1
|
Teimoori M, Nokhbatolfoghahaei H, Khojasteh A. Bilayer scaffolds/membranes for bone tissue engineering applications: A systematic review. BIOMATERIALS ADVANCES 2023; 153:213528. [PMID: 37352742 DOI: 10.1016/j.bioadv.2023.213528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
OBJECTIVE This systematic review evaluates the purpose, materials, physio-mechanical, and biological effects of bilayer scaffolds/membranes used for bone tissue engineering applications. METHODS A comprehensive electronic search of English-language literature from 2012 to October 2022 was conducted in PubMed, Scopus, ScienceDirect, and Google Scholar online databases according to the PRISMA 2020 guidelines. The quality of animal studies was evaluated through the SYRCLE's risk of bias tool. RESULTS A total of 77 studies were sought for retrieval, and 39 studies met the inclusion criteria. According to the synthesis results, most bilayers had a dense barrier layer that prevented connective tissue penetration and a loose osteogenic layer that supported cell migration and osteogenesis. PLGA, PCL, and chitosan were the most common polymers in the barrier layers, while the most utilized polymers in osteogenic layers were PLGA and gelatin. Electrospinning and solvent casting were the most common fabrication methods to design the bilayer structures. Many studies reported higher biological results for bilayers compared to their single layers. Also, fabricated bilayers' in vitro osteogenesis and in vivo new bone formation were significantly superior or at least comparable to the frequently used commercial membranes. CONCLUSION 1) Bilayers with two distinct layers and different materials, porosities, mechanical properties, and biological behavior can significantly improve heterogeneous bone regeneration; 2) the addition of ceramics and/or drugs to the osteogenic layer enhances the osteogenic properties of the bilayers; 3) fabrication method and pore size of the layers play an important role in determining the mechanical and biological behavior of them.
Collapse
Affiliation(s)
- Mahdis Teimoori
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hanieh Nokhbatolfoghahaei
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Cranio-Maxillofacial Surgery, University Hospital, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
2
|
Franchi-Mendes T, Silva M, Cartaxo AL, Fernandes-Platzgummer A, Cabral JMS, da Silva CL. Bioprocessing Considerations towards the Manufacturing of Therapeutic Skeletal and Smooth Muscle Cells. Bioengineering (Basel) 2023; 10:1067. [PMID: 37760170 PMCID: PMC10525286 DOI: 10.3390/bioengineering10091067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Tissue engineering approaches within the muscle context represent a promising emerging field to address the current therapeutic challenges related with multiple pathological conditions affecting the muscle compartments, either skeletal muscle or smooth muscle, responsible for involuntary and voluntary contraction, respectively. In this review, several features and parameters involved in the bioprocessing of muscle cells are addressed. The cell isolation process is depicted, depending on the type of tissue (smooth or skeletal muscle), followed by the description of the challenges involving the use of adult donor tissue and the strategies to overcome the hurdles of reaching relevant cell numbers towards a clinical application. Specifically, the use of stem/progenitor cells is highlighted as a source for smooth and skeletal muscle cells towards the development of a cellular product able to maintain the target cell's identity and functionality. Moreover, taking into account the need for a robust and cost-effective bioprocess for cell manufacturing, the combination of muscle cells with biomaterials and the need for scale-up envisioning clinical applications are also approached.
Collapse
Affiliation(s)
- Teresa Franchi-Mendes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Marília Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Luísa Cartaxo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (T.F.-M.); (M.S.); (A.L.C.); (A.F.-P.); (J.M.S.C.)
- Associate Laboratory, i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
3
|
Pourmasoumi P, Moghaddam A, Nemati Mahand S, Heidari F, Salehi Moghaddam Z, Arjmand M, Kühnert I, Kruppke B, Wiesmann HP, Khonakdar HA. A review on the recent progress, opportunities, and challenges of 4D printing and bioprinting in regenerative medicine. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:108-146. [PMID: 35924585 DOI: 10.1080/09205063.2022.2110480] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Four-dimensional (4 D) printing is a novel emerging technology, which can be defined as the ability of 3 D printed materials to change their form and functions. The term 'time' is added to 3 D printing as the fourth dimension, in which materials can respond to a stimulus after finishing the manufacturing process. 4 D printing provides more versatility in terms of size, shape, and structure after printing the construct. Complex material programmability, multi-material printing, and precise structure design are the essential requirements of 4 D printing systems. The utilization of stimuli-responsive polymers has increasingly taken the place of cell traction force-dependent methods and manual folding, offering a more advanced technique to affect a construct's adjusted shape transformation. The present review highlights the concept of 4 D printing and the responsive bioinks used in 4 D printing, such as water-responsive, pH-responsive, thermo-responsive, and light-responsive materials used in tissue regeneration. Cell traction force methods are described as well. Finally, this paper aims to introduce the limitations and future trends of 4 D printing in biomedical applications based on selected key references from the last decade.
Collapse
Affiliation(s)
| | | | | | - Fatemeh Heidari
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Arjmand
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, Canada
| | - Ines Kühnert
- Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| | - Benjamin Kruppke
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hans-Peter Wiesmann
- Max Bergmann Center of Biomaterials and Institute of Materials Science, Technische Universität Dresden, Dresden, Germany
| | - Hossein Ali Khonakdar
- Iran Polymer and Petrochemical Institute (IPPI), Tehran, Iran.,Leibniz Institute of Polymer Research Dresden, Dresden, Germany
| |
Collapse
|
4
|
Liu C, Qiao W, Wang C, Wang H, Zhou Y, Gu S, Xu W, Zhuang Y, Shi J, Yang H. Effect of poly (lactic acid) porous membrane prepared via phase inversion induced by water droplets on 3T3 cell behavior. Int J Biol Macromol 2021; 183:2205-2214. [PMID: 34087303 DOI: 10.1016/j.ijbiomac.2021.05.197] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/19/2021] [Accepted: 05/29/2021] [Indexed: 11/18/2022]
Abstract
Phase inversion induced by water droplets has garnered attention in the field of polymer science as a novel method for preparing porous membranes. This study investigates the effect of the porous structure of poly (lactic acid) (PLA) membranes prepared through phase inversion induced by water droplets at four different temperatures (25, 50, 75, and 100 °C) on the morphology and proliferation of 3T3 cells. The surface properties of the PLA porous membrane, including pore size, pore size distribution, surface roughness, surface hydrophilicity, and cytocompatibility with 3T3 cells, were evaluated. The results indicated that the synthesized PLA membrane had two surfaces with different structures. The upper surface in contact with the water droplets during preparation contained uniformly distributed micropores, whereas the bottom surface was smooth and composed of small particles in contacted with the mold. The upper surface showed high cytocompatibility with 3T3 cells, and the 3T3 cells migrated and grew within the pores at 25 °C. In contrast, the bottom surface exhibited low biocompatibility with the 3T3 cells. Our study has wide-ranging implications and will improve the fabrication and implementation of 3D cultured scaffolds with excellent cytocompatibility.
Collapse
Affiliation(s)
- Changjun Liu
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Weihua Qiao
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Chaorong Wang
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Han Wang
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Yingshan Zhou
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Shaojin Gu
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Weilin Xu
- Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China
| | - Yan Zhuang
- College of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, PR China.
| | - Jiawei Shi
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| | - Hongjun Yang
- College of material science and engineering, Wuhan Textile University, Wuhan 430200, PR China; Key Laboratory of Green Processing and Functional New Textile Materials of Ministry of Education, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
5
|
Boys AJ, Barron SL, Tilev D, Owens RM. Building Scaffolds for Tubular Tissue Engineering. Front Bioeng Biotechnol 2020; 8:589960. [PMID: 33363127 PMCID: PMC7758256 DOI: 10.3389/fbioe.2020.589960] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/04/2020] [Indexed: 12/15/2022] Open
Abstract
Hollow organs and tissue systems drive various functions in the body. Many of these hollow or tubular systems, such as vasculature, the intestines, and the trachea, are common targets for tissue engineering, given their relevance to numerous diseases and body functions. As the field of tissue engineering has developed, numerous benchtop models have been produced as platforms for basic science and drug testing. Production of tubular scaffolds for different tissue engineering applications possesses many commonalities, such as the necessity for producing an intact tubular opening and for formation of semi-permeable epithelia or endothelia. As such, the field has converged on a series of manufacturing techniques for producing these structures. In this review, we discuss some of the most common tissue engineered applications within the context of tubular tissues and the methods by which these structures can be produced. We provide an overview of the general structure and anatomy for these tissue systems along with a series of general design criteria for tubular tissue engineering. We categorize methods for manufacturing tubular scaffolds as follows: casting, electrospinning, rolling, 3D printing, and decellularization. We discuss state-of-the-art models within the context of vascular, intestinal, and tracheal tissue engineering. Finally, we conclude with a discussion of the future for these fields.
Collapse
Affiliation(s)
| | | | | | - Roisin M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Jiao Y, Li C, Liu L, Wang F, Liu X, Mao J, Wang L. Construction and application of textile-based tissue engineering scaffolds: a review. Biomater Sci 2020; 8:3574-3600. [PMID: 32555780 DOI: 10.1039/d0bm00157k] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering (TE) provides a practicable method for tissue and organ repair or substitution. As the most important component of TE, a scaffold plays a critical role in providing a growing environment for cell proliferation and functional differentiation as well as good mechanical support. And the restorative effects are greatly dependent upon the nature of the scaffold including the composition, morphology, structure, and mechanical performance. Medical textiles have been widely employed in the clinic for a long time and are being extensively investigated as TE scaffolds. However, unfortunately, the advantages of textile technology cannot be fully exploited in tissue regeneration due to the ignoring of the diversity of fabric structures. Therefore, this review focuses on textile-based scaffolds, emphasizing the significance of the fabric design and the resultant characteristics of cell behavior and extracellular matrix reconstruction. The structure and mechanical behavior of the fabrics constructed by various textile techniques for different tissue repairs are summarized. Furthermore, the prospect of structural design in the TE scaffold preparation was anticipated, including profiled fibers and some unique and complex textile structures. Hopefully, the readers of this review would appreciate the importance of structural design of the scaffold and the usefulness of textile-based TE scaffolds in tissue regeneration.
Collapse
Affiliation(s)
- Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education and College of Textiles, Donghua University, Shanghai 201620, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Bombaldi de Souza FC, Camasão DB, Bombaldi de Souza RF, Drouin B, Mantovani D, Moraes ÂM. A simple and effective approach to produce tubular polysaccharide‐based hydrogel scaffolds. J Appl Polym Sci 2019. [DOI: 10.1002/app.48510] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fernanda Carla Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical EngineeringUniversity of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Dimitria Bonizol Camasão
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min‐Met‐Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative MedicineLaval University Quebec City Quebec Canada
| | - Renata Francielle Bombaldi de Souza
- Department of Engineering of Materials and of Bioprocesses, School of Chemical EngineeringUniversity of Campinas (UNICAMP) Campinas São Paulo Brazil
| | - Bernard Drouin
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min‐Met‐Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative MedicineLaval University Quebec City Quebec Canada
| | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min‐Met‐Materials Engineering, Research Center of CHU de Quebec, Division of Regenerative MedicineLaval University Quebec City Quebec Canada
| | - Ângela Maria Moraes
- Department of Engineering of Materials and of Bioprocesses, School of Chemical EngineeringUniversity of Campinas (UNICAMP) Campinas São Paulo Brazil
| |
Collapse
|
8
|
Shaik MM, Dapkekar A, Rajwade JM, Jadhav SH, Kowshik M. Antioxidant-antibacterial containing bi-layer scaffolds as potential candidates for management of oxidative stress and infections in wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:13. [PMID: 30635734 DOI: 10.1007/s10856-018-6212-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 12/28/2018] [Indexed: 06/09/2023]
Abstract
Tissue engineering techniques are continuously evolving towards providing better microenvironment along with therapeutic potential to address the skin tissue defects. Factors such as microbial infections, presence of excessive free radicals and depletion in antioxidant based scavenging systems pose serious challenges by prolonging inflammation and delaying the repair process. Incorporation of bioactive molecules in polymer based biomimetic scaffolds may present new vistas for handling chronic wounds. In this study, chitosan/collagen scaffolds incorporating 0.5, 1 and 2% (w/w) silymarin (CS-CO-SM) were synthesized and studied for their biocompatibility, in vitro release kinetics and anti-oxidant activity. The release kinetics of silymarin from the CS-CO-SM scaffold showed an initial burst followed by sustained release. The scaffolds were biocompatible and supported the recovery of COS-7 cells from UV induced oxidative stress. Further the CS-CO-SM(2) scaffolds were used to fabricate a bi-layer scaffold by layer upon layer arrangement with CS-Ag3 (3% Ag, w/w). The Ag was incorporated to impart antimicrobial property to the scaffold. The in vivo studies on bi-layer scaffolds were carried out in Wistar rat models at 3, 7 and 10 days post injury and the skin excisions were studied for wound contraction, histology (H&E staining), and lipid peroxidation. The bi-layer scaffold accelerated the process of wound healing with no inflammatory cells, proliferation of fibroblast, neovascularization and collagen deposition. By day 10 post transplantation of the scaffold, the skin had a structure similar to normal skin with complete re-epithelization. This bi-layer scaffold with antioxidant and antimicrobial properties promotes wound healing and is proposed as a potential tissue engineering material for managing chronic wounds.
Collapse
Affiliation(s)
- M Monsoor Shaik
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India
| | - Ashwin Dapkekar
- Nanobioscience group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Jyutika M Rajwade
- Nanobioscience group, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Sachin H Jadhav
- Animal Sciences Division, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India
| | - Meenal Kowshik
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, 403726, India.
| |
Collapse
|
9
|
Sarkar B, Nguyen PK, Gao W, Dondapati A, Siddiqui Z, Kumar VA. Angiogenic Self-Assembling Peptide Scaffolds for Functional Tissue Regeneration. Biomacromolecules 2018; 19:3597-3611. [PMID: 30132656 DOI: 10.1021/acs.biomac.8b01137] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Implantation of acellular biomimetic scaffolds with proangiogenic motifs may have exciting clinical utility for the treatment of ischemic pathologies such as myocardial infarction. Although direct delivery of angiogenic proteins is a possible treatment option, smaller synthetic peptide-based nanostructured alternatives are being investigated due to favorable factors, such as sustained efficacy and high-density epitope presentation of functional moieties. These peptides may be implanted in vivo at the site of ischemia, bypassing the first-pass metabolism and enabling long-term retention and sustained efficacy. Mimics of angiogenic proteins show tremendous potential for clinical use. We discuss possible approaches to integrate the functionality of such angiogenic peptide mimics into self-assembled peptide scaffolds for application in functional tissue regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | - Vivek A Kumar
- Rutgers School of Dental Medicine , Newark , New Jersey 07101 , United States
| |
Collapse
|
10
|
Moradi SL, Golchin A, Hajishafieeha Z, Khani M, Ardeshirylajimi A. Bone tissue engineering: Adult stem cells in combination with electrospun nanofibrous scaffolds. J Cell Physiol 2018; 233:6509-6522. [DOI: 10.1002/jcp.26606] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Sadegh L. Moradi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Zahra Hajishafieeha
- Department of Microbiology Qazvin University of Medical Sciences Qazvin Iran
| | - Mohammad‐Mehdi Khani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine Shahid Beheshti University of Medical Sciences Tehran Iran
- Edward A. Doisy Department of Biochemistry and Molecular Biology Saint Louis University School of Medicine Saint Louis MO
| |
Collapse
|
11
|
Hoogenkamp HR, Pot MW, Hafmans TG, Tiemessen DM, Sun Y, Oosterwijk E, Feitz WF, Daamen WF, van Kuppevelt TH. Scaffolds for whole organ tissue engineering: Construction and in vitro evaluation of a seamless, spherical and hollow collagen bladder construct with appendices. Acta Biomater 2016; 43:112-121. [PMID: 27424084 DOI: 10.1016/j.actbio.2016.07.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 11/26/2022]
Abstract
UNLABELLED The field of regenerative medicine has developed promising techniques to improve current neobladder strategies used for radical cystectomies or congenital anomalies. Scaffolds made from molecularly defined biomaterials are instrumental in the regeneration of tissues, but are generally confined to small flat patches and do not comprise the whole organ. We have developed a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold, mimicking the shape of the whole bladder, and with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized, with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. Human and porcine bladder urothelial and smooth muscle cells were able to attach to the scaffold and maintained their phenotype in vitro. The closed luminal side and the porous outside of the scaffold facilitated the formation of an urothelial lining and infiltration of smooth muscle cells, respectively. The cells aligned according to the provided scaffold template. The technology used is highly adjustable (shape, size, materials) and may be used as a starting point for research to an off-the-shelf medical device suitable for neobladders. STATEMENT OF SIGNIFICANCE In this study, we describe the development of a simple, one-step casting method to produce a seamless large hollow collagen-based scaffold mimicking the shape of the whole bladder with integrated anastomotic sites for ureters and urethra. The hollow bladder scaffold is highly standardized with uniform wall thickness and a unidirectional pore structure to facilitate cell infiltration in vivo. The closed luminal surface and the porous exterior of the scaffold facilitated the formation of a urothelial lining and infiltration of smooth muscle cells, respectively. The applied technology is highly adjustable (shape, size, materials) and can be the starting point for research to an off-the-shelf medical device suitable for neobladders.
Collapse
|
12
|
Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM. Biomaterials for hollow organ tissue engineering. FIBROGENESIS & TISSUE REPAIR 2016; 9:3. [PMID: 27014369 PMCID: PMC4806416 DOI: 10.1186/s13069-016-0040-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/15/2016] [Indexed: 12/14/2022]
Abstract
Tissue engineering is a rapidly advancing field that is likely to transform how medicine is practised in the near future. For hollow organs such as those found in the cardiovascular and respiratory systems or gastrointestinal tract, tissue engineering can provide replacement of the entire organ or provide restoration of function to specific regions. Larger tissue-engineered constructs often require biomaterial-based scaffold structures to provide support and structure for new tissue growth. Consideration must be given to the choice of material and manufacturing process to ensure the de novo tissue closely matches the mechanical and physiological properties of the native tissue. This review will discuss some of the approaches taken to date for fabricating hollow organ scaffolds and the selection of appropriate biomaterials.
Collapse
Affiliation(s)
- Eseelle K. Hendow
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Pauline Guhmann
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Bernice Wright
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Panagiotis Sofokleous
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| | - Richard M. Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London, 21 University Street, London, UK
| |
Collapse
|
13
|
Saksena R, Gao C, Wicox M, de Mel A. Tubular organ epithelialisation. J Tissue Eng 2016; 7:2041731416683950. [PMID: 28228931 PMCID: PMC5308438 DOI: 10.1177/2041731416683950] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/11/2022] Open
Abstract
Hollow, tubular organs including oesophagus, trachea, stomach, intestine, bladder and urethra may require repair or replacement due to disease. Current treatment is considered an unmet clinical need, and tissue engineering strategies aim to overcome these by fabricating synthetic constructs as tissue replacements. Smart, functionalised synthetic materials can act as a scaffold base of an organ and multiple cell types, including stem cells can be used to repopulate these scaffolds to replace or repair the damaged or diseased organs. Epithelial cells have not yet completely shown to have efficacious cell-scaffold interactions or good functionality in artificial organs, thus limiting the success of tissue-engineered grafts. Epithelial cells play an essential part of respective organs to maintain their function. Without successful epithelialisation, hollow organs are liable to stenosis, collapse, extensive fibrosis and infection that limit patency. It is clear that the source of cells and physicochemical properties of scaffolds determine the successful epithelialisation. This article presents a review of tissue engineering studies on oesophagus, trachea, stomach, small intestine, bladder and urethral constructs conducted to actualise epithelialised grafts.
Collapse
Affiliation(s)
- Rhea Saksena
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Chuanyu Gao
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Mathew Wicox
- Division of Surgery and Interventional Science, University College London, London, UK
| | - Achala de Mel
- Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
14
|
Murphy CM, Duffy GP, Schindeler A, O'brien FJ. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types. J Biomed Mater Res A 2015; 104:291-304. [DOI: 10.1002/jbm.a.35567] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/14/2015] [Accepted: 09/16/2015] [Indexed: 01/24/2023]
Affiliation(s)
- Ciara M. Murphy
- School of Medicine & Medical Science; University College Dublin; Dublin Ireland
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
| | - Garry P. Duffy
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| | - Aaron Schindeler
- Orthopaedic Research & Biotechnology Unit the Children's Hospital at Westmead
- Discipline of Paediatrics and Child Health; University of Sydney; Sydney Australia
| | - Fergal J. O'brien
- Tissue Engineering Research Group; Department of Anatomy, Royal College of Surgeons in Ireland (RCSI); Dublin Ireland
- Trinity Centre for Bioengineering; Trinity College Dublin (TCD); Dublin Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER) RCSI & TCD; Dublin Ireland
| |
Collapse
|
15
|
Koch B, Meyer AK, Helbig L, Harazim SM, Storch A, Sanchez S, Schmidt OG. Dimensionality of Rolled-up Nanomembranes Controls Neural Stem Cell Migration Mechanism. NANO LETTERS 2015; 15:5530-8. [PMID: 26161791 PMCID: PMC4538455 DOI: 10.1021/acs.nanolett.5b02099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We employ glass microtube structures fabricated by rolled-up nanotechnology to infer the influence of scaffold dimensionality and cell confinement on neural stem cell (NSC) migration. Thereby, we observe a pronounced morphology change that marks a reversible mesenchymal to amoeboid migration mode transition. Space restrictions preset by the diameter of nanomembrane topography modify the cell shape toward characteristics found in living tissue. We demonstrate the importance of substrate dimensionality for the migration mode of NSCs and thereby define rolled-up nanomembranes as the ultimate tool for single-cell migration studies.
Collapse
Affiliation(s)
- Britta Koch
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
- E-mail:
| | - Anne K. Meyer
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
- Division
of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Linda Helbig
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
| | - Stefan M. Harazim
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
| | - Alexander Storch
- Division
of Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany
- German Center for
Neurodegenerative Diseases (DZNE) Dresden, D-01307 Dresden, Germany
- Center
for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, D-01307 Dresden, Germany
| | - Samuel Sanchez
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
- Max Planck Institute
for Intelligent Systems, D-70569 Stuttgart, Germany
| | - Oliver G. Schmidt
- Institute
for Integrative Nanosciences, Leibniz Institute
for Solid State and Materials Research Dresden, D-01069 Dresden, Germany
- Material
Systems for Nanoelectronics, Technische
Universität Chemnitz, D-09107 Chemnitz, Germany
- Center
for
Advancing Electronics Dresden, Technische
Universität Dresden, D-01187 Dresden, Germany
| |
Collapse
|
16
|
Parmar N, Ahmadi R, Day RM. A novel method for differentiation of human mesenchymal stem cells into smooth muscle-like cells on clinically deliverable thermally induced phase separation microspheres. Tissue Eng Part C Methods 2014; 21:404-12. [PMID: 25205072 DOI: 10.1089/ten.tec.2014.0431] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Muscle degeneration is a prevalent disease, particularly in aging societies where it has a huge impact on quality of life and incurs colossal health costs. Suitable donor sources of smooth muscle cells are limited and minimally invasive therapeutic approaches are sought that will augment muscle volume by delivering cells to damaged or degenerated areas of muscle. For the first time, we report the use of highly porous microcarriers produced using thermally induced phase separation (TIPS) to expand and differentiate adipose-derived mesenchymal stem cells (AdMSCs) into smooth muscle-like cells in a format that requires minimal manipulation before clinical delivery. AdMSCs readily attached to the surface of TIPS microcarriers and proliferated while maintained in suspension culture for 12 days. Switching the incubation medium to a differentiation medium containing 2 ng/mL transforming growth factor beta-1 resulted in a significant increase in both the mRNA and protein expression of cell contractile apparatus components caldesmon, calponin, and myosin heavy chains, indicative of a smooth muscle cell-like phenotype. Growth of smooth muscle cells on the surface of the microcarriers caused no change to the integrity of the polymer microspheres making them suitable for a cell-delivery vehicle. Our results indicate that TIPS microspheres provide an ideal substrate for the expansion and differentiation of AdMSCs into smooth muscle-like cells as well as a microcarrier delivery vehicle for the attached cells ready for therapeutic applications.
Collapse
Affiliation(s)
- Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London , London, United Kingdom
| | | | | |
Collapse
|