2
|
Zhang J, Zhu Z, Miao Z, Huang X, Sun Z, Xu H, Wang Z. The Clinical Significance and Mechanisms of REG4 in Human Cancers. Front Oncol 2021; 10:559230. [PMID: 33489872 PMCID: PMC7819868 DOI: 10.3389/fonc.2020.559230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 11/23/2020] [Indexed: 11/13/2022] Open
Abstract
Regenerating islet-derived type 4 (REG4), a member of the calcium-dependent lectin gene superfamily, is abnormally expressed in various cancers, such as colorectal, gastric, gallbladder, pancreatic, ovarian, prostate, and lung cancer. REG4 is associated with a relatively unfavorable prognosis and clinicopathologic features in cancers, including advanced tumor and nodal stage, histological differentiation, and liver and peritoneal metastasis. Moreover, REG4-positive cancer cells show more frequent resistance to chemoradiotherapy, especially 5-FU-based chemotherapy. REG4 participates in many aspects of carcinogenesis, including cell proliferation, apoptosis, cell cycle, invasion, metastasis, and drug resistance. The underlying mechanisms are complex and involve a series of signaling mediators and multiple pathways. Thus, REG4 may be a potential diagnostic and prognostic biomarker as well as a candidate therapeutic target in cancer patients. In this review, we systematically summarize the advances about the clinical significance, biological functions, and mechanisms underlying REG4 in cancer to provide new directions for future cancer research.
Collapse
Affiliation(s)
- Junyan Zhang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Zhu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Miao
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuanzhang Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhe Sun
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Huimian Xu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Zhang L, Zhao F, Li C, Li H, Tang Q, Chen Y, Yao Y, Ding Z, Xu Y, Chen A, Liu S. Hypomethylation of DNA promoter upregulates ADAMTS7 and contributes to HTR-8/SVneo and JEG-3 cells abnormalities in pre-eclampsia. Placenta 2020; 93:26-33. [PMID: 32250736 DOI: 10.1016/j.placenta.2020.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/10/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Accumulating evidences have suggested a crucial role of epigenetics in the initiation and progression of pre-eclampsia (PE). Here, we studied the expression of the metalloproteinase ADAMTS7 and the methylation level of its promoter in PE placentas and investigated ADAMTS7 role in the pathogenesis of PE. METHODS We first explored ADAMTS7 expression in PE and normal placentas by reverse transcription quantitative PCR (RT-qPCR), western blot, and immunohistochemistry. Methylation specific PCR (MSP) and bisulfite sequencing PCR (BSP) were performed to evaluate the methylation status of ADAMTS7 promoter. Treatment with 5'-Aza was used to induce demethylation and thereby to explore the direct relationship between promoter methylation and ADAMTS7 expression. CCK8 assay, colony formation assay, and trans-well assay were conducted to assess the viability, migration, and invasion of HTR-8/SVneo and JEG-3 cells. RESULTS Our results showed that ADAMTS7 expression was upregulated in PE placentas. Methylation analysis revealed a hypomethylated status of ADAMTS7 promoter regions in PE placenta tissues. Besides, demethylation induced by 5'-Aza directly restored ADAMTS7 expression in trophoblast cells. Finally, overexpression of ADAMTS7 inhibited viability, migration, and invasion of HTR-8/SVneo and JEG-3 cells, while silence of ADAMTS7 by RNA interference reciprocally facilitated cell viability, migration and invasion in vitro. DISCUSSION Upregulation of ADAMTS7 by promoter hypomethylation in placenta might contribute to the etiology of PE via suppressing cell functions of trophoblasts.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Fei Zhao
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chuan Li
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Hong Li
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Qian Tang
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yunqing Chen
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yushuang Yao
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhaoxia Ding
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Yinglei Xu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Aiping Chen
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Medical Genetic Department, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China; Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
4
|
Mygind KJ, Schwarz J, Sahgal P, Ivaska J, Kveiborg M. Loss of ADAM9 expression impairs β1 integrin endocytosis, focal adhesion formation and cancer cell migration. J Cell Sci 2018; 131:jcs.205393. [PMID: 29142101 DOI: 10.1242/jcs.205393] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/09/2017] [Indexed: 12/28/2022] Open
Abstract
The transmembrane protease ADAM9 is frequently upregulated in human cancers, and it promotes tumour progression in mice. In vitro, ADAM9 regulates cancer cell adhesion and migration by interacting with integrins. However, how ADAM9 modulates integrin functions is not known. We here show that ADAM9 knockdown increases β1 integrin levels through mechanisms that are independent of its protease activity. In ADAM9-silenced cells, adhesion to collagen and fibronectin is reduced, suggesting an altered function of the accumulated integrins. Mechanistically, ADAM9 co-immunoprecipitates with β1 integrin, and both internalization and subsequent degradation of β1 integrin are significantly decreased in ADAM9-silenced cells, with no effect on β1 integrin recycling. Accordingly, the formation of focal adhesions and actin stress fibres in ADAM9-silenced cells is altered, possibly explaining the reduction in cell adhesion and migration in these cells. Taken together, our data provide mechanistic insight into the ADAM9-integrin interaction, demonstrating that ADAM9 regulates β1 integrin endocytosis. Moreover, our findings indicate that the reduced migration of ADAM9-silenced cells is, at least in part, caused by the accumulation and altered activity of β1 integrin at the cell surface.
Collapse
Affiliation(s)
- Kasper J Mygind
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Jeanette Schwarz
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| | - Pranshu Sahgal
- Turku Centre for Biotechnology, University of Turku, Turku 20520, Finland
| | - Johanna Ivaska
- Turku Centre for Biotechnology, University of Turku, Turku 20520, Finland.,Department of Biochemistry, University of Turku, Turku 20520, Finland
| | - Marie Kveiborg
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen N, Denmark
| |
Collapse
|
5
|
Xiao J, Feng Y, Li X, Li W, Fan L, Liu J, Zeng X, Chen K, Chen X, Zhou X, Zheng XL, Chen S. Expression of ADAMTS13 in Normal and Abnormal Placentae and Its Potential Role in Angiogenesis and Placenta Development. Arterioscler Thromb Vasc Biol 2017; 37:1748-1756. [PMID: 28751574 DOI: 10.1161/atvbaha.117.309735] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/17/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVE ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 1 repeats, member 13) is primarily synthesized in liver. The biosynthesis of ADAMTS13 and its physiological role in placenta are not known. APPROACH AND RESULTS We used real-time polymerase chain reaction, immunohistochemistry, and Western blotting analyses, as well as proteolytic cleavage of FRETS (fluorescent resonance energy transfers)-VWF73, to determine ADAMTS13 expression in placenta and trophoblasts obtained from individuals with normal pregnancy and patients with severe preeclampsia. We also determined the role of ADAMTS13 in extravillous trophoblasts using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, wound scratch assay, transwell migration assay, tube formation assay, and tissue outgrowth assays. We showed that full-length and proteolytically active ADAMTS13 was expressed in normal human placenta, primarily in the trophoblasts and villous core fetal vessel endothelium during pregnancy. Placental expression of ADAMTS13 mRNA, protein, and proteolytic activity was at the highest levels during the first trimester and significantly reduced at the term of gestation. Additionally, significantly reduced levels of placental ADAMTS13 expression was detected under hypoxic conditions and in patients with preeclampsia. In addition, recombinant ADAMTS13 protease stimulated proliferation, migration, invasion, and network formation of trophoblastic cells in culture. Finally, knockdown of ADAMTS13 expression attenuated the ability of tube formation in trophoblast (HTR-8/SVNEO) cells and the extravillous trophoblast outgrowth in placental explants. CONCLUSIONS Our results demonstrate for the first time the expression of ADAMTS13 mRNA and protein in normal and abnormal placental tissues and its role in promoting angiogenesis and trophoblastic cell development. The findings support the potential role of the ADAMTS13-von Willebrand factor pathway in normal pregnancy and pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Juan Xiao
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Yun Feng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xueyin Li
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Wei Li
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Lei Fan
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Jing Liu
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xue Zeng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Kaiyue Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xi Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - Xiaoshui Zhou
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.)
| | - X Long Zheng
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.).
| | - Suhua Chen
- From the Department of Obstetrics & Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (J.X., Y.F., W.L., L.F., J.L., X. Zeng, K.C., X.C., S.C.); Department of Urology, Zhengzhou First People's Hospital, Henan, China (X.L.); Department of Obstetrics & Gynecology, The Second Affiliated Hospital of Zhengzhou University, Henan, China (X. Zhou); and Division of Laboratory Medicine, Department of Pathology, The University of Alabama at Birmingham (X.L.Z.).
| |
Collapse
|
9
|
Kim TW, Ryu HH, Li SY, Li CH, Lim SH, Jang WY, Jung S. PDIA6 regulation of ADAM17 shedding activity and EGFR-mediated migration and invasion of glioblastoma cells. J Neurosurg 2016; 126:1829-1838. [DOI: 10.3171/2016.5.jns152831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVEIn patients with glioblastoma, local invasion of tumor cells causes recurrence and shortens survival. The goal of this study was to determine whether protein disulfide isomerase (PDI) A6 regulates migration and invasion of glioblastoma cells and the associated factors.METHODSU87MG cells were treated with either PDIA6 or ADAM17 small interfering RNA (siRNA) fragments or with both types of siRNA fragments, and expression was confirmed by reverse transcription–polymerase chain reaction and Western blot. Migration and invasion were assessed using a wound-healing assay, a Matrigel assay, and an organotypic culture system. After the U87MG cells were treated with siRNAs and epidermal growth factor receptor (EGFR) inhibitors, the expression of matrix metalloproteinase–2 (MMP-2), membrane Type 1-matrix metalloproteinase (MT1-MMP), integrin, phosphorylated focal adhesion kinase (pFAK), and phosphorylated EGFR (pEGFR) was detected by Western blotting and zymography.RESULTSU87MG cell migration and invasion increased significantly after inhibition of PDIA6. The MMP-2 activation ratio and ADAM17 activity (as a sheddase of the proligand) increased, and expression of pEGFR, pFAK, integrin α5β3, and MT1-MMP was induced, compared with control levels. Furthermore, heparin-binding epidermal growth factor (EGFR signaling ligand) was highly expressed in PDIA6-knockdown cells. After siPDIA6-transfected U87MG cells were treated with EGFR signaling inhibitors, expression of pFAK, MMP-2, and MT1-MMP decreased and invasion decreased significantly. Simultaneous double-knockdown of PDIA6 and ADAM17 reduced pEGFR and pFAK expression, compared with control levels.CONCLUSIONSThe authors propose that inhibiting PDIA6 could transduce EGFR signaling by activating and inducing ADAM17 during migration and invasion of U87MG glioblastoma cells. The results of this study suggest that PDIA6 is an important component of EGFR-mediated migration and invasion of U87MG cells. This is the first report of the effects of PDIA6 on migration and invasion in glioblastoma.
Collapse
Affiliation(s)
- Tae-Wan Kim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Hyang-Hwa Ryu
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Song-Yuan Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Chun-Hao Li
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Sa-Hoe Lim
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| | - Woo-Youl Jang
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
| | - Shin Jung
- 1Department of Neurosurgery, Brain Tumor Clinic and Gamma Knife Center, and
- 2Brain Tumor Research Laboratory, Chonnam National University Research Institute of Medical Sciences, Chonnam National University Medical School and Hwasun Hospital, Hwasun, Republic of Korea
| |
Collapse
|