1
|
Lokireddy SR, Kunchala SR, Vadde R. Advancements in Escherichia coli secretion systems for enhanced recombinant protein production. World J Microbiol Biotechnol 2025; 41:90. [PMID: 40025370 DOI: 10.1007/s11274-025-04302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Escherichia coli is inarguably one of the most studied microorganisms across the spectrum of microbiology. It is very widely used in recombinant protein production owing to its rapid growth, ease of genetic manipulation, and relatively high protein yields. Despite all of its advantages, its inability to efficiently secrete proteins naturally remains a drawback leading to protein aggregation as inclusion bodies in the cytoplasm and consequent low overall protein yield. Therefore, many approaches to mitigate this weakness and enhance extracellular secretion to increase protein yield have been devised. This review explores the natural and engineered secretion systems in E. coli, highlighting their potential for enhanced protein secretion for non-glycosylated proteins. Natural one-step (e.g., Type I and III Secretion Systems) and two-step systems (e.g., Sec and Tat pathways) are detailed alongside recent advancements in genetic engineering, mutagenesis, and synthetic biology approaches aimed at improving protein yield, folding, and secretion efficiency. Emerging technologies, such as the ESETEC® and BacSec® platforms, promise scalable and cost-effective solutions for higher protein production. Challenges, including limited cellular capabilities and protein aggregation, are addressed through innovative strategies like cell wall modification, co-expression of chaperones, and medium optimization. This review emphasizes E. coli's adaptability to industrial applications, and the promising future of recombinant protein technologies.
Collapse
Affiliation(s)
- Sudarsana Reddy Lokireddy
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India
| | - Sridhar Rao Kunchala
- Oncosmis Biotech Private Limited, Plot No 3, Genpact Rd, IDA Uppal, Hyderabad, TG, 500 007, India.
| | - Ramakrishna Vadde
- Department of Biotechnology and Bioinformatics, Yogi Vemana University, Kadapa, Andhra Pradesh, 516 005, India.
| |
Collapse
|
2
|
Minagawa J, Dann M. Extracellular CahB1 from Sodalinema gerasimenkoae IPPAS B-353 Acts as a Functional Carboxysomal β-Carbonic Anhydrase in Synechocystis sp. PCC6803. PLANTS (BASEL, SWITZERLAND) 2023; 12:265. [PMID: 36678979 PMCID: PMC9865033 DOI: 10.3390/plants12020265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/27/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Cyanobacteria mostly rely on the active uptake of hydrated CO2 (i.e., bicarbonate ions) from the surrounding media to fuel their inorganic carbon assimilation. The dehydration of bicarbonate in close vicinity of RuBisCO is achieved through the activity of carboxysomal carbonic anhydrase (CA) enzymes. Simultaneously, many cyanobacterial genomes encode extracellular α- and β-class CAs (EcaA, EcaB) whose exact physiological role remains largely unknown. To date, the CahB1 enzyme of Sodalinema gerasimenkoae (formerly Microcoleus/Coleofasciculus chthonoplastes) remains the sole described active extracellular β-CA in cyanobacteria, but its molecular features strongly suggest it to be a carboxysomal rather than a secreted protein. Upon expression of CahB1 in Synechocystis sp. PCC6803, we found that its expression complemented the loss of endogenous CcaA. Moreover, CahB1 was found to localize to a carboxysome-harboring and CA-active cell fraction. Our data suggest that CahB1 retains all crucial properties of a cellular carboxysomal CA and that the secretion mechanism and/or the machinations of the Sodalinema gerasimenkoae carboxysome are different from those of Synechocystis.
Collapse
Affiliation(s)
- Jun Minagawa
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
| | - Marcel Dann
- Division of Environmental Photobiology, National Institute for Basic Biology (NIBB), Aichi, Okazaki 444-8585, Japan
- Plant Molecular Biology, Ludwig-Maximilian University (LMU) Munich, 82152 Planegg, Germany
| |
Collapse
|
3
|
Miao H, Zhe Y, Xiang X, Cao Y, Han N, Wu Q, Huang Z. Enhanced Extracellular Expression of a Ca 2+- and Mg 2+-Dependent Hyperthermostable Protease EA1 in Bacillus subtilis via Systematic Screening of Optimal Signal Peptides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15830-15839. [PMID: 36480738 DOI: 10.1021/acs.jafc.2c06741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Proteases have been widely applied in various industries, including tanning, silk, feed, medicine, food, and environmental protection. Herein, the protease EA1 (GenBank accession no. U25630.1) was successfully expressed in Bacillus subtilis and demonstrated to function as a Ca2+- and Mg2+-dependent hyperthermostable neutral protease. At 80 °C, its half-life (t1/2) in the presence of 10 mM Mg2+ and Ca2+ was 50.4-fold longer than that in their absence (7.4 min), which can be explained by structural analysis. Compared with the currently available commercial proteases, protease EA1 has obvious advantages in heat resistance. The largest peptide library was used to enhance the extracellular expression of protease EA1 via constructing and screening 244 signal peptides (SPs). Eleven SPs with high yields of protease EA1 were identified from 5000 clones using a high-throughput assay. Specifically, the enzyme activity of protease produced by the strain (217.6 U/mL) containing the SP XynD was 5.2-fold higher than that of the strain with the initial SP. In brief, the protease is a potential candidate for future use in the high-temperature industry.
Collapse
Affiliation(s)
- Huabiao Miao
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yuanyuan Zhe
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Xia Xiang
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Yan Cao
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Nanyu Han
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Qian Wu
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| | - Zunxi Huang
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Kunming 650500, China
- School of Life Science, Yunnan Normal University, Kunming 650500, China
| |
Collapse
|
4
|
Naderi M, Ghaderi R, Khezri J, Karkhane A, Bambai B. Crucial role of non-hydrophobic residues in H-region signal peptide on secretory production of l-asparaginase II in Escherichia coli. Biochem Biophys Res Commun 2022; 636:105-111. [DOI: 10.1016/j.bbrc.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 09/26/2022] [Accepted: 10/06/2022] [Indexed: 11/02/2022]
|
5
|
Paek A, Kim MJ, Park HY, Yoo JG, Jeong SE. Functional expression of recombinant hybrid enzymes composed of bacterial and insect's chitinase domains in E. coli. Enzyme Microb Technol 2020; 136:109492. [PMID: 32331713 DOI: 10.1016/j.enzmictec.2019.109492] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022]
Abstract
To elucidate the functional alteration of the recombinant hybrid chitinases composed of bacterial and insect's domains, we cloned the constitutional domains from chitinase-encoding cDNAs of a bacterial species, Bacillus thuringiensis (BtChi) and a lepidopteran insect species, Mamestra brassicae (MbChi), respectively, swapped one's leading signal peptide (LSP) - catalytic domain (CD) - linker region (LR) (LCL) with the other's chitin binding domain (ChBD) between the two species, and confirmed and analyzed the functional expression of the recombinant hybrid chitinases and their chitinolytic activities in the transformed E. coli strains. Each of the two recombinant cDNAs, MbChi's LCL connected with BtChi's ChBD (MbLCL-BtChBD) and BtChi's LCL connected with MbChi's ChBD (BtLCL-MbChBD), was successfully introduced and expressed in E. coli BL21 strain. Although both of the two hybrid enzymes were found to be expressed by SDS-PAGE and Western blotting, the effects of the introduced genes on the chitin metabolism appear to be dramatically different between the two transformed E. coli strains. BtLCL-MbChBD remarkably increased not only the cell proliferation rate, extracellular and cellular chitinolytic activity, but also cellular glucosamine and N-acetylglucosamine levels, while MbLCL-BtChBD showed about the same profiles in the three tested subjects as those of the strains transformed with each of the two native chitinases, indicating that a combination of the bacterial CD of TIM barrel structure with characteristic six cysteine residues and insect ChBD2 including a conserved six cysteine-rich region (6C) enhances the attachment of the enzyme molecule to chitin compound by MbChBD, and so increases the catalytic efficiency of bacterial CD.
Collapse
Affiliation(s)
- Aron Paek
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Min Jae Kim
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Hee Yun Park
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Je Geun Yoo
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea
| | - Seong Eun Jeong
- Department of Biological Science and Biotechnology, Hannam University, 1646 Yooseong-daero, Yooseong-gu, Daejon 34054, South Korea.
| |
Collapse
|
6
|
Kaur K, Sidhu H, Capalash N, Sharma P. Multicopper oxidase of Acinetobacter baumannii: Assessing its role in metal homeostasis, stress management and virulence. Microb Pathog 2020; 143:104124. [PMID: 32169492 DOI: 10.1016/j.micpath.2020.104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 02/17/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
A putative multicopper oxidase, encoded as CopA in the proteome of Acinetobacter baumannii 19606, and designated as AbMCO, was expressed heterologously in E. coli (pET-28a) and purified by Ni-NTA affinity chromatography. The purified AbMCO exhibited in vitro oxidase activities upon exogenous addition of ≥1 μM copper ions. Kinetic studies revealed its phenol oxidase activity as it could catalyze the oxidation of substrates viz. 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), guaiacol, pyrogallol and catechol. Additionally, AbMCO displayed siderophore oxidase activity which depicted its role in metal homeostasis and protection from the toxic redox states of copper and iron. Importantly, expression of abMCO increased manifold upon challenge with high concentrations of copper sulphate (CuSO4, 1.5 mM) and sodium chloride (NaCl, 700 mM) which suggested its protective role in stress adaptation and management. Intra-macrophage assay of abMCO-expressing and abMCO-non expressing cells depicted no significant change in the survival rate of A. baumannii inside the macrophages. These findings indicate that A. baumannii encodes a multicopper oxidase, conferring copper tolerance and survival under stress conditions but had no role in virulence of this pathogen.
Collapse
Affiliation(s)
- Kavleen Kaur
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Harsimran Sidhu
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Prince Sharma
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
7
|
Experimental Evaluation of In Silico Selected Signal Peptides for Secretory Expression of Erwinia Asparaginase in Escherichia coli. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09961-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Kleiner-Grote GRM, Risse JM, Friehs K. Secretion of recombinant proteins from E. coli. Eng Life Sci 2018; 18:532-550. [PMID: 32624934 DOI: 10.1002/elsc.201700200] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/13/2018] [Indexed: 11/10/2022] Open
Abstract
The microorganism Escherichia coli is commonly used for recombinant protein production. Despite several advantageous characteristics like fast growth and high protein yields, its inability to easily secrete recombinant proteins into the extracellular medium remains a drawback for industrial production processes. To overcome this limitation, a multitude of approaches to enhance the extracellular yield and the secretion efficiency of recombinant proteins have been developed in recent years. Here, a comprehensive overview of secretion mechanisms for recombinant proteins from E. coli is given and divided into three main sections. First, the structure of the E. coli cell envelope and the known natural secretion systems are described. Second, the use and optimization of different one- or two-step secretion systems for recombinant protein production, as well as further permeabilization methods are discussed. Finally, the often-overlooked role of cell lysis in secretion studies and its analysis are addressed. So far, effective approaches for increasing the extracellular protein concentration to more than 10 g/L and almost 100% secretion efficiency exist, however, the large range of optimization methods and their combinations suggests that the potential for secretory protein production from E. coli has not yet been fully realized.
Collapse
Affiliation(s)
| | - Joe M Risse
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| | - Karl Friehs
- Fermentation Engineering Bielefeld University Bielefeld Germany.,Center for Biotechnology Bielefeld University Bielefeld Germany
| |
Collapse
|
9
|
Zhou Y, Lu Z, Wang X, Selvaraj JN, Zhang G. Genetic engineering modification and fermentation optimization for extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 2017; 102:1545-1556. [DOI: 10.1007/s00253-017-8700-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/06/2017] [Indexed: 02/06/2023]
|
10
|
Han S, Machhi S, Berge M, Xi G, Linke T, Schoner R. Novel signal peptides improve the secretion of recombinant Staphylococcus aureus Alpha toxin H35L in Escherichia coli. AMB Express 2017; 7:93. [PMID: 28497288 PMCID: PMC5427057 DOI: 10.1186/s13568-017-0394-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 04/26/2017] [Indexed: 11/10/2022] Open
Abstract
Secretion of heterologous proteins into Escherichia coli cell culture medium offers significant advantages for downstream processing over production as inclusion bodies; including cost and time savings, and reduction of endotoxin. Signal peptides play an important role in targeting proteins for translocation across the cytoplasmic membrane to the periplasmic space and release into culture medium during the secretion process. Alpha toxinH35L (ATH35L) was selected as an antigen for vaccine development against Staphylococcus aureus infections. It was successfully secreted into culture medium of E. coli by using bacterial signal peptides linked to the N-terminus of the protein. In order to improve the level of secreted ATH35L, we designed a series of novel signal peptides by swapping individual domains of modifying dsbA and pelB signal peptides and tested them in a fed-batch fermentation process. The data showed that some of the modified signal peptides improved the secretion efficiency of ATH35L compared with E. coli signal peptides from dsbA, pelB and phoA proteins. Indeed, one of the novel signal peptides improved the yield of secreted ATH35L by 3.5-fold in a fed-batch fermentation process and at the same time maintained processing at the expected site for signal peptide cleavage. Potentially, these new novel signal peptides can be used to improve the secretion efficiency of other heterologous proteins in E. coli. Furthermore, analysis of the synthetic signal peptide amino acid sequences provides some insight into the sequence features within the signal peptide that influence secretion efficiency.
Collapse
|
11
|
Ling HL, Rahmat Z, Murad AMA, Mahadi NM, Illias RM. Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.06.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Cui Y, Meng Y, Zhang J, Cheng B, Yin H, Gao C, Xu P, Yang C. Efficient secretory expression of recombinant proteins in Escherichia coli with a novel actinomycete signal peptide. Protein Expr Purif 2017; 129:69-74. [DOI: 10.1016/j.pep.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/04/2016] [Accepted: 09/20/2016] [Indexed: 10/21/2022]
|
13
|
Noor YM, Samsulrizal NH, Jema'on NA, Low KO, Ramli ANM, Alias NI, Damis SIR, Fuzi SFZM, Isa MNM, Murad AMA, Raih MFM, Bakar FDA, Najimudin N, Mahadi NM, Illias RM. A comparative genomic analysis of the alkalitolerant soil bacterium Bacillus lehensis G1. Gene 2014; 545:253-61. [PMID: 24811681 DOI: 10.1016/j.gene.2014.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 04/27/2014] [Accepted: 05/03/2014] [Indexed: 10/25/2022]
Abstract
Bacillus lehensis G1 is a Gram-positive, moderately alkalitolerant bacterium isolated from soil samples. B. lehensis produces cyclodextrin glucanotransferase (CGTase), an enzyme that has enabled the extensive use of cyclodextrin in foodstuffs, chemicals, and pharmaceuticals. The genome sequence of B. lehensis G1 consists of a single circular 3.99 Mb chromosome containing 4017 protein-coding sequences (CDSs), of which 2818 (70.15%) have assigned biological roles, 936 (23.30%) have conserved domains with unknown functions, and 263 (6.55%) have no match with any protein database. Bacillus clausii KSM-K16 was established as the closest relative to B. lehensis G1 based on gene content similarity and 16S rRNA phylogenetic analysis. A total of 2820 proteins from B. lehensis G1 were found to have orthologues in B. clausii, including sodium-proton antiporters, transport proteins, and proteins involved in ATP synthesis. A comparative analysis of these proteins and those in B. clausii and other alkaliphilic Bacillus species was carried out to investigate their contributions towards the alkalitolerance of the microorganism. The similarities and differences in alkalitolerance-related genes among alkalitolerant/alkaliphilic Bacillus species highlight the complex mechanism of pH homeostasis. The B. lehensis G1 genome was also mined for proteins and enzymes with potential viability for industrial and commercial purposes.
Collapse
Affiliation(s)
- Yusuf Muhammad Noor
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Nurul Hidayah Samsulrizal
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Noor Azah Jema'on
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Kheng Oon Low
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Noor Izawati Alias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Siti Intan Rosdianah Damis
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Siti Fatimah Zaharah Mohd Fuzi
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Mohd Firdaus Mohd Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Bioprocess Engineering, Faculty of Chemical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia.
| |
Collapse
|
14
|
Liu L, Yang H, Shin HD, Chen RR, Li J, Du G, Chen J. How to achieve high-level expression of microbial enzymes: strategies and perspectives. Bioengineered 2013; 4:212-23. [PMID: 23686280 DOI: 10.4161/bioe.24761] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microbial enzymes have been used in a large number of fields, such as chemical, agricultural and biopharmaceutical industries. The enzyme production rate and yield are the main factors to consider when choosing the appropriate expression system for the production of recombinant proteins. Recombinant enzymes have been expressed in bacteria (e.g., Escherichia coli, Bacillus and lactic acid bacteria), filamentous fungi (e.g., Aspergillus) and yeasts (e.g., Pichia pastoris). The favorable and very advantageous characteristics of these species have resulted in an increasing number of biotechnological applications. Bacterial hosts (e.g., E. coli) can be used to quickly and easily overexpress recombinant enzymes; however, bacterial systems cannot express very large proteins and proteins that require post-translational modifications. The main bacterial expression hosts, with the exception of lactic acid bacteria and filamentous fungi, can produce several toxins which are not compatible with the expression of recombinant enzymes in food and drugs. However, due to the multiplicity of the physiological impacts arising from high-level expression of genes encoding the enzymes and expression hosts, the goal of overproduction can hardly be achieved, and therefore, the yield of recombinant enzymes is limited. In this review, the recent strategies used for the high-level expression of microbial enzymes in the hosts mentioned above are summarized and the prospects are also discussed. We hope this review will contribute to the development of the enzyme-related research field.
Collapse
Affiliation(s)
- Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Low KO, Muhammad Mahadi N, Md. Illias R. Optimisation of signal peptide for recombinant protein secretion in bacterial hosts. Appl Microbiol Biotechnol 2013; 97:3811-26. [DOI: 10.1007/s00253-013-4831-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 03/03/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|