1
|
The effect of two types of diet on apoptosis indexes, lipid profile and histopathological outcome in acute kidney injury during exercise. BMC Nephrol 2022; 23:315. [PMID: 36123655 PMCID: PMC9487158 DOI: 10.1186/s12882-022-02938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background Exercise and some pre-AKI diets have been shown to improve injury, apoptosis, and lipid profile. In this study, the effect of two different diets along with exercise training on acute kidney injury (AKI) was investigated. Materials and methods Laboratory rats were randomly divided into four groups of control, standard diet + exercise, exercise + calorie restriction (CR) and exercise + time restriction (TR). Each group was divided into two subgroups of AKI and no AKI. The animals received endurance training and diet regimens before AKI. Fasting blood glucose, serum creatinine, Bcl-2-associated X protein (Bax), B-cell lymphoma 2 (Bcl2) and histopathological outcome of renal tissue as well as serum lipid profile of animals were assessed 24 h after AKI. Results The percentage of changes in renal Bcl2 and Bax after AKI in the group with previous exercise was lower than the group without previous exercise (p < 0.01). After induction of AKI, serum lipid profile changed in non-exercised rats (p < 0.001). Also, after injury, fasting blood glucose levels increased in non-exercised rats (p < 0.05). After injury, the start of both CR and TR diets during exercise caused less change in Bcl2 and Bax of non-exercised rats compared to exercised rats (p < 0.001). CR diet along with exercise improved lipid profile, and also CR diet along exercise decreased fasting blood glucose levels (p < 0.001). Also, both the CR and TR diets during exercise caused fewer changes in histopathological outcome after AKI. Conclusion Exercise alone decreased changes in apoptotic and histopathological indexes, fasting blood glucose, as well as lipid profile of rats after AKI. Reduction of apoptosis and improvement of histopathological outcome after AKI appeared more when CR and TR diets were commenced during exercise. The reduction of lipid profile changes was more pronounced in the group that received CR diet during exercise.
Collapse
|
2
|
Moreno-Fernandez J, Ochoa JJ, Lopez-Frias M, Diaz-Castro J. Impact of Early Nutrition, Physical Activity and Sleep on the Fetal Programming of Disease in the Pregnancy: A Narrative Review. Nutrients 2020; 12:nu12123900. [PMID: 33419354 PMCID: PMC7766505 DOI: 10.3390/nu12123900] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Early programming is the adaptation process by which nutrition and environmental factors alter development pathways during prenatal growth, inducing changes in postnatal metabolism and diseases. The aim of this narrative review, is evaluating the current knowledge in the scientific literature on the effects of nutrition, environmental factors, physical activity and sleep on development pathways. If in utero adaptations were incorrect, this would cause a mismatch between prenatal programming and adulthood. Adequate caloric intake, protein, mineral, vitamin, and long-chain fatty acids, have been noted for their relevance in the offspring brain functions and behavior. Fetus undernutrition/malnutrition causes a delay in growth and have detrimental effects on the development and subsequent functioning of the organs. Pregnancy is a particularly vulnerable period for the development of food preferences and for modifications in the emotional response. Maternal obesity increases the risk of developing perinatal complications and delivery by cesarean section and has long-term implications in the development of metabolic diseases. Physical exercise during pregnancy contributes to overall improved health post-partum. It is also interesting to highlight the relevance of sleep problems during pregnancy, which influence adequate growth and fetal development. Taking into account these considerations, we conclude that nutrition and metabolic factors during early life play a key role of health promotion and public health nutrition programs worldwide to improve the health of the offspring and the health costs of hospitalization.
Collapse
Affiliation(s)
- Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
- Correspondence: ; Tel.: +34-958-241-000 (ext. 20317)
| | - Magdalena Lopez-Frias
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, E-18071 Granada, Spain; (J.M.-F.); (M.L.-F.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, E-18071 Granada, Spain
| |
Collapse
|
3
|
Kwon MR, Cress E, Clark WA, Alamian A, Lu Y, Peterson JM. The adipokine C1q TNF related protein 3 (CTRP3) is elevated in the breast milk of obese mothers. PeerJ 2018. [PMID: 29527418 PMCID: PMC5842766 DOI: 10.7717/peerj.4472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background C1q TNF related protein 3 (CTRP3) is a relatively novel hormonal factor primarily derived from adipose tissue and has anti-diabetic properties. To determine if CTRP3 could play a role in early childhood development, the purpose of this study was to establish the presence of CTRP3 in breast milk (BM) and to determine whether CTRP3 levels were correlated with pregravid obesity status of the mother. Methods Breast milk was collected from breast-feeding mothers who had a pregravid body mass index (BMI) classification of normal weight (BMI 18-25 kg/m2, n = 23) or obese (BMI > 30 kg/m2, n = 14). Immunoprecipitation followed by immunoblot analysis confirmed the presence of CTRP3 in BM. The concentration of CTRP3 in BM samples was determined by ELISA. Additional bioactive components were also measured by commercially available assays: ghrelin, insulin, leptin, adiponectin, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and glucose. Bioactive components in normal weight and obese mothers were compared using unpaired t-test (parametric) and Mann-Whitney U-test (non-parametric), as appropriate. Results The primary findings of this study are that the adipokine CTRP3 is present in BM and CTRP3 levels are increased with pregravid obesity. Additionally, this study independently confirmed previous work that BM from obese mothers has a higher concentration of insulin and leptin. Further, no differences were observed in BM between obese and normal weight mothers in ghrelin, adiponectin, IL-6, TNF-α, or glucose levels. Conclusion This study identified a novel factor in BM, CTRP3, and showed that BM CTRP3 levels higher in obese mothers. Because of the purported insulin sensitizing effect of CTRP3, it is possible that the elevated levels of CTRP3 in the BM of obese mothers may offset negative effects of elevated leptin and insulin levels in the BM of obese mothers. Future studies will need to be conducted to determine the relevance of CTRP3 in BM and to examine the presence of other adipose tissue-derived hormonal factors.
Collapse
Affiliation(s)
- Megan R Kwon
- Department of Allied Health Sciences, College of Clinical and Rehabilitative Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Eileen Cress
- James H. Quillen VA Medical Center, Mountain Home, TN, USA
| | - W Andrew Clark
- Department of Allied Health Sciences, College of Clinical and Rehabilitative Health Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Arsham Alamian
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Yongke Lu
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Jonathan M Peterson
- Department of Health Sciences, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
4
|
Tarry-Adkins JL, Aiken CE, Ashmore TJ, Ozanne SE. Insulin-signalling dysregulation and inflammation is programmed trans-generationally in a female rat model of poor maternal nutrition. Sci Rep 2018; 8:4014. [PMID: 29507362 PMCID: PMC5838091 DOI: 10.1038/s41598-018-22383-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 02/20/2018] [Indexed: 12/24/2022] Open
Abstract
Developmental programming phenotypes can be recapitulated in subsequent generations not directly exposed to the initial suboptimal intrauterine environment. A maternal low-protein diet during pregnancy and postnatal catch-up growth (‘recuperated’) alters insulin signaling and inflammation in rat offspring (F1-generation). We aimed to establish if this phenotype is also present in F2-generation females. Insulin-receptor-substrate-1 protein expression was decreased in para-ovarian adipose tissue at 3 months in offspring exposed to a grand-maternal low-protein diet (F2-recuperated), vs. F2-control animals (p < 0.05). There was no effect of grand-maternal diet upon Insulin-receptor-substrate-1 mRNA. Protein-kinase C-zeta protein levels were increased at 3 and 6 months in F2-recuperated animals (p < 0.01 at both ages). Phosphorylated-Aktser473 levels were decreased in F2-recuperated animals (p < 0.001). Interleukin-1β protein levels were increased at 3 (p < 0.01) and (p < 0.001) 6 months in F2-recuperated animals. Vastus-lateralis insulin-receptor-β protein expression (p < 0.001) and pAktser473 (p < 0.01) were increased at 3 months in F2-recuperated animals compared to controls. At 6 months, PAktser473 was lower in F2-recuperated animals (p < 0.001). Aspects of insulin signalling dysregulation and inflammation present in offspring of low-protein fed dams can be transmitted to subsequent generations without further exposure to a suboptimal maternal diet. These findings contribute to our understanding of insulin-resistance in grandchildren of sub-optimally nourished individuals during pregnancy.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK.
| | - Catherine E Aiken
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Thomas J Ashmore
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Level 4, Box 289, Addenbrookes' Treatment Centre, Addenbrookes' Hospital, Hills Road, Cambridge, CB2 OQQ, UK
| |
Collapse
|
5
|
Review on intrauterine programming: Consequences in rodent models of mild diabetes and mild fat overfeeding are not mild. Placenta 2017; 52:21-32. [PMID: 28454694 DOI: 10.1016/j.placenta.2017.02.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/08/2023]
|
6
|
Moody L, Chen H, Pan YX. Early-Life Nutritional Programming of Cognition-The Fundamental Role of Epigenetic Mechanisms in Mediating the Relation between Early-Life Environment and Learning and Memory Process. Adv Nutr 2017; 8:337-350. [PMID: 28298276 PMCID: PMC5347110 DOI: 10.3945/an.116.014209] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The perinatal period is a window of heightened plasticity that lays the groundwork for future anatomic, physiologic, and behavioral outcomes. During this time, maternal diet plays a pivotal role in the maturation of vital organs and the establishment of neuronal connections. However, when perinatal nutrition is either lacking in specific micro- and macronutrients or overloaded with excess calories, the consequences can be devastating and long lasting. The brain is particularly sensitive to perinatal insults, with several neurologic and psychiatric disorders having been linked to a poor in utero environment. Diseases characterized by learning and memory impairments, such as autism, schizophrenia, and Alzheimer disease, are hypothesized to be attributed in part to environmental factors, and evidence suggests that the etiology of these conditions may date back to very early life. In this review, we discuss the role of the early-life diet in shaping cognitive outcomes in offspring. We explore the endocrine and immune mechanisms responsible for these phenotypes and discuss how these systemic factors converge to change the brain's epigenetic landscape and regulate learning and memory across the lifespan. Through understanding the maternal programming of cognition, critical steps may be taken toward preventing and treating diseases that compromise learning and memory.
Collapse
Affiliation(s)
| | - Hong Chen
- Division of Nutritional Sciences,,Department of Food Science and Human Nutrition, and
| | - Yuan-Xiang Pan
- Division of Nutritional Sciences, .,Department of Food Science and Human Nutrition, and.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, IL
| |
Collapse
|
7
|
Mohammadi Roushandeh A, Salehi I, Mortazavi M. Protective effects of restricted diet and antioxidants on testis tissue in rats fed with high-fat diet. IRANIAN BIOMEDICAL JOURNAL 2016; 19:96-101. [PMID: 25864814 PMCID: PMC4412920 DOI: 10.6091/ibj.1398.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: A high-fat diet (HFD) promotes the oxidative stress formation, which in turn has hazardous effects on reproductive system and fertility. The present study examines the potential positive effects of a restricted high-fat diet (RHFD) and antioxidants consumption on sperm parameters and testis tissue in rats. Methods: Male rats (n = 48) were divided into four groups (12 in each group): control group (Cont), HFD group, RHFD, and RHFD with astaxanthin and vitamins E and C group (RHFDA). After 12 weeks, serum analysis and sperm parameters study were performed. Sections of fixed testes were stained with Hematoxilin and Eosin to study the histological changes. A one-way ANOVA was used to compare the data. Results: HFD fed animals presented significant increase in weight load and serum low density lipoprotein (LDL-C) levels (P < 0.05). The sperm count in RHFD was lower than three other groups (P < 0.05) and sperm motility of RHFDA group was significantly higher than HFD and RHFD groups (P < 0.05). The histological study was showed a significant increase in spermatogonium number in RHFDA compared to three other groups (P < 0.05). The number of spermatocyte I and spermatid in RHFD was significantly (P < 0.05) lower than Cont and HFD groups. Conclusion: HFD and obesity can affect sperm parameters and spermatogenesis and antioxidants consumption may improve their quality. Although the RHFD is a benefit way in weight loss and decrease of LDL-C of serum, but it is suggested that is not effective on sperm quality improvement.
Collapse
Affiliation(s)
- Amaneh Mohammadi Roushandeh
- Research Center for Molecular Medicine, Medicine Faculty, Hamadan University of medical sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of medical sciences, Hamadan, Iran
| | - Motahareh Mortazavi
- Research Center for Molecular Medicine, Medicine Faculty, Hamadan University of medical sciences, Hamadan, Iran
| |
Collapse
|
8
|
Tarry-Adkins JL, Fernandez-Twinn DS, Madsen R, Chen JH, Carpenter A, Hargreaves IP, McConnell JM, Ozanne SE. Coenzyme Q10 Prevents Insulin Signaling Dysregulation and Inflammation Prior to Development of Insulin Resistance in Male Offspring of a Rat Model of Poor Maternal Nutrition and Accelerated Postnatal Growth. Endocrinology 2015; 156. [PMID: 26214037 PMCID: PMC4869840 DOI: 10.1210/en.2015-1424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Low birth weight and rapid postnatal growth increases the risk of developing insulin resistance and type 2 diabetes in later life. However, underlying mechanisms and potential intervention strategies are poorly defined. Here we demonstrate that male Wistar rats exposed to a low-protein diet in utero that had a low birth weight but then underwent postnatal catch-up growth (recuperated offspring) had reductions in the insulin signaling proteins p110-β (13% ± 6% of controls [P < .001]) and insulin receptor substrate-1 (39% ± 10% of controls [P < .05]) in adipose tissue. These changes were not accompanied by any change in expression of the corresponding mRNAs, suggesting posttranscriptional regulation. Recuperated animals displayed evidence of a proinflammatory phenotype of their adipose tissue with increased IL-6 (139% ± 8% [P < .05]) and IL1-β (154% ± 16% [P < .05]) that may contribute to the insulin signaling protein dysregulation. Postweaning dietary supplementation of recuperated animals with coenzyme Q (CoQ10) (1 mg/kg of body weight per day) prevented the programmed reduction in insulin receptor substrate-1 and p110-β and the programmed increased in IL-6. These findings suggest that postweaning CoQ10 supplementation has antiinflammatory properties and can prevent programmed changes in insulin-signaling protein expression. We conclude that CoQ10 supplementation represents an attractive intervention strategy to prevent the development of insulin resistance that results from suboptimal in utero nutrition.
Collapse
Affiliation(s)
- Jane L Tarry-Adkins
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Denise S Fernandez-Twinn
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Ralitsa Madsen
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Jian-Hua Chen
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Asha Carpenter
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Iain P Hargreaves
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Josie M McConnell
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| | - Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and Medical Research Council Metabolic Diseases Unit (J.L.T.-A., D.S.F.-T., R.M., J.-H.C., A.C., J.M.M., S.E.O.), Wellcome Trust-Medical Research Council Institute of Metabolic Science, Addenbrooke's Treatment Centre, Addenbrooke's Hospital, Cambridge CB2 OQQ, United Kingdom; and Neurometabolic Unit (I.P.H.), National Hospital, University College London, London WC1N 3BG, United Kingdom
| |
Collapse
|