1
|
Ghaddar N, Luciano P, Géli V, Corda Y. Chromatin assembly factor-1 preserves genome stability in ctf4Δ cells by promoting sister chromatid cohesion. Cell Stress 2023; 7:69-89. [PMID: 37662646 PMCID: PMC10468696 DOI: 10.15698/cst2023.09.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023] Open
Abstract
Chromatin assembly and the establishment of sister chromatid cohesion are intimately connected to the progression of DNA replication forks. Here we examined the genetic interaction between the heterotrimeric chromatin assembly factor-1 (CAF-1), a central component of chromatin assembly during replication, and the core replisome component Ctf4. We find that CAF-1 deficient cells as well as cells affected in newly-synthesized H3-H4 histones deposition during DNA replication exhibit a severe negative growth with ctf4Δ mutant. We dissected the role of CAF-1 in the maintenance of genome stability in ctf4Δ yeast cells. In the absence of CTF4, CAF-1 is essential for viability in cells experiencing replication problems, in cells lacking functional S-phase checkpoint or functional spindle checkpoint, and in cells lacking DNA repair pathways involving homologous recombination. We present evidence that CAF-1 affects cohesin association to chromatin in a DNA-damage-dependent manner and is essential to maintain cohesion in the absence of CTF4. We also show that Eco1-catalyzed Smc3 acetylation is reduced in absence of CAF-1. Furthermore, we describe genetic interactions between CAF-1 and essential genes involved in cohesin loading, cohesin stabilization, and cohesin component indicating that CAF-1 is crucial for viability when sister chromatid cohesion is affected. Finally, our data indicate that the CAF-1-dependent pathway required for cohesion is functionally distinct from the Rtt101-Mms1-Mms22 pathway which functions in replicated chromatin assembly. Collectively, our results suggest that the deposition by CAF-1 of newly-synthesized H3-H4 histones during DNA replication creates a chromatin environment that favors sister chromatid cohesion and maintains genome integrity.
Collapse
Affiliation(s)
- Nagham Ghaddar
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Pierre Luciano
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Vincent Géli
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| | - Yves Corda
- Marseille Cancer Research Centre (CRCM), U1068 INSERM, UMR7258 CNRS, UM105 Aix Marseille Univ, Institut Paoli-Calmettes, Marseille, France. Ligue Nationale Contre le Cancer (Labeled Equip)
| |
Collapse
|
2
|
Balan P, Chong YS, Qingsong L, Lim TK, Wong ML, Lopez V, He HG, Seneviratne CJ. Quantitative proteomics analysis identifies salivary biomarkers for early detection of pregnancy loss in a Singaporean cohort-A pilot study. Proteomics Clin Appl 2021; 15:e2000068. [PMID: 33979484 DOI: 10.1002/prca.202000068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/19/2021] [Accepted: 05/10/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Early pregnancy loss (EPL) is one of the most common complications encountered in clinical practice. As most of EPLs occur relatively early on during pregnancy, they are often misunderstood as an expected menstrual cycle. Thus, it is essential to investigate the diagnostic biomarkers for monitoring pregnancy loss for continuous non-invasive monitoring of EPL. EXPERIMENTAL DESIGN Unstimulated saliva was collected from 10 subjects with EPL and a matched cohort of healthy pregnant women as controls. Samples were analyzed using iTRAQ analysis, and ELISA was performed to validate results. RESULTS Enrichment analysis of the 38 differentially abundant proteins identified that regulation of nucleobase, nucleoside, nucleotide, and nucleic acid metabolism was significantly affected in EPL. The nucleosome assembly pathway was significantly underrepresented in EPL and was associated with depletion of histone proteins (H2B, H3, and H4). These results were validated with ELISA experiments. A depletion of histones can impair nucleosome assembly and cause the nuclear machinery to fail. CONCLUSION Regulation of nucleosome is critical for the maintenance of genome stability and epigenetic information, lack of which may lead to pregnancy loss. Thus, assessing and monitoring salivary histone levels in patients with threatened miscarriage can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. CLINICAL RELEVANCE There is considerable uncertainty regarding the prognosis of threatened pregnancy, making it stressful for expecting mothers and healthcare professionals. Most EPLs are often misunderstood or ignored as an expected menstrual cycle. Thus it is essential to develop screenings and rapid detection devices using a medium that can be non-invasive and self-performed for continuous monitoring. Using saliva, we have identified that the nucleosome assembly gets affected in EPL with depletion of histone proteins (H2B, H3, and H4). With further verification, these findings can help saliva be utilized as a medium to determine which patients will/will not progress to miscarriage and at what point of their pregnancy. Assessing and monitoring EPL using salivary diagnostics can be a quick and easy method of obtaining periodic diagnostic information that can speed up treatment decisions. Hence, these findings need to be investigated further to improve the prediction of outcomes in women with threatened pregnancy.
Collapse
Affiliation(s)
- Preethi Balan
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| | - Yap Seng Chong
- Department of Obstetrics and Gynecology, National University Hospital, Singapore.,Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore
| | - Lin Qingsong
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Teck Kwang Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Mun Loke Wong
- Faculty of Dentistry, National University of Singapore, Singapore
| | | | - Hong-Gu He
- Alice Lee Centre for Nursing Studies, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chaminda Jayampath Seneviratne
- Singapore Oral Microbiomics Initiative, National Dental Research Institute Singapore, National Dental Center Singapore, Oral Health Academic Clinical Program, Duke NUS Medical School, Singapore
| |
Collapse
|
3
|
The Amazing Acrobat: Yeast's Histone H3K56 Juggles Several Important Roles While Maintaining Perfect Balance. Genes (Basel) 2021; 12:genes12030342. [PMID: 33668997 PMCID: PMC7996553 DOI: 10.3390/genes12030342] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 01/16/2023] Open
Abstract
Acetylation on lysine 56 of histone H3 of the yeast Saccharomyces cerevisiae has been implicated in many cellular processes that affect genome stability. Despite being the object of much research, the complete scope of the roles played by K56 acetylation is not fully understood even today. The acetylation is put in place at the S-phase of the cell cycle, in order to flag newly synthesized histones that are incorporated during DNA replication. The signal is removed by two redundant deacetylases, Hst3 and Hst4, at the entry to G2/M phase. Its crucial location, at the entry and exit points of the DNA into and out of the nucleosome, makes this a central modification, and dictates that if acetylation and deacetylation are not well concerted and executed in a timely fashion, severe genomic instability arises. In this review, we explore the wealth of information available on the many roles played by H3K56 acetylation and the deacetylases Hst3 and Hst4 in DNA replication and repair.
Collapse
|
4
|
Barrientos-Moreno M, Murillo-Pineda M, Muñoz-Cabello AM, Prado F. Histone depletion prevents telomere fusions in pre-senescent cells. PLoS Genet 2018; 14:e1007407. [PMID: 29879139 PMCID: PMC5991667 DOI: 10.1371/journal.pgen.1007407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/09/2018] [Indexed: 12/20/2022] Open
Abstract
Upon telomerase inactivation, telomeres gradually shorten with each cell division until cells enter replicative senescence. In Saccharomyces cerevisiae, the kinases Mec1/ATR and Tel1/ATM protect the genome during pre-senescence by preventing telomere-telomere fusions (T-TFs) and the subsequent genetic instability associated with fusion-bridge-breakage cycles. Here we report that T-TFs in mec1Δ tel1Δ cells can be suppressed by reducing the pool of available histones. This protection associates neither with changes in bulk telomere length nor with major changes in the structure of subtelomeric chromatin. We show that the absence of Mec1 and Tel1 strongly augments double-strand break (DSB) repair by non-homologous end joining (NHEJ), which might contribute to the high frequency of T-TFs in mec1Δ tel1Δ cells. However, histone depletion does not prevent telomere fusions by inhibiting NHEJ, which is actually increased in histone-depleted cells. Rather, histone depletion protects telomeres from fusions by homologous recombination (HR), even though HR is proficient in maintaining the proliferative state of pre-senescent mec1Δ tel1Δ cells. Therefore, HR during pre-senescence not only helps stalled replication forks but also prevents T-TFs by a mechanism that, in contrast to the previous one, is promoted by a reduction in the histone pool and can occur in the absence of Rad51. Our results further suggest that the Mec1-dependent depletion of histones that occurs during pre-senescence in cells without telomerase (tlc1Δ) prevents T-TFs by favoring the processing of unprotected telomeres by Rad51-independent HR. Telomere shortening upon telomerase inactivation leads to an irreversible cell division arrest known as replicative senescence, which is considered as a tumor suppressor mechanism. Since pre-senescence is critical for tissue homeostasis, cells are endowed with recombination mechanisms that facilitate the replication of short telomeres and prevent premature entry into senescence. Consequently, pre-senescent cells divide with critically short telomeres, which have lost most of their shelterin proteins. The tumor suppressor genes ATR and ATM, as well as their yeast homologs Mec1 and Tel1, prevent telomere fusions during pre-senescence by unknown mechanisms. Here we show that the absence of Mec1 and Tel1 strongly augments DSB repair by non-homologous end joining, which might explain the high rate of telomere fusions in mec1Δ tel1Δ cells. Moreover, we show that a reduction in the pool of available histones prevents telomere fusions in mec1Δ tel1Δ cells by stimulating Rad51-independent homologous recombination. Our results suggest that the Mec1-dependent process of histone depletion that accompanies pre-senescence in cells lacking telomerase activity is required to prevent telomere fusions by promoting the processing of unprotected telomeres by recombination instead of non-homologous end joining.
Collapse
Affiliation(s)
- Marta Barrientos-Moreno
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Marina Murillo-Pineda
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Ana M. Muñoz-Cabello
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
| | - Félix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), CSIC-University of Seville-University Pablo de Olavide, Seville, Spain
- * E-mail:
| |
Collapse
|
5
|
Prado F, Maya D. Regulation of Replication Fork Advance and Stability by Nucleosome Assembly. Genes (Basel) 2017; 8:genes8020049. [PMID: 28125036 PMCID: PMC5333038 DOI: 10.3390/genes8020049] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/13/2022] Open
Abstract
The advance of replication forks to duplicate chromosomes in dividing cells requires the disassembly of nucleosomes ahead of the fork and the rapid assembly of parental and de novo histones at the newly synthesized strands behind the fork. Replication-coupled chromatin assembly provides a unique opportunity to regulate fork advance and stability. Through post-translational histone modifications and tightly regulated physical and genetic interactions between chromatin assembly factors and replisome components, chromatin assembly: (1) controls the rate of DNA synthesis and adjusts it to histone availability; (2) provides a mechanism to protect the integrity of the advancing fork; and (3) regulates the mechanisms of DNA damage tolerance in response to replication-blocking lesions. Uncoupling DNA synthesis from nucleosome assembly has deleterious effects on genome integrity and cell cycle progression and is linked to genetic diseases, cancer, and aging.
Collapse
Affiliation(s)
- Felix Prado
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| | - Douglas Maya
- Department of Genome Biology, Andalusian Molecular Biology and Regenerative Medicine Center (CABIMER), Spanish National Research Council (CSIC), Seville 41092, Spain.
| |
Collapse
|
6
|
Replisome function during replicative stress is modulated by histone h3 lysine 56 acetylation through Ctf4. Genetics 2015; 199:1047-63. [PMID: 25697176 DOI: 10.1534/genetics.114.173856] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Histone H3 lysine 56 acetylation in Saccharomyces cerevisiae is required for the maintenance of genome stability under normal conditions and upon DNA replication stress. Here we show that in the absence of H3 lysine 56 acetylation replisome components become deleterious when replication forks collapse at natural replication block sites. This lethality is not a direct consequence of chromatin assembly defects during replication fork progression. Rather, our genetic analyses suggest that in the presence of replicative stress H3 lysine 56 acetylation uncouples the Cdc45-Mcm2-7-GINS DNA helicase complex and DNA polymerases through the replisome component Ctf4. In addition, we discovered that the N-terminal domain of Ctf4, necessary for the interaction of Ctf4 with Mms22, an adaptor protein of the Rtt101-Mms1 E3 ubiquitin ligase, is required for the function of the H3 lysine 56 acetylation pathway, suggesting that replicative stress promotes the interaction between Ctf4 and Mms22. Taken together, our results indicate that Ctf4 is an essential member of the H3 lysine 56 acetylation pathway and provide novel mechanistic insights into understanding the role of H3 lysine 56 acetylation in maintaining genome stability upon replication stress.
Collapse
|
7
|
Chappell G, Kobets T, O'Brien B, Tretyakova N, Sangaraju D, Kosyk O, Sexton KG, Bodnar W, Pogribny IP, Rusyn I. Epigenetic events determine tissue-specific toxicity of inhalational exposure to the genotoxic chemical 1,3-butadiene in male C57BL/6J mice. Toxicol Sci 2014; 142:375-84. [PMID: 25237060 PMCID: PMC4250847 DOI: 10.1093/toxsci/kfu191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
1,3-Butadiene (BD), a widely used industrial chemical and a ubiquitous environmental pollutant, is a known human carcinogen. Although genotoxicity is an established mechanism of the tumorigenicity of BD, epigenetic effects have also been observed in livers of mice exposed to the chemical. To better characterize the diverse molecular mechanisms of BD tumorigenicity, we evaluated genotoxic and epigenotoxic effects of BD exposure in mouse tissues that are target (lung and liver) and non-target (kidney) for BD-induced tumors. We hypothesized that epigenetic alterations may explain, at least in part, the tissue-specific differences in BD tumorigenicity in mice. We evaluated the level of N-7-(2,3,4-trihydroxybut-1-yl)guanine adducts and 1,4-bis-(guan-7-yl)-2,3-butanediol crosslinks, DNA methylation, and histone modifications in male C57BL/6 mice exposed to filtered air or 425 ppm of BD by inhalation (6 h/day, 5 days/week) for 2 weeks. Although DNA damage was observed in all three tissues of BD-exposed mice, variation in epigenetic effects clearly existed between the kidneys, liver, and lungs. Epigenetic alterations indicative of genomic instability, including demethylation of repetitive DNA sequences and alterations in histone-lysine acetylation, were evident in the liver and lung tissues of BD-exposed mice. Changes in DNA methylation were insignificant in the kidneys of treated mice, whereas marks of condensed heterochromatin and transcriptional silencing (histone-lysine trimethylation) were increased. These modifications may represent a potential mechanistic explanation for the lack of tumorigenesis in the kidney. Our results indicate that differential tissue susceptibility to chemical-induced tumorigenesis may be attributed to tissue-specific epigenetic alterations.
Collapse
Affiliation(s)
- Grace Chappell
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Tetyana Kobets
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Bridget O'Brien
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Natalia Tretyakova
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dewakar Sangaraju
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Oksana Kosyk
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Kenneth G Sexton
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Wanda Bodnar
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Igor P Pogribny
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| | - Ivan Rusyn
- *Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, North Carolina 27599, Division of Biochemical Toxicology, National Center for Toxicological Research, FDA, Jefferson, Arkansas 72079 and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
8
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
9
|
Yao Y, Des Marais TL, Costa M. Chromatin Memory in the Development of Human Cancers. GENE TECHNOLOGY 2014; 3:114. [PMID: 25606572 PMCID: PMC4297643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cancer is a complex disease with acquired genomic and epigenomic alterations that affect cell proliferation, viability and invasiveness. Almost all the epigenetic mechanisms including cytosine methylation and hydroxymethylation, chromatin remodeling and non-coding RNAs have been found associate with carcinogenesis and cancer specific expression profile. Altered histone modification as an epigenetic hallmark is frequently found in tumors. Understanding the epigenetic alterations induced by carcinogens or infectious agents may help us understand early epigenetic changes prior to the development of cancer. In this review, we focus on chromatin remodeling and the associated histone modifiers in the development of cancer; the application of these modifiers as a cancer therapy target in different clinical trial phases is also discussed.
Collapse
Affiliation(s)
- Yixin Yao
- Department of Environmental Medicine New York University, New York, USA,Corresponding author: Yixin Yao, Department of Environmental Medicine, New York University, New York, USA; Tel: 845-731-3517;
| | | | - Max Costa
- Department of Environmental Medicine New York University, New York, USA,Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, Tuxedo, New York, USA
| |
Collapse
|
10
|
Helmer RA, Foreman O, Dertien JS, Panchoo M, Bhakta SM, Chilton BS. Role of helicase-like transcription factor (hltf) in the G2/m transition and apoptosis in brain. PLoS One 2013; 8:e66799. [PMID: 23826137 PMCID: PMC3691323 DOI: 10.1371/journal.pone.0066799] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 05/14/2013] [Indexed: 01/01/2023] Open
Abstract
HLTF participates in transcription, chromatin remodeling, DNA damage repair, and tumor suppression. Aside from being expressed in mouse brain during embryonic and postnatal development, little is known about Hltf's functional importance. Splice variant quantification of wild-type neonatal (6-8 hour postpartum) brain gave a ratio of 5:1 for Hltf isoform 1 (exons 1-25) to isoform 2 (exons 1-21 with exon 21 extended via a partial intron retention event). Western analysis showed a close correlation between mRNA and protein expression. Complete loss of Hltf caused encephalomalacia with increased apoptosis, and reduced viability. Sixty-four percent of Hltf null mice died, 48% within 12-24 hours of birth. An RNA-Seq snapshot of the neonatal brain transcriptome showed 341 of 20,000 transcripts were altered (p < 0.05) - 95 up regulated and 246 down regulated. MetaCoreTM enrichment pathway analysis revealed Hltf regulates cell cycle, cell adhesion, and TGF-beta receptor signaling. Hltf's most important role is in the G2/M transition of the cell cycle (p = 4.672e-7) with an emphasis on transcript availability of major components in chromosome cohesion and condensation. Hltf null brains have reduced transcript levels for Rad21/Scc1, histone H3.3, Cap-E/Smc2, Cap-G/G2, and Aurora B kinase. The loss of Hltf in its yeast Rad5-like role in DNA damage repair is accompanied by down regulation of Cflar, a critical inhibitor of TNFRSF6-mediated apoptosis, and increased (p<0.0001) active caspase-3, an indicator of intrinsic triggering of apoptosis in null brains. Hltf also regulates Smad7/Bambi/Tgf-beta/Bmp5/Wnt10b signaling in brain. ChIP confirmed Hltf binding to consensus sequences in predicted (promoter Scgb3a1 gene) and previously unidentified (P-element on chromosome 7) targets. This study is the first to provide a comprehensive view of Hltf targets in brain. Moreover, it reveals how silencing Hltf disrupts cell cycle progression, and attenuates DNA damage repair.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Oded Foreman
- Genentech, Inc., South San Francisco, California, United States of America
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Marlyn Panchoo
- St. George's University, St. George's, Grenada, West Indies
| | - Suhani M. Bhakta
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
| | - Beverly S Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|