laboratory, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Vanina A Medina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
19
|
Abstract
Tumor cells reprogram their metabolism to support cell growth, proliferation, and differentiation, thus driving cancer progression. Profiling of the metabolic signatures in heterogeneous tumors facilitates the understanding of tumor metabolism and introduces potential metabolic vulnerabilities that might be targeted therapeutically. We proposed a spatially resolved metabolomics method for high-throughput discovery of tumor-associated metabolite and enzyme alterations using ambient mass spectrometry imaging. Metabolic pathway-related metabolites and metabolic enzymes that are associated with tumor metabolism were efficiently discovered and visualized in heterogeneous esophageal cancer tissues. Spatially resolved metabolic alterations hold the key to defining the dependencies of metabolism that are most limiting for cancer growth and exploring metabolic targeted strategies for better cancer treatment. Characterization of tumor metabolism with spatial information contributes to our understanding of complex cancer metabolic reprogramming, facilitating the discovery of potential metabolic vulnerabilities that might be targeted for tumor therapy. However, given the metabolic variability and flexibility of tumors, it is still challenging to characterize global metabolic alterations in heterogeneous cancer. Here, we propose a spatially resolved metabolomics approach to discover tumor-associated metabolites and metabolic enzymes directly in their native state. A variety of metabolites localized in different metabolic pathways were mapped by airflow-assisted desorption electrospray ionization mass spectrometry imaging (AFADESI-MSI) in tissues from 256 esophageal cancer patients. In combination with in situ metabolomics analysis, this method provided clues into tumor-associated metabolic pathways, including proline biosynthesis, glutamine metabolism, uridine metabolism, histidine metabolism, fatty acid biosynthesis, and polyamine biosynthesis. Six abnormally expressed metabolic enzymes that are closely associated with the altered metabolic pathways were further discovered in esophageal squamous cell carcinoma (ESCC). Notably, pyrroline-5-carboxylate reductase 2 (PYCR2) and uridine phosphorylase 1 (UPase1) were found to be altered in ESCC. The spatially resolved metabolomics reveal what occurs in cancer at the molecular level, from metabolites to enzymes, and thus provide insights into the understanding of cancer metabolic reprogramming.
Collapse
|
20
|
Massari NA, Nicoud MB, Sambuco L, Cricco GP, Lamas DJM, Ducloux MVH, Blanco H, Rivera ES, Medina VA. Histamine therapeutic efficacy in metastatic melanoma: Role of histamine H4 receptor agonists and opportunity for combination with radiation. Oncotarget 2017; 8:26471-26491. [PMID: 28460440 PMCID: PMC5432273 DOI: 10.18632/oncotarget.15594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/06/2017] [Indexed: 01/16/2023] Open
Abstract
The aims of the work were to improve our knowledge of the role of H4R in melanoma proliferation and assess in vivo the therapeutic efficacy of histamine, clozapine and JNJ28610244, an H4R agonist, in a preclinical metastatic model of melanoma. Additionally, we aimed to investigate the combinatorial effect of histamine and gamma radiation on the radiobiological response of melanoma cells.Results indicate that 1205Lu metastatic melanoma cells express H4R and that histamine inhibits proliferation, in part through the stimulation of the H4R, and induces cell senescence and melanogenesis. Daily treatment with H4R agonists (1 mg/kg, sc) exhibited a significant in vivo antitumor effect and importantly, compounds reduced metastatic potential, particularly in the group treated with JNJ28610244, the H4R agonist with higher specificity. H4R is expressed in benign and malignant lesions of melanocytic lineage, highlighting the potential clinical use of histamine and H4R agonists. In addition, histamine increased radiosensitivity of melanoma cells in vitro and in vivo. We conclude that stimulation of H4R by specific ligands may represent a novel therapeutic strategy in those tumors that express this receptor. Furthermore, through increasing radiation-induced response, histamine could improve cancer radiotherapy for the treatment of melanoma.
Collapse
Affiliation(s)
- Noelia A. Massari
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Immunology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Melisa B. Nicoud
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | | | - Graciela P. Cricco
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Diego J. Martinel Lamas
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - María V. Herrero Ducloux
- Pathology Department, School of Natural Sciences, National University of Patagonia San Juan Bosco, Chubut, Argentina
| | - Horacio Blanco
- Hospital Municipal de Oncología “Marie Curie”, Buenos Aires, Argentina
| | - Elena S. Rivera
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanina A. Medina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Tumor Biology and Inflammation, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Faustino-Rocha AI, Ferreira R, Gama A, Oliveira PA, Ginja M. Antihistamines as promising drugs in cancer therapy. Life Sci 2017; 172:27-41. [DOI: 10.1016/j.lfs.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 12/28/2022]
|
22
|
Histamine prevents radiation-induced mesenchymal changes in breast cancer cells. Pharmacol Res 2016; 111:731-739. [DOI: 10.1016/j.phrs.2016.07.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/09/2016] [Accepted: 07/25/2016] [Indexed: 11/19/2022]
|
23
|
Martinel Lamas DJ, Nicoud MB, Sterle HA, Cremaschi GA, Medina VA. Histamine: a potential cytoprotective agent to improve cancer therapy? Cell Death Dis 2015; 6:e2029. [PMID: 26720338 PMCID: PMC4720909 DOI: 10.1038/cddis.2015.378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- D J Martinel Lamas
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - M B Nicoud
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - H A Sterle
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - G A Cremaschi
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Neuroimmunomodulation and Molecular Oncology Division, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - V A Medina
- Laboratory of Radioisotopes, School of Pharmacy and Biochemistry, University of Buenos Aires, Buenos Aires, Argentina
- Laboratory of Cellular and Molecular Biology, Institute for Biomedical Research (BIOMED), School of Medical Sciences, Pontifical Catholic University of Argentina (UCA), and the National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
24
|
Selective cytoprotective effect of histamine on doxorubicin-induced hepatic and cardiac toxicity in animal models. Cell Death Discov 2015; 1:15059. [PMID: 27551485 PMCID: PMC4979467 DOI: 10.1038/cddiscovery.2015.59] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 01/21/2023] Open
Abstract
The aim of the present work was to evaluate the potential protective effect of histamine on Doxorubicin (Dox)-induced hepatic and cardiac toxicity in different rodent species and in a triple-negative breast tumor-bearing mice model. Male Sprague Dawley rats and Balb/c mice were divided into four groups: control (received saline), histamine (5 mg/kg for rats and 1 mg/kg for mice, daily subcutaneous injection starting 24 h before treatment with Dox), Dox (2 mg/kg, intraperitoneally injected three times a week for 2 weeks) and Dox+histamine (received both treatments). Tissue toxicity was evaluated by histopathological studies and oxidative stress and biochemical parameters. The combined effect of histamine and Dox was also investigated in vitro and in vivo in human MDA-MB-231 triple-negative breast cancer model. Heart and liver of Dox-treated animals displayed severe histological damage, loss of tissue weight, increased TBARS levels and DNA damage along with an augment in serum creatine kinase-myocardial band. Pretreatment with histamine prevented Dox-induced tissue events producing a significant preservation of the integrity of both rat and mouse myocardium and liver, through the reduction of Dox-induced oxidative stress and apoptosis. Histamine treatment preserved anti-tumor activity of Dox, exhibiting differential cytotoxicity and increasing the Dox-induced inhibition of breast tumor growth. Findings provide preclinical evidence indicating that histamine could be a promising candidate as a selective cytoprotective agent for the treatment of Dox-induced cardiac and hepatic toxicity, and encourage the translation to clinical practice.
Collapse
|