1
|
Holic L. Common skin cancers and their association with other non-cutaneous primary malignancies: a review of the literature. Med Oncol 2024; 41:157. [PMID: 38758457 DOI: 10.1007/s12032-024-02385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
It has long been recognized that a history of skin cancer puts one at risk for additional primary skin cancers. However, more variable data exists for the risk of developing a non-cutaneous primary cancer following a diagnosis of skin cancer. The data are most variable for Basal Cell Carcinoma (BCC), the most common and least aggressive type of skin cancer. While early studies imply that BCC does not impart a larger risk of other primary non-cutaneous cancers, more recent studies with larger populations suggest otherwise. The cancers most significantly associated with BCC are lip, oropharyngeal, and salivary gland cancer. There is also burgeoning evidence to suggest a link between BCC and prostate, breast, and colorectal cancer, but more data are needed to draw a concrete conclusion. Squamous Cell Carcinoma (SCC), the second most common type of skin cancer, has a slightly more defined risk to other non-cutaneous primary malignancies. There is a notable link between SCC and non-Hodgkin's lymphoma (NHL), possibly due to immunosuppression. There is also an increased risk of other cancers derived from squamous epithelium following SCC, including oropharyngeal, lip, and salivary gland cancer. Some studies also suggest an increased risk of respiratory tract cancer following SCC, possibly due to shared risk factors. Melanoma, a more severe type of skin cancer, shows a well-defined risk of additional primary non-cutaneous malignancies. The most significant of these risks include NHL, thyroid cancer, prostate cancer, and breast cancer along with a host of other cancers. Each of these three main skin cancer types has a profile of genetic mutations that have also been linked to non-cutaneous malignancies. In this review, we discuss a selection of these genes to highlight the complex interplay between different tumorigenesis processes.
Collapse
Affiliation(s)
- Lindsay Holic
- Chicago Medical School at Rosalind Franklin University, North Chicago, IL, USA.
| |
Collapse
|
2
|
Singh R, Ray A. Therapeutic potential of hedgehog signaling in advanced cancer types. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:49-80. [PMID: 38782501 DOI: 10.1016/bs.ircmb.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
In this chapter, we have made an attempt to elucidate the relevance of hedgehog signaling pathway in tumorigenesis. Here, we have described different types of hedgehog signaling (canonical and non-canonical) with emphasis on the different mechanisms (mutation-driven, autocrine, paracrine and reverse paracrine) it adopts during tumorigenesis. We have discussed the role of hedgehog signaling in regulating cell proliferation, invasion and epithelial-to-mesenchymal transition in both local and advanced cancer types, as reported in different studies based on preclinical and clinical models. We have specifically addressed the role of hedgehog signaling in aggressive neuroendocrine tumors as well. We have also elaborated on the studies showing therapeutic relevance of the inhibitors of hedgehog signaling in cancer. Evidence of the crosstalk of hedgehog signaling components with other signaling pathways and treatment resistance due to tumor heterogeneity have also been briefly discussed. Together, we have tried to put forward a compilation of the studies on therapeutic potential of hedgehog signaling in various cancers, specifically aggressive tumor types with a perspective into what is lacking and demands further investigation.
Collapse
Affiliation(s)
- Richa Singh
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, United States.
| | - Anindita Ray
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
3
|
Maharjan CK, Ear PH, Tran CG, Howe JR, Chandrasekharan C, Quelle DE. Pancreatic Neuroendocrine Tumors: Molecular Mechanisms and Therapeutic Targets. Cancers (Basel) 2021; 13:5117. [PMID: 34680266 PMCID: PMC8533967 DOI: 10.3390/cancers13205117] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 12/16/2022] Open
Abstract
Pancreatic neuroendocrine tumors (pNETs) are unique, slow-growing malignancies whose molecular pathogenesis is incompletely understood. With rising incidence of pNETs over the last four decades, larger and more comprehensive 'omic' analyses of patient tumors have led to a clearer picture of the pNET genomic landscape and transcriptional profiles for both primary and metastatic lesions. In pNET patients with advanced disease, those insights have guided the use of targeted therapies that inhibit activated mTOR and receptor tyrosine kinase (RTK) pathways or stimulate somatostatin receptor signaling. Such treatments have significantly benefited patients, but intrinsic or acquired drug resistance in the tumors remains a major problem that leaves few to no effective treatment options for advanced cases. This demands a better understanding of essential molecular and biological events underlying pNET growth, metastasis, and drug resistance. This review examines the known molecular alterations associated with pNET pathogenesis, identifying which changes may be drivers of the disease and, as such, relevant therapeutic targets. We also highlight areas that warrant further investigation at the biological level and discuss available model systems for pNET research. The paucity of pNET models has hampered research efforts over the years, although recently developed cell line, animal, patient-derived xenograft, and patient-derived organoid models have significantly expanded the available platforms for pNET investigations. Advancements in pNET research and understanding are expected to guide improved patient treatments.
Collapse
Affiliation(s)
- Chandra K. Maharjan
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Po Hien Ear
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Catherine G. Tran
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - James R. Howe
- Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; (P.H.E.); (C.G.T.); (J.R.H.)
| | - Chandrikha Chandrasekharan
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Dawn E. Quelle
- Department of Neuroscience and Pharmacology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
4
|
Christopher S H, Kundishora AJ, Elsamadicy AA, Koo AB, Beckta JM, McGuone D, Erson-Omay EZ, Omay SB. Genetic characterization of a case of sellar metastasis from bronchial carcinoid neuroendocrine tumor. Surg Neurol Int 2020; 11:303. [PMID: 33093980 PMCID: PMC7568119 DOI: 10.25259/sni_265_2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023] Open
Abstract
Background Metastasis to the pituitary gland from neuroendocrine tumors is a rare occurrence that may originate from primary tumors the lung, gastrointestinal tract, thyroid, and pancreas, among others. Patients may present with signs of endocrine dysfunction secondary to pituitary involvement, as well as mass effect-related symptoms including headaches and visual deficits. Despite a small but accumulating body of literature describing the clinical and histopathological correlates for pituitary metastases from neuroendocrine tumors, the genetic basis underlying this presentation remains poorly characterized. Case Description We report the case of a 68-year-old with a history of lung carcinoid tumor who developed a suprasellar lesion, causing mild visual deficits but otherwise without clinical or biochemical endocrine abnormalities. She underwent endoscopic endonasal resection of her tumor with final pathology confirming metastasis from her original neuroendocrine tumor. Whole-exome sequencing was performed on the resected sellar tumor and matching blood, revealing increased genomic instability and key mutations in PTCH1 and BCOR that have been previously implicated in both systemic neuroendocrine and primary pituitary tumors with potentially actionable therapeutic targets. Conclusion This is the first genomic characterization of a metastatic tumor to the sella and reports potential genetic insight, implicating PTCH1 and BCOR mutations, into the pathophysiology of sellar metastasis from primary systemic tumors.
Collapse
Affiliation(s)
- Hong Christopher S
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Adam J Kundishora
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Aladine A Elsamadicy
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Andrew B Koo
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Jason M Beckta
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Declan McGuone
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, United States
| | - E Zeynep Erson-Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| | - Sacit Bulent Omay
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut, United States
| |
Collapse
|
5
|
TSPAN8 promotes cancer cell stemness via activation of sonic Hedgehog signaling. Nat Commun 2019; 10:2863. [PMID: 31253779 PMCID: PMC6599078 DOI: 10.1038/s41467-019-10739-3] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Cancer stem cells (CSCs) represent a major source of treatment resistance and tumor progression. However, regulation of CSCs stemness is not entirely understood. Here, we report that TSPAN8 expression is upregulated in breast CSCs, promotes the expression of the stemness gene NANOG, OCT4, and ALDHA1, and correlates with therapeutic resistance. Mechanistically, TSPAN8 interacts with PTCH1 and inhibits the degradation of the SHH/PTCH1 complex through recruitment of deubiquitinating enzyme ATXN3. This results in the translocation of SMO to cilia, downstream gene expression, resistance of CSCs to chemotherapeutic agents, and enhances tumor formation in mice. Accordingly, expression levels of TSPAN8, PTCH1, SHH, and ATXN3 are positively correlated in human breast cancer specimens, and high TSPAN8 and ATXN3 expression levels correlate with poor prognosis. These findings reveal a molecular basis of TSPAN8-enhanced Sonic Hedgehog signaling and highlight a role for TSPAN8 in promoting cancer stemness. Tetraspanin 8 (TSPAN8) has been implicated in a number of different tumours, but the underlying mechanisms remain unclear. Here, in breast cancer the authors highlight a role for TSPAN8 in promoting tumorigenesis through the activation of Hedgehog signalling.
Collapse
|
6
|
Aristizabal Prada ET, Auernhammer CJ. Targeted therapy of gastroenteropancreatic neuroendocrine tumours: preclinical strategies and future targets. Endocr Connect 2018; 7:R1-R25. [PMID: 29146887 PMCID: PMC5754510 DOI: 10.1530/ec-17-0286] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 11/16/2017] [Indexed: 12/12/2022]
Abstract
Molecular targeted therapy of advanced neuroendocrine tumours (NETs) of the gastroenteropancreatic (GEP) system currently encompasses approved therapy with the mammalian target of rapamycin (mTOR) inhibitor everolimus and the multi-tyrosinkinase inhibitor sunitinib. However, clinical efficacy of these treatment strategies is limited by low objective response rates and limited progression-free survival due to tumour resistance. Further novel strategies for molecular targeted therapy of NETs of the GEP system are needed. This paper reviews preclinical research models and signalling pathways in NETs of the GEP system. Preclinical and early clinical data on putative novel targets for molecular targeted therapy of NETs of the GEP system are discussed, including PI3K, Akt, mTORC1/mTORC2, GSK3, c-Met, Ras-Raf-MEK-ERK, embryogenic pathways (Hedgehog, Notch, Wnt/beta-catenin, TGF-beta signalling and SMAD proteins), tumour suppressors and cell cycle regulators (p53, cyclin-dependent kinases (CDKs) CDK4/6, CDK inhibitor p27, retinoblastoma protein (Rb)), heat shock protein HSP90, Aurora kinase, Src kinase family, focal adhesion kinase and epigenetic modulation by histone deacetylase inhibitors.
Collapse
Affiliation(s)
- E T Aristizabal Prada
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - C J Auernhammer
- Department of Internal Medicine IVCampus Grosshadern, University-Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
7
|
Niu L, Xu Z, Liu H, Cao H, Yang G. Intraductal tubulopapillary neoplasm accompanied by invasive carcinoma of the pancreas: A case report and review of the literature. Mol Clin Oncol 2017; 6:676-682. [PMID: 28529742 PMCID: PMC5431636 DOI: 10.3892/mco.2017.1216] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/23/2017] [Indexed: 01/14/2023] Open
Abstract
Intraductal tubulopapillary neoplasms (ITPNs) are rare pancreatic neoplasms accounting for ~0.4% of pancreatic tumors. However, their clinicopathological characteristics have not been clearly determined and the number of available clinical studies on this type of tumor is limited at present. Due to the rare incidence of ITPN, diagnosis is often delayed. We herein present a unique case of a 38-year-old man who was diagnosed with ITPN accompanied with invasive carcinoma of the pancreas and underwent total pancreatectomy. The morphological characteristics of ITPN include closely packed tubular glands, without mucin secretion, accompanied with invasion of the loose connective tissue. The immunohistochemical staining suggested that the tumors did not originate from the gastrointestinal tract but rather from the bile duct. In addition, the Ki-67 positive staining rate of tumor cells was <20%. The microsatellite instability analysis demonstrated microsatellite stability, without detected gene mutations of epidermal growth factor receptor, Kirsten rat sarcoma viral oncogene homolog, neuroblastoma RAS viral oncogene homolog or B-Raf proto-oncogene. However, a mutation was identified in exon 9 of the P53 gene, the most frequently mutated gene in human cancer, which suggested the underlying mechanism of ITPN. On the basis of this case, the aim of this study was to summarize and review the relevant reports of ITPNs in recent years, in order to investigate the clinicopathological characteristics and differential diagnosis of ITPN.
Collapse
Affiliation(s)
- Li Niu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhigao Xu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Hong Cao
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Abstract
Gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) constitute a heterogeneous group of tumours associated with variable clinical presentations, growth rates, and prognoses. To improve the management of GEP-NENs, the WHO developed a classification system that enables tumours to be graded based on markers of cell proliferation in biopsy specimens. Indeed, histopathology has been a mainstay in the diagnosis of GEP-NENs, and the WHO grading system facilitates therapeutic decision-making; however, considerable intratumoural heterogeneity, predominantly comprising regional variations in proliferation rates, complicates the evaluation of tumour biology. The use of molecular imaging modalities to delineate the most-aggressive cell populations is becoming more widespread. In addition, molecular profiling is increasingly undertaken in the clinical setting, and genomic studies have revealed a number of chromosomal alterations in GEP-NENs, although the 'drivers' of neoplastic development have not been identified. Thus, our molecular understanding of GEP-NENs remains insufficient to inform on patient prognosis or selection for treatments, and the WHO classification continues to form the basis for management of this disease. Nevertheless, our increasing understanding of the molecular genetics and biology of GEP-NENs has begun to expose flaws in the WHO classification. We describe the current understanding of the molecular characteristics of GEP-NENs, and discuss how advances in molecular profiling measurements, including assays of circulating mRNAs, are likely to influence the management of these tumours.
Collapse
|
9
|
Wang G, Ma Y, Qu FZ, Sun B. Status quo of diagnosis and treatment of pancreatic neuroendocrine tumors. Shijie Huaren Xiaohua Zazhi 2015; 23:3817-3823. [DOI: 10.11569/wcjd.v23.i24.3817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pancreatic neuroendocrine tumors (PNETs) are clinically rare digestive system tumors, which are characterized by insidious onset, a high potential of malignant tendency and a high misdiagnosis rate. In recent years, with the gradual increase of incidence and the continuous improvement of clinical diagnosis level, the detection and diagnosis rates of PNETs have been constantly increasing. In view of their malignant potential, early diagnosis and surgical intervention are essential. Therefore, clinicians should raise their awareness of this disease so as to effectively improve the diagnosis and treatment.
Collapse
|