1
|
Zhang K, Zou Y, Shan M, Pan Z, Ju J, Liu J, Ji Y, Sun S. Arf1 GTPase Regulates Golgi-Dependent G2/M Transition and Spindle Organization in Oocyte Meiosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303009. [PMID: 38014604 PMCID: PMC10811507 DOI: 10.1002/advs.202303009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/18/2023] [Indexed: 11/29/2023]
Abstract
ADP-ribosylation factor 1 (Arf1) is a small GTPase belonging to the Arf family. As a molecular switch, Arf1 is found to regulate retrograde and intra-Golgi transport, plasma membrane signaling, and organelle function during mitosis. This study aimed to explore the noncanonical roles of Arf1 in cell cycle regulation and cytoskeleton dynamics in meiosis with a mouse oocyte model. Arf1 accumulated in microtubules during oocyte meiosis, and the depletion of Arf1 led to the failure of polar body extrusion. Unlike mitosis, it finds that Arf1 affected Myt1 activity for cyclin B1/CDK1-based G2/M transition, which disturbed oocyte meiotic resumption. Besides, Arf1 modulated GM130 for the dynamic changes in the Golgi apparatus and Rab35-based vesicle transport during meiosis. Moreover, Arf1 is associated with Ran GTPase for TPX2 expression, further regulating the Aurora A-polo-like kinase 1 pathway for meiotic spindle assembly and microtubule stability in oocytes. Further, exogenous Arf1 mRNA supplementation can significantly rescue these defects. In conclusion, results reported the noncanonical functions of Arf1 in G2/M transition and meiotic spindle organization in mouse oocytes.
Collapse
Affiliation(s)
- Kun‐Huan Zhang
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yuan‐Jing Zou
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Meng‐Meng Shan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Zhen‐Nan Pan
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jia‐Qian Ju
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Jing‐Cai Liu
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Yi‐Ming Ji
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| | - Shao‐Chen Sun
- College of Animal Science and TechnologyNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
2
|
Rasika S, Passemard S, Verloes A, Gressens P, El Ghouzzi V. Golgipathies in Neurodevelopment: A New View of Old Defects. Dev Neurosci 2019; 40:396-416. [PMID: 30878996 DOI: 10.1159/000497035] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/16/2019] [Indexed: 11/19/2022] Open
Abstract
The Golgi apparatus (GA) is involved in a whole spectrum of activities, from lipid biosynthesis and membrane secretion to the posttranslational processing and trafficking of most proteins, the control of mitosis, cell polarity, migration and morphogenesis, and diverse processes such as apoptosis, autophagy, and the stress response. In keeping with its versatility, mutations in GA proteins lead to a number of different disorders, including syndromes with multisystem involvement. Intriguingly, however, > 40% of the GA-related genes known to be associated with disease affect the central or peripheral nervous system, highlighting the critical importance of the GA for neural function. We have previously proposed the term "Golgipathies" in relation to a group of disorders in which mutations in GA proteins or their molecular partners lead to consequences for brain development, in particular postnatal-onset microcephaly (POM), white-matter defects, and intellectual disability (ID). Here, taking into account the broader role of the GA in the nervous system, we refine and enlarge this emerging concept to include other disorders whose symptoms may be indicative of altered neurodevelopmental processes, from neurogenesis to neuronal migration and the secretory function critical for the maturation of postmitotic neurons and myelination.
Collapse
Affiliation(s)
- Sowmyalakshmi Rasika
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Sandrine Passemard
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Alain Verloes
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,AP HP, Hôpital Robert Debré, UF de Génétique Clinique, Paris, France
| | - Pierre Gressens
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, United Kingdom
| | - Vincent El Ghouzzi
- NeuroDiderot, INSERM UMR1141, Université Paris Diderot, Sorbonne Paris Cité, Paris, France,
| |
Collapse
|
3
|
Roy A, Veroli MV, Prasad S, Wang QJ. Protein Kinase D2 Modulates Cell Cycle By Stabilizing Aurora A Kinase at Centrosomes. Mol Cancer Res 2018; 16:1785-1797. [PMID: 30018032 PMCID: PMC9923726 DOI: 10.1158/1541-7786.mcr-18-0641] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/18/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
Abstract
Aurora A kinase (AURKA) is a master cell-cycle regulator that is often dysregulated in human cancers. Its overexpression has been associated with genome instability and oncogenic transformation. The protein kinase D (PKD) family is an emerging therapeutic target of cancer. Aberrant PKD activation has been implicated in tumor growth and survival, yet the underlying mechanisms remain to be elucidated. This study identified, for the first time, a functional crosstalk between PKD2 and Aurora A kinase in cancer cells. The data demonstrate that PKD2 is catalytically active during the G2-M phases of the cell cycle, and inactivation or depletion of PKD2 causes delay in mitotic entry due to downregulation of Aurora A, an effect that can be rescued by overexpression of Aurora A. Moreover, PKD2 localizes in the centrosome with Aurora A by binding to γ-tubulin. Knockdown of PKD2 caused defects in centrosome separation, elongated G2 phase, mitotic catastrophe, and eventually cell death via apoptosis. Mechanistically, PKD2 interferes with Fbxw7 function to protect Aurora A from ubiquitin- and proteasome-dependent degradation. Taken together, these results identify PKD as a cell-cycle checkpoint kinase that positively modulates G2-M transition through Aurora A kinase in mammalian cells.Implications: PKD2 is a novel cell-cycle regulator that promotes G2-M transition by modulating Aurora A kinase stability in cancer cells and suggests the PKD2/Aurora A kinase regulatory axis as new therapeutic targets for cancer treatment. Mol Cancer Res; 16(11); 1785-97. ©2018 AACR.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Maria Victoria Veroli
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Sahdeo Prasad
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.,Department of Biotechnology and Immunotherapeutics, Texas Tech University, Amarillo, TX 79106
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Blas-Rus N, Bustos-Morán E, Martín-Cófreces NB, Sánchez-Madrid F. Aurora-A shines on T cell activation through the regulation of Lck. Bioessays 2016; 39. [PMID: 27910998 DOI: 10.1002/bies.201600156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Different protein kinases control signaling emanating from the T cell receptor (TCR) during antigen-specific T cell activation. Mitotic kinases, e.g. Aurora-A, have been widely studied in the context of mitosis due to their role during microtubule (MT) nucleation, becoming critical regulators of cell cycle progression. We have recently described a specific role for Aurora-A kinase in antigenic T cell activation. Blockade of Aurora-A in T cells severely disrupts the dynamics of MTs and CD3ζ-bearing signaling vesicles during T cell activation. Furthermore, Aurora-A deletion impairs the activation of signaling molecules downstream of the TCR. Targeting Aurora-A disturbs the activation of Lck, which is one of the first signals that drive T cell activation in an antigen-dependent manner. This work describes possible models of regulation of Lck by Aurora-A during T cell activation. We also discuss possible roles for Aurora-A in other systems similar to the IS, and its putative functions in cell polarization.
Collapse
Affiliation(s)
- Noelia Blas-Rus
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain
| | - Eugenio Bustos-Morán
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Noa B Martín-Cófreces
- Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Francisco Sánchez-Madrid
- Servicio de Inmunología, Hospital Universitario de la Princesa, Instituto Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, Madrid, Spain.,Vascular Pathophysiology Area, Centro Nacional Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| |
Collapse
|
5
|
Barretta ML, Spano D, D'Ambrosio C, Cervigni RI, Scaloni A, Corda D, Colanzi A. Aurora-A recruitment and centrosomal maturation are regulated by a Golgi-activated pool of Src during G2. Nat Commun 2016; 7:11727. [PMID: 27242098 PMCID: PMC4895030 DOI: 10.1038/ncomms11727] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 04/25/2016] [Indexed: 02/02/2023] Open
Abstract
The Golgi apparatus is composed of stacks of cisternae laterally connected by tubules to form a ribbon-like structure. At the onset of mitosis, the Golgi ribbon is broken down into discrete stacks, which then undergo further fragmentation. This ribbon cleavage is required for G2/M transition, which thus indicates that a ‘Golgi mitotic checkpoint' couples Golgi inheritance with cell cycle transition. We previously showed that the Golgi-checkpoint regulates the centrosomal recruitment of the mitotic kinase Aurora-A; however, how the Golgi unlinking regulates this recruitment was unknown. Here we show that, in G2, Aurora-A recruitment is promoted by activated Src at the Golgi. Our data provide evidence that Src and Aurora-A interact upon Golgi ribbon fragmentation; Src phosphorylates Aurora-A at tyrosine 148 and this specific phosphorylation is required for Aurora-A localization at the centrosomes. This process, pivotal for centrosome maturation, is a fundamental prerequisite for proper spindle formation and chromosome segregation. The Golgi mitotic checkpoint couples Golgi inheritance with cell cycle transition, and regulates centrosomal recruitment of the mitotic kinase Aurora-A. Here the authors show that upon Golgi ribbon fragmentation in G2, Src phosphorylates Aurora-A at the Golgi, driving its localization to the centrosomes.
Collapse
Affiliation(s)
- Maria Luisa Barretta
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Chiara D'Ambrosio
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, ISPAAM, National Research Council (CNR), Via Argine 1085, 80147 Naples, Italy
| | - Romina Ines Cervigni
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, ISPAAM, National Research Council (CNR), Via Argine 1085, 80147 Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry (IBP), National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
6
|
Hascoet P, Chesnel F, Le Goff C, Le Goff X, Arlot-Bonnemains Y. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis. Front Oncol 2015; 5:241. [PMID: 26579493 PMCID: PMC4621426 DOI: 10.3389/fonc.2015.00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/12/2015] [Indexed: 01/25/2023] Open
Abstract
Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis.
Collapse
Affiliation(s)
- Pauline Hascoet
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Franck Chesnel
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Cathy Le Goff
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | - Xavier Le Goff
- UMR 6290 (IGDR), CNRS, University Rennes-1 , Rennes , France
| | | |
Collapse
|
7
|
Cervigni RI, Bonavita R, Barretta ML, Spano D, Ayala I, Nakamura N, Corda D, Colanzi A. JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J Cell Sci 2015; 128:2249-60. [PMID: 25948586 DOI: 10.1242/jcs.164871] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/20/2015] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, the Golgi complex is composed of stacks that are connected by membranous tubules. During G2, the Golgi complex is disassembled into isolated stacks. This process is required for entry into mitosis, indicating that the correct inheritance of the organelle is monitored by a 'Golgi mitotic checkpoint'. However, the regulation and the molecular mechanisms underlying this Golgi disassembly are still poorly understood. Here, we show that JNK2 has a crucial role in the G2-specific separation of the Golgi stacks through phosphorylation of Ser277 of the Golgi-stacking protein GRASP65 (also known as GORASP1). Inhibition of JNK2 by RNA interference or by treatment with three unrelated JNK inhibitors causes a potent and persistent cell cycle block in G2. JNK activity becomes dispensable for mitotic entry if the Golgi complex is disassembled by brefeldin A treatment or by GRASP65 depletion. Finally, measurement of the Golgi fluorescence recovery after photobleaching demonstrates that JNK is required for the cleavage of the tubules connecting Golgi stacks. Our findings reveal that a JNK2-GRASP65 signalling axis has a crucial role in coupling Golgi inheritance and G2/M transition.
Collapse
Affiliation(s)
- Romina Ines Cervigni
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Raffaella Bonavita
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Maria Luisa Barretta
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Daniela Spano
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Inmaculada Ayala
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Nobuhiro Nakamura
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555, Japan
| | - Daniela Corda
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| | - Antonino Colanzi
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, Naples 80131, Italy
| |
Collapse
|
8
|
Huang Y, Sramkoski RM, Jacobberger JW. The kinetics of G2 and M transitions regulated by B cyclins. PLoS One 2013; 8:e80861. [PMID: 24324638 PMCID: PMC3851588 DOI: 10.1371/journal.pone.0080861] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/17/2013] [Indexed: 01/06/2023] Open
Abstract
B cyclins regulate G2-M transition. Because human somatic cells continue to cycle after reduction of cyclin B1 (cycB1) or cyclin B2 (cycB2) by RNA interference (RNAi), and because cycB2 knockout mice are viable, the existence of two genes should be an optimization. To explore this idea, we generated HeLa BD™ Tet-Off cell lines with inducible cyclin B1- or B2-EGFP that were RNAi resistant. Cultures were treated with RNAi and/or doxycycline (Dox) and bromodeoxyuridine. We measured G2 and M transit times and 4C cell accumulation. In the absence of ectopic B cyclin expression, knockdown (kd) of either cyclin increased G2 transit. M transit was increased by cycB1 kd but decreased by cycB2 depletion. This novel difference was further supported by time-lapse microscopy. This suggests that cycB2 tunes mitotic timing, and we speculate that this is through regulation of a Golgi checkpoint. In the presence of endogenous cyclins, expression of active B cyclin-EGFPs did not affect G2 or M phase times. As previously shown, B cyclin co-depletion induced G2 arrest. Expression of either B cyclin-EGFP completely rescued knockdown of the respective endogenous cyclin in single kd experiments, and either cyclin-EGFP completely rescued endogenous cyclin co-depletion. Most of the rescue occurred at relatively low levels of exogenous cyclin expression. Therefore, cycB1 and cycB2 are interchangeable for ability to promote G2 and M transition in this experimental setting. Cyclin B1 is thought to be required for the mammalian somatic cell cycle, while cyclin B2 is thought to be dispensable. However, residual levels of cyclin B1 or cyclin B2 in double knockdown experiments are not sufficient to promote successful mitosis, yet residual levels are sufficient to promote mitosis in the presence of the dispensible cyclin B2. We discuss a simple model that would explain most data if cyclin B1 is necessary.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - R. Michael Sramkoski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - James W. Jacobberger
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
9
|
Silva VC, Cassimeris L. Stathmin and microtubules regulate mitotic entry in HeLa cells by controlling activation of both Aurora kinase A and Plk1. Mol Biol Cell 2013; 24:3819-31. [PMID: 24152729 PMCID: PMC3861079 DOI: 10.1091/mbc.e13-02-0108] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/11/2022] Open
Abstract
Depletion of stathmin, a microtubule (MT) destabilizer, delays mitotic entry by ∼4 h in HeLa cells. Stathmin depletion reduced the activity of CDC25 and its upstream activators, Aurora A and Plk1. Chemical inhibition of both Aurora A and Plk1 was sufficient to delay mitotic entry by 4 h, while inhibiting either kinase alone did not cause a delay. Aurora A and Plk1 are likely regulated downstream of stathmin, because the combination of stathmin knockdown and inhibition of Aurora A and Plk1 was not additive and again delayed mitotic entry by 4 h. Aurora A localization to the centrosome required MTs, while stathmin depletion spread its localization beyond that of γ-tubulin, indicating an MT-dependent regulation of Aurora A activation. Plk1 was inhibited by excess stathmin, detected in in vitro assays and cells overexpressing stathmin-cyan fluorescent protein. Recruitment of Plk1 to the centrosome was delayed in stathmin-depleted cells, independent of MTs. It has been shown that depolymerizing MTs with nocodazole abrogates the stathmin-depletion induced cell cycle delay; in this study, depolymerization with nocodazole restored Plk1 activity to near normal levels, demonstrating that MTs also contribute to Plk1 activation. These data demonstrate that stathmin regulates mitotic entry, partially via MTs, to control localization and activation of both Aurora A and Plk1.
Collapse
Affiliation(s)
- Victoria C. Silva
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Lynne Cassimeris
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
10
|
Gunning P. BioArchitecture: the organization and regulation of biological space. BIOARCHITECTURE 2012; 2:200-3. [PMID: 23267413 PMCID: PMC3527313 DOI: 10.4161/bioa.22726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BioArchitecture is a term used to describe the organization and regulation of biological space. It applies to the principles which govern the structure of molecules, polymers and mutiprotein complexes, organelles, membranes and their organization in the cytoplasm and the nucleus. It also covers the integration of cells into their three dimensional environment at the level of cell-matrix, cell-cell interactions, integration into tissue/organ structure and function and finally into the structure of the organism. This review will highlight studies at all these levels which are providing a new way to think about the relationship between the organization of biological space and the function of biological systems.
Collapse
Affiliation(s)
- Peter Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia.
| |
Collapse
|
11
|
Corda D, Barretta ML, Cervigni RI, Colanzi A. Golgi complex fragmentation in G2/M transition: An organelle-based cell-cycle checkpoint. IUBMB Life 2012; 64:661-70. [PMID: 22730233 DOI: 10.1002/iub.1054] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 04/29/2012] [Indexed: 11/06/2022]
Abstract
In mammalian cells, the Golgi complex is organized into a continuous membranous system known as the Golgi ribbon, which is formed by individual Golgi stacks that are laterally connected by tubular bridges. During mitosis, the Golgi ribbon undergoes extensive fragmentation through a multistage process that is required for its correct partitioning into the daughter cells. Importantly, inhibition of this Golgi disassembly results in cell-cycle arrest at the G2 stage, suggesting that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Here, we discuss the mechanisms and regulation of the Golgi ribbon breakdown and briefly comment on how Golgi partitioning may inhibit G2/M transition.
Collapse
Affiliation(s)
- Daniela Corda
- Institute of Protein Biochemistry, National Research Council (CNR), Via Pietro Castellino 111, Naples, Italy.
| | | | | | | |
Collapse
|