1
|
Waseem NH, Low S, Shah AZ, Avisetti D, Ostergaard P, Simpson M, Niemiec KA, Martin-Martin B, Aldehlawi H, Usman S, Lee PS, Khawaja AP, Ruddle JB, Shah A, Sackey E, Day A, Jiang Y, Swinfield G, Viswanathan A, Alfano G, Chakarova C, Cordell HJ, Garway-Heath DF, Khaw PT, Bhattacharya SS, Waseem A, Foster PJ. Mutations in SPATA13/ASEF2 cause primary angle closure glaucoma. PLoS Genet 2020; 16:e1008721. [PMID: 32339198 PMCID: PMC7233598 DOI: 10.1371/journal.pgen.1008721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 05/18/2020] [Accepted: 03/17/2020] [Indexed: 11/18/2022] Open
Abstract
Current estimates suggest 50% of glaucoma blindness worldwide is caused by primary angle-closure glaucoma (PACG) but the causative gene is not known. We used genetic linkage and whole genome sequencing to identify Spermatogenesis Associated Protein 13, SPATA13 (NM_001166271; NP_001159743, SPATA13 isoform I), also known as ASEF2 (Adenomatous polyposis coli-stimulated guanine nucleotide exchange factor 2), as the causal gene for PACG in a large seven-generation white British family showing variable expression and incomplete penetrance. The 9 bp deletion, c.1432_1440del; p.478_480del was present in all affected individuals with angle-closure disease. We show ubiquitous expression of this transcript in cell lines derived from human tissues and in iris, retina, retinal pigment and ciliary epithelia, cornea and lens. We also identified eight additional mutations in SPATA13 in a cohort of 189 unrelated PACS/PAC/PACG samples. This gene encodes a 1277 residue protein which localises to the nucleus with partial co-localisation with nuclear speckles. In cells undergoing mitosis SPATA13 isoform I becomes part of the kinetochore complex co-localising with two kinetochore markers, polo like kinase 1 (PLK-1) and centrosome-associated protein E (CENP-E). The 9 bp deletion reported in this study increases the RAC1-dependent guanine nucleotide exchange factors (GEF) activity. The increase in GEF activity was also observed in three other variants identified in this study. Taken together, our data suggest that SPATA13 is involved in the regulation of mitosis and the mutations dysregulate GEF activity affecting homeostasis in tissues where it is highly expressed, influencing PACG pathogenesis.
Collapse
Affiliation(s)
- Naushin H. Waseem
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
| | - Sancy Low
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- Department of Ophthalmology, St. Thomas’ Hospital, Westminster Bridge Road, London, United Kingdom
| | - Amna Z. Shah
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Deepa Avisetti
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pia Ostergaard
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Michael Simpson
- Genetics and Molecular Medicine, King’s College London, Great Maze Pond, London, United Kingdom
| | - Katarzyna A. Niemiec
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Belen Martin-Martin
- Blizard Advanced Light Microscopy, Blizard Institute, Queen Mary University of London, London, United Kingdom
| | - Hebah Aldehlawi
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Saima Usman
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Pak Sang Lee
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Anthony P. Khawaja
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Jonathan B. Ruddle
- Department of Ophthalmology, University of Melbourne, Victoria, Australia
| | - Ameet Shah
- Department of Ophthalmology, Royal Free Hospital NHS Foundation Trust, Pond Street, London, United Kingdom
| | - Ege Sackey
- Medical Genetics Unit, St. George’s University of London, Cranmer Terrace, London, United Kingdom
| | - Alexander Day
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Yuzhen Jiang
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
| | - Geoff Swinfield
- Society of Genealogists, Goswell Road, London, United Kingdom
| | - Ananth Viswanathan
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Giovanna Alfano
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | | | - Heather J. Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - David F. Garway-Heath
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Peng T. Khaw
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Shomi S. Bhattacharya
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
| | - Ahmad Waseem
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Queen Mary University of London, London, United Kingdom
| | - Paul J. Foster
- NIHR Biomedical Research Centre at Moorfields Eye Hospital and UCL Institute of Ophthalmology, London, United Kingdom
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, United Kingdom
- UCL Institute of Ophthalmology, Bath Street, London, United Kingdom
- * E-mail:
| |
Collapse
|
2
|
Budi EH, Hoffman S, Gao S, Zhang YE, Derynck R. Integration of TGF-β-induced Smad signaling in the insulin-induced transcriptional response in endothelial cells. Sci Rep 2019; 9:16992. [PMID: 31740700 PMCID: PMC6861289 DOI: 10.1038/s41598-019-53490-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
Insulin signaling governs many processes including glucose homeostasis and metabolism, and is therapeutically used to treat hyperglycemia in diabetes. We demonstrated that insulin-induced Akt activation enhances the sensitivity to TGF-β by directing an increase in cell surface TGF-β receptors from a pool of intracellular TGF-β receptors. Consequently, increased autocrine TGF-β signaling in response to insulin participates in insulin-induced angiogenic responses of endothelial cells. With TGF-β signaling controlling many cell responses, including differentiation and extracellular matrix deposition, and pathologically promoting fibrosis and cancer cell dissemination, we addressed to which extent autocrine TGF-β signaling participates in insulin-induced gene responses of human endothelial cells. Transcriptome analyses of the insulin response, in the absence or presence of a TGF-β receptor kinase inhibitor, revealed substantial positive and negative contributions of autocrine TGF-β signaling in insulin-responsive gene responses. Furthermore, insulin-induced responses of many genes depended on or resulted from autocrine TGF-β signaling. Our analyses also highlight extensive contributions of autocrine TGF-β signaling to basal gene expression in the absence of insulin, and identified many novel TGF-β-responsive genes. This data resource may aid in the appreciation of the roles of autocrine TGF-β signaling in normal physiological responses to insulin, and implications of therapeutic insulin usage.
Collapse
Affiliation(s)
- Erine H Budi
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA
| | - Steven Hoffman
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA
| | - Shaojian Gao
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-1906, USA
| | - Ying E Zhang
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892-4256, USA
| | - Rik Derynck
- Departments of Cell and Tissue Biology, and Anatomy, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA, 94143-0669, USA.
| |
Collapse
|
3
|
Diggins NL, Kang H, Weaver A, Webb DJ. α5β1 integrin trafficking and Rac activation are regulated by APPL1 in a Rab5-dependent manner to inhibit cell migration. J Cell Sci 2018; 131:jcs.207019. [PMID: 29361527 DOI: 10.1242/jcs.207019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 01/09/2018] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5β1 integrin, leading to higher levels of α5β1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Nicole L Diggins
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Alissa Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.,Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb DJ. Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J Cell Biol 2017; 216:3799-3816. [PMID: 29021221 PMCID: PMC5674895 DOI: 10.1083/jcb.201704053] [Citation(s) in RCA: 365] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/31/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
Cancer-associated fibroblasts (CAFs) are major components of the carcinoma microenvironment that promote tumor progression. However, the mechanisms by which CAFs regulate cancer cell migration are poorly understood. In this study, we show that fibronectin (Fn) assembled by CAFs mediates CAF-cancer cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-rich extracellular matrix with anisotropic fiber orientation, which guides the cancer cells to migrate directionally. CAFs align the Fn matrix by increasing nonmuscle myosin II- and platelet-derived growth factor receptor α-mediated contractility and traction forces, which are transduced to Fn through α5β1 integrin. We further show that prostate cancer cells use αv integrin to migrate efficiently and directionally on CAF-derived matrices. We demonstrate that aligned Fn is a prominent feature of invasion sites in human prostatic and pancreatic carcinoma samples. Collectively, we present a new mechanism by which CAFs organize the Fn matrix and promote directional cancer cell migration.
Collapse
Affiliation(s)
- Begum Erdogan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Mingfang Ao
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Lauren M White
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
| | - Anna L Means
- Department of Surgery, Vanderbilt University, Nashville, TN
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
| | - Bryson M Brewer
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Lijie Yang
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - M Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Chanjuan Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| | - Omar E Franco
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| | - Simon W Hayward
- Department of Urologic Surgery, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
- Department of Surgery, NorthShore University HealthSystem, Evanston, IL
| | - Deyu Li
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN
| | - Donna J Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, Nashville, TN
| |
Collapse
|