Differentially Expressed Gene Patterns in Ascarid-Infected Chickens of Higher- or Lower-Performing Genotypes.
Animals (Basel) 2021;
11:ani11041002. [PMID:
33918448 PMCID:
PMC8067266 DOI:
10.3390/ani11041002]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/24/2022] Open
Abstract
Simple Summary
Nematode infections may increase mortality and welfare problems in laying hens. The two ascarid worms, Ascaridia galli and Heterakis gallinarum, are highly prevalent in laying hens kept in non-cage housing systems worldwide. The ability of a host to expel pathogens is a component of resistance to diseases. The molecular basis of differences between different host animals in their efficiency to expel worms is, however, not well understood. Therefore, we performed a detailed analysis of differentially expressed genes (DEGs) in two chicken genotypes (Lohmann Brown Plus (LB), Lohmann Dual (LD)), each with a lower or higher infection intensity level of A. galli and H. gallinarum. Our data showed significant upregulation of Guanylate Binding Protein 7 (GBP7) in LD hens. Gene ontology analysis revealed higher transcriptome activity related to “response to external stimulus” in LB hens, implying a higher stress response in this genotype. In contrast, LD hens showed higher transcriptomic expression of genes associated with a higher tolerance to infections.
Abstract
Here, we describe the first transcriptomic investigation of the peripheral blood of chickens exposed to Ascaridia galli and Heterakis gallinarum infections. We investigated differentially expressed gene (DEG) patterns in two chicken genotypes with either a higher (Lohmann Brown Plus, LB) or lower (Lohmann Dual, LD) laying performance level. The hens were experimentally coinfected with A. galli and H. gallinarum, and their worm burdens and infection parameters were determined six weeks post infection. Based on most representative infection parameters, the hens were clustered into lower- and higher-infection intensity classes. We identified a total of 78 DEGs contributing to infection-related phenotypic variation in the two genotypes. Our data showed significant upregulation of Guanylate Binding Protein 7 (GBP7) in LD hens, making it a promising candidate for tolerance to ascarid infections in chickens. Gene ontology analysis revealed higher transcriptome activity related to biological processes such as “response to external stimulus” in LB hens, implying a higher stress response in this genotype. In contrast, LD hens showed higher transcriptomic expression of genes related to ontology classes that are possibly associated with a higher tolerance to infections. These findings may help explain why lower-performing genotypes (i.e., LD) are less sensitive to infections in terms of maintaining their performance.
Collapse