1
|
Dai L, Shen KF, Zhang CQ. Plexin-mediated neuronal development and neuroinflammatory responses in the nervous system. Histol Histopathol 2023; 38:1239-1248. [PMID: 37170703 DOI: 10.14670/hh-18-625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Plexins are a large family of single-pass transmembrane proteins that mediate semaphorin signaling in multiple systems. Plexins were originally characterized for their role modulating cytoskeletal activity to regulate axon guidance during nervous system development. Thereafter, different semaphorin-plexin complexes were identified in the nervous system that have diverse functions in neurons, astrocytes, glia, oligodendrocytes, and brain derived-tumor cells, providing unexpected but meaningful insights into the biological activities of this protein family. Here, we review the overall structure and relevant downstream signaling cascades of plexins. We consider the current knowledge regarding the function of semaphorin-plexin cascades in the nervous system, including the most recent data regarding their roles in neuronal development, neuroinflammation, and glioma.
Collapse
Affiliation(s)
- Lu Dai
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Kai-Feng Shen
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chun-Qing Zhang
- Department of Neurosurgery, Epilepsy Research Center of PLA, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Mangoli A, Wu S, Liu HQ, Aksu M, Jain V, Foreman BE, Regal JA, Weidenhammer LB, Stewart CE, Guerra Garcia ME, Hocke E, Abramson K, Williams NT, Luo L, Deland K, Attardi L, Abe K, Hashizume R, Ashley DM, Becher OJ, Kirsch DG, Gregory SG, Reitman ZJ. Ataxia-telangiectasia mutated ( Atm ) disruption sensitizes spatially-directed H3.3K27M/TP53 diffuse midline gliomas to radiation therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562892. [PMID: 37904990 PMCID: PMC10614905 DOI: 10.1101/2023.10.18.562892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Diffuse midline gliomas (DMGs) are lethal brain tumors characterized by p53-inactivating mutations and oncohistone H3.3K27M mutations that rewire the cellular response to genotoxic stress, which presents therapeutic opportunities. We used RCAS/tv-a retroviruses and Cre recombinase to inactivate p53 and induce K27M in the native H3f3a allele in a lineage- and spatially-directed manner, yielding primary mouse DMGs. Genetic or pharmacologic disruption of the DNA damage response kinase Ataxia-telangiectasia mutated (ATM) enhanced the efficacy of focal brain irradiation, extending mouse survival. This finding suggests that targeting ATM will enhance the efficacy of radiation therapy for p53-mutant DMG but not p53-wildtype DMG. We used spatial in situ transcriptomics and an allelic series of primary murine DMG models with different p53 mutations to identify transactivation-independent p53 activity as a key mediator of such radiosensitivity. These studies deeply profile a genetically faithful and versatile model of a lethal brain tumor to identify resistance mechanisms for a therapeutic strategy currently in clinical trials.
Collapse
|
3
|
Islam R, Mishra J, Bodas S, Bhattacharya S, Batra SK, Dutta S, Datta K. Role of Neuropilin-2-mediated signaling axis in cancer progression and therapy resistance. Cancer Metastasis Rev 2022; 41:771-787. [PMID: 35776228 PMCID: PMC9247951 DOI: 10.1007/s10555-022-10048-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/16/2022] [Indexed: 12/12/2022]
Abstract
Neuropilins (NRPs) are transmembrane proteins involved in vascular and nervous system development by regulating angiogenesis and axon guidance cues. Several published reports have established their role in tumorigenesis. NRPs are detectable in tumor cells of several cancer types and participate in cancer progression. NRP2 is also expressed in endothelial and immune cells in the tumor microenvironment and promotes functions such as lymphangiogenesis and immune suppression important for cancer progression. In this review, we have taken a comprehensive approach to discussing various aspects of NRP2-signaling in cancer, including its regulation, functional significance in cancer progression, and how we could utilize our current knowledge to advance the studies and target NRP2 to develop effective cancer therapies.
Collapse
Affiliation(s)
- Ridwan Islam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Juhi Mishra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Sanika Bodas
- Department of Molecular Genetics and Cell Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
4
|
Nitzan A, Corredor-Sanchez M, Galron R, Nahary L, Safrin M, Bruzel M, Moure A, Bonet R, Pérez Y, Bujons J, Vallejo-Yague E, Sacks H, Burnet M, Alfonso I, Messeguer A, Benhar I, Barzilai A, Solomon AS. Inhibition of Sema-3A Promotes Cell Migration, Axonal Growth, and Retinal Ganglion Cell Survival. Transl Vis Sci Technol 2021; 10:16. [PMID: 34817617 PMCID: PMC8626852 DOI: 10.1167/tvst.10.10.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Purpose Semaphorin 3A (Sema-3A) is a secreted protein that deflects axons from inappropriate regions and induces neuronal cell death. Intravitreal application of polyclonal antibodies against Sema-3A prevents loss of retinal ganglion cells ensuing from axotomy of optic nerves. This suggested a therapeutic approach for neuroprotection via inhibition of the Sema-3A pathway. Methods To develop potent and specific Sema-3A antagonists, we isolated monoclonal anti-Sema-3A antibodies from a human antibody phage display library and optimized low-molecular weight Sema-3A signaling inhibitors. The best inhibitors were identified using in vitro scratch assays and semiquantitative repulsion assays. Results A therapeutic approach for neuroprotection must have a long duration of action. Therefore, antibodies and low-molecular weight inhibitors were formulated in extruded implants to allow controlled and prolonged release. Following release from the implants, Sema-3A inhibitors antagonized Sema-3A effects in scratch and repulsion assays and protected retinal ganglion cells in animal models of optic nerve injury, retinal ischemia, and glaucoma. Conclusions and Translational Relevance Collectively, our findings indicate that the identified Sema-3A inhibitors should be further evaluated as therapeutic candidates for the treatment of Sema-3A-driven central nervous system degenerative processes.
Collapse
Affiliation(s)
- Anat Nitzan
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Miriam Corredor-Sanchez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Ronit Galron
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Limor Nahary
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Mary Safrin
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Marina Bruzel
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel
| | - Alejandra Moure
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Roman Bonet
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Yolanda Pérez
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Jordi Bujons
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | | | | | | | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Angel Messeguer
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC, Barcelona, Spain
| | - Itai Benhar
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ari Barzilai
- Department of Neurobiology, George S. Wise, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Arieh S Solomon
- Goldschleger Eye Research Institute, Sheba Medical Center, Tel Aviv University Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Higgins DMO, Caliva M, Schroeder M, Carlson B, Upadhyayula PS, Milligan BD, Cheshier SH, Weissman IL, Sarkaria JN, Meyer FB, Henley JR. Semaphorin 3A mediated brain tumor stem cell proliferation and invasion in EGFRviii mutant gliomas. BMC Cancer 2020; 20:1213. [PMID: 33302912 PMCID: PMC7727139 DOI: 10.1186/s12885-020-07694-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults, with a median survival of approximately 15 months. Semaphorin 3A (Sema3A), known for its axon guidance and antiangiogenic properties, has been implicated in GBM growth. We hypothesized that Sema3A directly inhibits brain tumor stem cell (BTSC) proliferation and drives invasion via Neuropilin 1 (Nrp1) and Plexin A1 (PlxnA1) receptors. METHODS GBM BTSC cell lines were assayed by immunostaining and PCR for levels of Semaphorin 3A (Sema3A) and its receptors Nrp1 and PlxnA1. Quantitative BrdU, cell cycle and propidium iodide labeling assays were performed following exogenous Sema3A treatment. Quantitative functional 2-D and 3-D invasion assays along with shRNA lentiviral knockdown of Nrp1 and PlxnA1 are also shown. In vivo flank studies comparing tumor growth of knockdown versus control BTSCs were performed. Statistics were performed using GraphPad Prism v7. RESULTS Immunostaining and PCR analysis revealed that BTSCs highly express Sema3A and its receptors Nrp1 and PlxnA1, with expression of Nrp1 in the CD133 positive BTSCs, and absence in differentiated tumor cells. Treatment with exogenous Sema3A in quantitative BrdU, cell cycle, and propidium iodide labeling assays demonstrated that Sema3A significantly inhibited BTSC proliferation without inducing cell death. Quantitative functional 2-D and 3-D invasion assays showed that treatment with Sema3A resulted in increased invasion. Using shRNA lentiviruses, knockdown of either NRP1 or PlxnA1 receptors abrogated Sema3A antiproliferative and pro-invasive effects. Interestingly, loss of the receptors mimicked Sema3A effects, inhibiting BTSC proliferation and driving invasion. Furthermore, in vivo studies comparing tumor growth of knockdown and control infected BTSCs implanted into the flanks of nude mice confirmed the decrease in proliferation with receptor KD. CONCLUSIONS These findings demonstrate the importance of Sema3A signaling in GBM BTSC proliferation and invasion, and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Dominique M O Higgins
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA.
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA.
| | - Maisel Caliva
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Currently: Cancer Biology Program, University of Hawaii Cancer Center, University of Hawaii at Mānoa, Honolulu, HI, 96813, USA
| | - Mark Schroeder
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brett Carlson
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Pavan S Upadhyayula
- Department of Neurosurgery, Columbia University Medical Center, 710 W. 168th Street, New York, NY, 10032, USA
| | - Brian D Milligan
- Mayo Clinic: College of Medicine, Rochester, MN, 55905, USA
- Currently: Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Samuel H Cheshier
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, 84113, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine and the Ludwig Cancer Center, Stanford University Medical Center, Stanford, CA, 94305, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Fredric B Meyer
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - John R Henley
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
6
|
Screening and identification of potential prognostic biomarkers in bladder urothelial carcinoma: Evidence from bioinformatics analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Zhang X, Shao S, Li L. Characterization of Class-3 Semaphorin Receptors, Neuropilins and Plexins, as Therapeutic Targets in a Pan-Cancer Study. Cancers (Basel) 2020; 12:cancers12071816. [PMID: 32640719 PMCID: PMC7409005 DOI: 10.3390/cancers12071816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
- Correspondence:
| | - Shuai Shao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA;
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
8
|
Gamper C, Spenlé C, Boscá S, van der Heyden M, Erhardt M, Orend G, Bagnard D, Heinlein M. Functionalized Tobacco Mosaic Virus Coat Protein Monomers and Oligomers as Nanocarriers for Anti-Cancer Peptides. Cancers (Basel) 2019; 11:cancers11101609. [PMID: 31652529 PMCID: PMC6826726 DOI: 10.3390/cancers11101609] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 01/13/2023] Open
Abstract
Components with self-assembly properties derived from plant viruses provide the opportunity to design biological nanoscaffolds for the ordered display of agents of diverse nature and with complementing functions. With the aim of designing a functionalized nanoscaffold to target cancer, the coat protein (CP) of Tobacco mosaic virus (TMV) was tested as nanocarrier for an insoluble, highly hydrophobic peptide that targets the transmembrane domain of the Neuropilin-1 (NRP1) receptor in cancer cells. The resulting construct CPL-K (CP-linker-“Kill”) binds to NRP1 in cancer cells and disrupts NRP1 complex formation with PlexA1 as well as downstream Akt survival signaling. The application of CPL-K also inhibits angiogenesis and cell migration. CP was also fused to a peptide that targets the extracellular domain of NRP1 and this fusion protein (CPL-F, CP-Linker-“Find”) is shown to bind to cultured cancer cells and to inhibit NRP1-dependent angiogenesis as well. CPL-K and CPL-F maintain their anti-angiogenic properties upon co-assembly to oligomers/nanoparticles together with CPL. The observations show that the CP of TMV can be employed to generate a functionalized nanoparticle with biological activity. Remarkably, fusion to CPL allowed us to solubilize the highly insoluble transmembrane NRP1 peptide and to retain its anti-angiogenic effect.
Collapse
Affiliation(s)
- Coralie Gamper
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Caroline Spenlé
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Sonia Boscá
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Michael van der Heyden
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Mathieu Erhardt
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
| | - Gertraud Orend
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, The Tumor Microenvironment Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
| | - Dominique Bagnard
- INSERM 1119, BMNST Laboratory, Université de Strasbourg, 67000 Strasbourg, France.
- Labex Medalis, Université de Strasbourg, 67000 Strasbourg, France.
- Fédération de Médecine Translationnelle de Strasbourg, FMTS, Université de Strasbourg, 67000 Strasbourg, France.
- INSERM 1109, MN3T, The Microenvironmental Niche in Tumorigenesis and Targeted Therapy, Université de Strasbourg, 67000 Strasbourg, France.
| | - Manfred Heinlein
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), Université de Strasbourg, 67000 Strasbourg, France.
- University of Strasbourg Institute of Advanced Study (USIAS), 67000 Strasbourg, France.
| |
Collapse
|
9
|
Bollard J, Patte C, Radkova K, Massoma P, Chardon L, Valantin J, Gadot N, Goddard I, Vercherat C, Hervieu V, Gouysse G, Poncet G, Scoazec JY, Walter T, Roche C. Neuropilin-2 contributes to tumor progression in preclinical models of small intestinal neuroendocrine tumors. J Pathol 2019; 249:343-355. [PMID: 31257576 DOI: 10.1002/path.5321] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 05/21/2019] [Accepted: 06/21/2019] [Indexed: 12/19/2022]
Abstract
The identification of novel regulators of tumor progression is a key challenge to gain knowledge on the biology of small intestinal neuroendocrine tumors (SI-NETs). We recently identified the loss of the axon guidance protein semaphorin 3F as a protumoral event in SI-NETs. Interestingly the expression of its receptor neuropilin-2 (NRP-2) was still maintained. This study aimed at deciphering the potential role of NRP-2 as a contributor to SI-NET progression. The role of NRP-2 in SI-NET progression was addressed using an approach integrating human tissue and serum samples, cell lines and in vivo models. Data obtained from human SI-NET tissues showed that membranous NRP-2 expression is present in a majority of tumors, and is correlated with invasion, metastatic abilities, and neovascularization. In addition, NRP-2 soluble isoform was found elevated in serum samples from metastatic patients. In preclinical mouse models of NET progression, NRP-2 silencing led to a sustained antitumor effect, partly driven by the downregulation of VEGFR2. In contrast, its ectopic expression conferred a gain of aggressiveness, driven by the activation of various oncogenic signaling pathways. Lastly, NRP-2 inhibition led to a decrease of tumor cell viability, and sensitized to therapeutic agents. Overall, our results point out NRP-2 as a potential therapeutic target for SI-NETs, and will foster the development of innovative strategies targeting this receptor. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Julien Bollard
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Céline Patte
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Kristina Radkova
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Patrick Massoma
- INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Laurence Chardon
- Department of Biology and Hormonology, Lyon-Est Hospital, Bron, France
| | - Julie Valantin
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Nicolas Gadot
- Pathology-Research Platform, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France
| | - Isabelle Goddard
- Laboratoire des Modèles Tumoraux, Lyon Synergie Cancer, Lyon, France
| | - Cécile Vercherat
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| | - Valérie Hervieu
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Pathology, Lyon-Est Hospital, Bron, France
| | | | - Gilles Poncet
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Jean-Yves Scoazec
- Department of Pathology, Gustave-Roussy Cancer Campus, Villejuif, France
| | - Thomas Walter
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France.,Department of Medical Oncology, Edouard Herriot Hospital, Hospices Civils de Lyon, Lyon, France
| | - Colette Roche
- Neuroendocrine Tumors Group, Department of Translational Research and Innovation, Centre Léon Bérard, Lyon, France.,INSERM U1052/CNRS UMR5286/University of Lyon, Cancer Research Center of Lyon, Lyon, France
| |
Collapse
|
10
|
Boggio EM, Ehlert EM, Lupori L, Moloney EB, De Winter F, Vander Kooi CW, Baroncelli L, Mecollari V, Blits B, Fawcett JW, Verhaagen J, Pizzorusso T. Inhibition of Semaphorin3A Promotes Ocular Dominance Plasticity in the Adult Rat Visual Cortex. Mol Neurobiol 2019; 56:5987-5997. [PMID: 30706367 DOI: 10.1007/s12035-019-1499-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 01/17/2019] [Indexed: 10/27/2022]
Abstract
Perineuronal nets (PNNs) are condensed structures in the extracellular matrix that mainly surround GABA-ergic parvalbumin-positive interneurons in the adult brain. Previous studies revealed a parallel between PNN formation and the closure of the critical period. Moreover, ocular dominance plasticity is enhanced in response to PNN manipulations in adult animals. However, the mechanisms through which perineuronal nets modulate plasticity are still poorly understood. Recent work indicated that perineuronal nets may convey molecular signals by binding and storing proteins with important roles in cellular communication. Here we report that semaphorin3A (Sema3A), a chemorepulsive axon guidance cue known to bind to important perineuronal net components, is necessary to dampen ocular dominance plasticity in adult rats. First, we showed that the accumulation of Sema3A in PNNs in the visual cortex correlates with critical period closure, following the same time course of perineuronal nets maturation. Second, the accumulation of Sema3A in perineuronal nets was significantly reduced by rearing animals in the dark in the absence of any visual experience. Finally, we developed and characterized a tool to interfere with Sema3A signaling by means of AAV-mediated expression of receptor bodies, soluble proteins formed by the extracellular domain of the endogenous Sema3A receptor (neuropilin1) fused to a human IgG Fc fragment. By using this tool to antagonize Sema3A signaling in the adult rat visual cortex, we found that the specific inhibition of Sema3A promoted ocular dominance plasticity. Thus, Sema3A accumulates in perineuronal nets in an experience-dependent manner and its presence in the mature visual cortex inhibits plasticity.
Collapse
Affiliation(s)
- Elena Maria Boggio
- Institute of Neuroscience, National Research Council CNR, Via Moruzzi, 1, 56124, Pisa, Italy
| | - Erich M Ehlert
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Leonardo Lupori
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1, 56124, Pisa, Italy
| | - Elizabeth B Moloney
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Fred De Winter
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Craig W Vander Kooi
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, KY, 40536, USA
| | - Laura Baroncelli
- Institute of Neuroscience, National Research Council CNR, Via Moruzzi, 1, 56124, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128, Pisa, Italy
| | - Vasilis Mecollari
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
| | - Bas Blits
- UniQure, Meibergdreef 61, 1105 BA, Amsterdam, The Netherlands
| | - James W Fawcett
- John van Geest Centre for Brain Repair, Robinson Way, Cambridge, CB2 0PY, UK
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Science, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, De Boelelaan 20 1085, 1081 HV, Amsterdam, The Netherlands
| | - Tommaso Pizzorusso
- Institute of Neuroscience, National Research Council CNR, Via Moruzzi, 1, 56124, Pisa, Italy.
- BIO@SNS lab, Scuola Normale Superiore via Moruzzi, 1, 56124, Pisa, Italy.
- Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, Area San Salvi - Pad. 26, 50135, Florence, Italy.
| |
Collapse
|
11
|
Multifaceted Functional Role of Semaphorins in Glioblastoma. Int J Mol Sci 2019; 20:ijms20092144. [PMID: 31052281 PMCID: PMC6539029 DOI: 10.3390/ijms20092144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant tumor type affecting the adult central nervous system. Despite advances in therapy, the prognosis for patients with GBM remains poor, with a median survival of about 15 months. To date, few treatment options are available and recent trials based on the molecular targeting of some of the GBM hallmark pathways (e.g., angiogenesis) have not produced any significant improvement in overall survival. The urgent need to develop more efficacious targeted therapies has led to a better molecular characterization of GBM, revealing an emerging role of semaphorins in GBM progression. Semphorins are a wide group of membrane-bound and secreted proteins, originally identified as axon guidance cues, signaling through their receptors, neuropilins, and plexins. A number of semaphorin signals involved in the control of axonal growth and navigation during development have been found to furthermore participate in crosstalk with different dysfunctional GBM pathways, controlling tumor cell proliferation, migration, and invasion, as well as tumor angiogenesis or immune response. In this review, we summarize the regulatory activities mediated by semaphorins and their receptors on the oncogenic pathways implicated in GBM growth and invasive/metastatic progression.
Collapse
|
12
|
Bajanca F, Gouignard N, Colle C, Parsons M, Mayor R, Theveneau E. In vivo topology converts competition for cell-matrix adhesion into directional migration. Nat Commun 2019; 10:1518. [PMID: 30944331 PMCID: PMC6447549 DOI: 10.1038/s41467-019-09548-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 03/11/2019] [Indexed: 12/14/2022] Open
Abstract
When migrating in vivo, cells are exposed to numerous conflicting signals: chemokines, repellents, extracellular matrix, growth factors. The roles of several of these molecules have been studied individually in vitro or in vivo, but we have yet to understand how cells integrate them. To start addressing this question, we used the cephalic neural crest as a model system and looked at the roles of its best examples of positive and negative signals: stromal-cell derived factor 1 (Sdf1/Cxcl12) and class3-Semaphorins. Here we show that Sdf1 and Sema3A antagonistically control cell-matrix adhesion via opposite effects on Rac1 activity at the single cell level. Directional migration at the population level emerges as a result of global Semaphorin-dependent confinement and broad activation of adhesion by Sdf1 in the context of a biased Fibronectin distribution. These results indicate that uneven in vivo topology renders the need for precise distribution of secreted signals mostly dispensable.
Collapse
Affiliation(s)
- Fernanda Bajanca
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Nadège Gouignard
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France
| | - Charlotte Colle
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Maddy Parsons
- Kings College London, Randall Centre for Cell and Molecular Biophysics Room 3.22B, New Hunts House, Guys Campus, London, SE1 1UL, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 118 route de Narbonne, 31062, Toulouse, Cedex 09, France.
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
13
|
Bidirectional regulation of bone formation by exogenous and osteosarcoma-derived Sema3A. Sci Rep 2018; 8:6877. [PMID: 29720701 PMCID: PMC5932056 DOI: 10.1038/s41598-018-25290-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022] Open
Abstract
Semaphorin 3A (Sema3A), a secreted member of the Semaphorin family, increases osteoblast differentiation, stimulates bone formation and enhances fracture healing. Here, we report a previously unknown role of Sema3A in the regulation of ectopic bone formation and osteolysis related to osteosarcoma. Human recombinant (exogenous) Sema3A promoted the expression of osteoblastic phenotype in a panel of human osteosarcoma cell lines and inhibited the ability of these cells to migrate and enhance osteoclastogenesis in vitro. In vivo, administration of exogenous Sema3A in mice after paratibial inoculation of KHOS cells increased bone volume in non-inoculated and tumour-bearing legs. In contrast, Sema3A overexpression reduced the ability of KHOS cells to cause ectopic bone formation in mice and to increase bone nodule formation by engaging DKK1/β-catenin signalling. Thus, Sema3A is of potential therapeutic efficacy in osteosarcoma. However, inhibition of bone formation associated with continuous exposure to Sema3A may limit its long-term usefulness as therapeutic agent.
Collapse
|
14
|
Yu H, Pei T, Ren J, Ding Y, Wu A, Zhou Y. Semaphorin 3A enhances osteogenesis of MG63 cells through interaction with Schwann cells in vitro. Mol Med Rep 2018; 17:6084-6092. [PMID: 29484438 DOI: 10.3892/mmr.2018.8628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/26/2018] [Indexed: 11/06/2022] Open
Abstract
Bone remodeling is under the control of various signals and systems in the body, including the nervous system. Semaphorin (Sema) 3A is a chemorepellent protein which regulates bone mass. Schwann cells, having a pivotal role following nerve injury, interact with Sema3A under numerous circumstances. The present study established a co‑culture system of MG63 and Schwann cells to investigate the role of the interaction between Sema3A and Schwann cells in osteogenesis. The results from the alkaline phosphatase assay, calcium nodule staining and the analysis of the osteogenic gene expression revealed that Sema3A inhibits osteogenic differentiation of MG63 cells in single‑cell culture and promotes osteogenic differentiation of MG63 cells in co‑culture with Schwann cells, in a concentration‑dependent manner. These findings suggest that the presence of Schwann cells induces Sema3A‑associated osteogenic differentiation in bone cells, and also reveals the pivotal role of Sema3A as a regulator in the skeletal and nervous systems, thus contributing to a better understanding of the interaction between these systems.
Collapse
Affiliation(s)
- Hongqiang Yu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tingting Pei
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jingyi Ren
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ye Ding
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Anqian Wu
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanmin Zhou
- Department of Implantology, School of Stomatology, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
15
|
Angelopoulou E, Piperi C. Emerging role of plexins signaling in glioma progression and therapy. Cancer Lett 2018; 414:81-87. [DOI: 10.1016/j.canlet.2017.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 12/14/2022]
|
16
|
Srivastava RK, Bulte JWM, Walczak P, Janowski M. Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men. Glia 2017; 66:907-919. [PMID: 29266673 DOI: 10.1002/glia.23275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/13/2017] [Accepted: 11/16/2017] [Indexed: 01/09/2023]
Abstract
Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality.
Collapse
Affiliation(s)
- Rohit K Srivastava
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jeff W M Bulte
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Chemical & Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland.,Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Piotr Walczak
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Neurology and Neurosurgery, Faculty of Medical Sciences, University of Warmia and Mazury, Olsztyn, Poland
| | - Miroslaw Janowski
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of NeuroRepair, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
17
|
Kung F, Wang W, Tran TS, Townes-Anderson E. Sema3A Reduces Sprouting of Adult Rod Photoreceptors In Vitro. Invest Ophthalmol Vis Sci 2017; 58:4318–4331. [PMID: 28806446 PMCID: PMC5555408 DOI: 10.1167/iovs.16-21075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Purpose Rod photoreceptor terminals respond to retinal injury with retraction and sprouting. Since the guidance cue Semaphorin3A (Sema3A) is observed in the retina after injury, we asked whether Sema3A contributes to structural plasticity in rod photoreceptors. Methods We used Western blots and alkaline phosphatase (AP)-tagged neuropilin-1 (NPN-1) to detect the expression of Sema3A in an organotypic model of porcine retinal detachment. We then examined Sema3A binding to cultured salamander rod photoreceptors using AP-tagged Sema3A. For functional analysis, we used a microspritzer to apply a gradient of Sema3A-Fc to isolated salamander rod photoreceptors over 24 hours. Results Sema3A protein was biochemically detected in porcine retinal explants in the retina 7, 24, and 72 hours after detachment. In sections, NPN-1 receptor was bound to the inner and outer retina. For isolated rod photoreceptors, Sema3A localized to synaptic terminals and to neuritic processes after 1 week in vitro. In microspritzed rod photoreceptors, process initiation occurred away from high concentrations of Sema3A. Sema3A significantly decreased the number of processes formed by rod photoreceptors although the average length of processes was not affected. The cellular orientation of rod photoreceptors relative to the microspritzer also significantly changed over time; this effect was reduced with the Sema3A inhibitor, xanthofulvin. Conclusion Sema3A is expressed in the retina after detachment, binds to rod photoreceptors, affects cell orientation, and reduces photoreceptor process initiation in vitro. Our results suggest that Sema3A contributes to axonal retraction in retinal injury, whereas rod neuritic sprouting and regenerative synaptogenesis may require a reduction in semaphorin signaling.
Collapse
Affiliation(s)
- Frank Kung
- Joint Program in Biomedical Engineering, Rutgers University, Graduate School of Biomedical Sciences, New Jersey Institute of Technology, Newark, United States
| | - Weiwei Wang
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| | - Tracy S Tran
- Department of Biological Sciences, Rutgers University, Newark College of Arts and Sciences, Newark, New Jersey, United States
| | - Ellen Townes-Anderson
- Department of Pharmacology, Physiology, and Neuroscience, Rutgers University, New Jersey Medical School, Newark, New Jersey, United States
| |
Collapse
|
18
|
Kikuchi S, Chen L, Xiong K, Saito Y, Azuma N, Tang G, Sobel M, Wight TN, Kenagy RD. Smooth muscle cells of human veins show an increased response to injury at valve sites. J Vasc Surg 2017. [PMID: 28647196 DOI: 10.1016/j.jvs.2017.03.447] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Venous valves are essential but are prone to injury, thrombosis, and fibrosis. We compared the behavior and gene expression of smooth muscle cells (SMCs) in the valve sinus vs nonvalve sites to elucidate biologic differences associated with vein valves. METHODS Tissue explants of fresh human saphenous veins were prepared, and the migration of SMCs from explants of valve sinus vs nonvalve sinus areas was measured. Proliferation and death of SMCs were determined by staining for Ki67 and terminal deoxynucleotidyl transferase dUTP nick end labeling. Proliferation and migration of passaged valve vs nonvalve SMCs were determined by cell counts and using microchemotaxis chambers. Global gene expression in valve vs nonvalve intima-media was determined by RNA sequencing. RESULTS Valve SMCs demonstrated greater proliferation in tissue explants compared with nonvalve SMCs (19.3% ± 5.4% vs 6.8% ± 2.0% Ki67-positive nuclei at 4 days, respectively; mean ± standard error of the mean, five veins; P < .05). This was also true for migration (18.2 ± 2.7 vs 7.5 ± 3.0 migrated SMCs/explant at 6 days, respectively; 24 veins, 15 explants/vein; P < .0001). Cell death was not different (39.6% ± 16.1% vs 41.5% ± 16.0% terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells, respectively, at 4 days, five veins). Cultured valve SMCs also proliferated faster than nonvalve SMCs in response to platelet-derived growth factor subunit BB (2.9 ± 0.2-fold vs 2.1 ± 0.2-fold of control, respectively; P < .001; n = 5 pairs of cells). This was also true for migration (6.5 ± 1.2-fold vs 4.4 ± 0.8-fold of control, respectively; P < .001; n = 7 pairs of cells). Blockade of fibroblast growth factor 2 (FGF2) inhibited the increased responses of valve SMCs but had no effect on nonvalve SMCs. Exogenous FGF2 increased migration of valve but not of nonvalve SMCs. Unlike in the isolated, cultured cells, blockade of FGF2 in the tissue explants did not block migration of valve or nonvalve SMCs from the explants. Thirty-seven genes were differentially expressed by valve compared with nonvalve intimal-medial tissue (11 veins). Peptide-mediated inhibition of SEMA3A, one of the differentially expressed genes, increased the number of migrated SMCs of valve but not of nonvalve explants. CONCLUSIONS Valve compared with nonvalve SMCs have greater rates of migration and proliferation, which may in part explain the propensity for pathologic lesion formation in valves. Whereas FGF2 mediates these effects in cultured SMCs, the mediators of these stimulatory effects in the valve wall tissue remain unclear but may be among the differentially expressed genes discovered in this study. One of these genes, SEMA3A, mediates a valve-specific inhibitory effect on the injury response of valve SMCs.
Collapse
Affiliation(s)
- Shinsuke Kikuchi
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Lihua Chen
- Department of Surgery, University of Washington, Seattle, Wash
| | - Kevin Xiong
- Department of Surgery, University of Washington, Seattle, Wash
| | - Yukihiro Saito
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Nobuyoshi Azuma
- Department of Vascular Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Gale Tang
- Department of Surgery, University of Washington, Seattle, Wash; Center for Cardiovascular Biology, University of Washington, Seattle, Wash; Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, Wash
| | - Michael Sobel
- Department of Surgery, University of Washington, Seattle, Wash; Division of Vascular Surgery, VA Puget Sound Health Care System, University of Washington, Seattle, Wash
| | - Thomas N Wight
- Center for Cardiovascular Biology, University of Washington, Seattle, Wash; Matrix Biology Program, Benaroya Research Institute, Seattle, Wash
| | - Richard D Kenagy
- Department of Surgery, University of Washington, Seattle, Wash; Center for Cardiovascular Biology, University of Washington, Seattle, Wash.
| |
Collapse
|
19
|
Wu HB, Wang Z, Wang QS, Han YJ, Wang M, Zhou WL, Li HS. Use of Labelled tLyP-1 as a Novel Ligand Targeting the NRP Receptor to Image Glioma. PLoS One 2015; 10:e0137676. [PMID: 26398657 PMCID: PMC4580457 DOI: 10.1371/journal.pone.0137676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/19/2015] [Indexed: 12/17/2022] Open
Abstract
Background Neuropilin (NRP) receptors are overexpressed in glioma tumor tissue, and therefore may be a potential target for imaging markers. We investigated whether labelled tLyP-1, an NRP targeting peptide, could be used as the targeting ligand for developing reagents for imaging glioma tumors. Methods The tLyP-1 peptide (CGNKRTR) was labeled with 5-carboxyfluorescein (FAM) or 18F-fluoride. A control peptide (MAQKTSH) was also labeled with FAM. The in vitro binding between FAM-tLyP-1 and U87MG cells and in vivo biodistribution of FAM-tLyP-1 in a U87MG glioblastoma xenograft model (nude mouse) were determined. The in vivo biodistribution of 18F-tLyP-1 was also determined by microPET/CT. Results In vitro, FAM-tLyP-1 was strongly taken up by U87MG cells at very low concentrations (1μM). In vivo, FAM-tLyP-1 accumulated in glioma (U87MG) tumors, but uptake was minimal in the normal brain tissue 1 h after administration. The distribution of FAM-tLyP-1 in the tumor tissue was consistent with expression of NRP1. The tumor/brain fluorescence intensity ratio in mice treated with FAM-tLyP-1 was significantly higher than the control FAM-labeled peptide 1 h after administration (3.44 ± 0.83 vs. 1.32 ± 0.15; t = 5.547, P = 0.001). Uptake of FAM-tLyP-1 in glioma tumors could be blocked by administering an excess of non-conjugated tLyP-1 peptide. [Lys4] tLyP-1 was labeled with 18F to synthesis a PET (18F-tLyP-1). MicroPET/CT imaging showed the tumor was visualized clearly with a high tumor/brain radiolabel ratio at 60 min (2.69 ± 0.52) and 120 min (3.11±0.25). Conclusion Taken together, our results suggest that tLyP-1 could be developed as a novel fluorescent or radio labelled tracer for imaging glioma.
Collapse
Affiliation(s)
- Hu-bing Wu
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
- * E-mail:
| | - Zhen Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Quan-shi Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan-jian Han
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Meng Wang
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wen-lan Zhou
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hong-sheng Li
- NanFang PET Center, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Nasarre P, Gemmill RM, Drabkin HA. The emerging role of class-3 semaphorins and their neuropilin receptors in oncology. Onco Targets Ther 2014; 7:1663-87. [PMID: 25285016 PMCID: PMC4181631 DOI: 10.2147/ott.s37744] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The semaphorins, discovered over 20 years ago, are a large family of secreted or transmembrane and glycophosphatidylinositol -anchored proteins initially identified as axon guidance molecules crucial for the development of the nervous system. It has now been established that they also play important roles in organ development and function, especially involving the immune, respiratory, and cardiovascular systems, and in pathological disorders, including cancer. During tumor progression, semaphorins can have both pro- and anti-tumor functions, and this has created complexities in our understanding of these systems. Semaphorins may affect tumor growth and metastases by directly targeting tumor cells, as well as indirectly by interacting with and influencing cells from the micro-environment and vasculature. Mechanistically, semaphorins, through binding to their receptors, neuropilins and plexins, affect pathways involved in cell adhesion, migration, invasion, proliferation, and survival. Importantly, neuropilins also act as co-receptors for several growth factors and enhance their signaling activities, while class 3 semaphorins may interfere with this. In this review, we focus on the secreted class 3 semaphorins and their neuropilin co-receptors in cancer, including aspects of their signaling that may be clinically relevant.
Collapse
Affiliation(s)
- Patrick Nasarre
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Robert M Gemmill
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| | - Harry A Drabkin
- Division of Hematology-Oncology, The Hollings Cancer Center and Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
21
|
Rehman M, Tamagnone L. Semaphorins in cancer: biological mechanisms and therapeutic approaches. Semin Cell Dev Biol 2013; 24:179-89. [PMID: 23099250 DOI: 10.1016/j.semcdb.2012.10.005] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 01/07/2023]
Abstract
The hallmarks of cancer include multiple alterations in the physiological processes occurring in normal tissues, such as cell proliferation, apoptosis, and restricted cell migration. These aberrant behaviors are due to genetic and epigenetic changes that affect signaling pathways controlling cancer cells, as well as the surrounding "normal" cells in the tumor microenvironment. Semaphorins and their receptors (mainly plexins and neuropilins) are aberrantly expressed in human tumors, and multiple family members are emerging as pivotal signals deregulated in cancer. Notably, different semaphorins can promote or inhibit tumor progression, depending on the implicated receptor complexes and responsive cell type. The important role of semaphorin signals in the regulation of tumor angiogenesis, invasion and metastasis has initiated multiple experimental approaches aimed at targeting these pathways to inhibit cancer.
Collapse
Affiliation(s)
- Michael Rehman
- Institute for Cancer Research at Candiolo (IRC@C), University of Torino-Dept. of Oncology, 10060 Candiolo, Italy
| | | |
Collapse
|
22
|
Suzuki T, Do MKQ, Sato Y, Ojima K, Hara M, Mizunoya W, Nakamura M, Furuse M, Ikeuchi Y, Anderson JE, Tatsumi R. Comparative analysis of semaphorin 3A in soleus and EDL muscle satellite cells in vitro toward understanding its role in modulating myogenin expression. Int J Biochem Cell Biol 2012; 45:476-82. [PMID: 23085379 DOI: 10.1016/j.biocel.2012.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 01/17/2023]
Abstract
Resident myogenic stem cells, satellite cells, up-regulate a secreted multi-functional modulator, semaphorin 3A (Sema3A), exclusively at the early-differentiation phase in response to muscle-crush injury and treatment with hepatocyte growth factor (HGF) or basic fibroblast growth factor (FGF2). Here, we add evidence that the Sema3A expression and secretion induced by the growth factors is significantly higher in primary cultures from adult rat soleus than from the fast-twitch extensor digitorum longus (EDL) muscle. The higher Sema3A response, revealed by quantitative PCR and Western blotting of cell lysates and conditioned media, may account for the higher myogenin expression of soleus muscle satellite cells early in differentiation since addition of recombinant Sema3A stimulates myogenin expression in cultures. These experiments also showed that mRNA expression of plexin A2, which together with neuropilins, constitutes Sema3A composite-receptors, was higher in satellite cells from soleus than EDL with no difference in plexin A1 and A3 and neuropilin-1 and 2 levels. These comparative studies, therefore, highlight a possible Sema3A-plexin A2-myogenin signaling axis that may ensure promoting early differentiation by soleus muscle satellite cells.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Hakozaki, Fukuoka 8128581, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Goel HL, Mercurio AM. Enhancing integrin function by VEGF/neuropilin signaling: implications for tumor biology. Cell Adh Migr 2012; 6:554-60. [PMID: 23076131 DOI: 10.4161/cam.22419] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review advances the hypothesis that the ability of integrins to engage their extracellular matrix ligands and signal can be regulated in tumor cells by vascular endothelial growth factor (VEGF), a major angiogenic factor that also has direct effects on the function of tumor cells. More specifically, we will discuss how neuropilins (NRPs), a distinct class of VEGF receptors, enable the function of specific integrins that contribute to tumor initiation and progression.
Collapse
Affiliation(s)
- Hira Lal Goel
- Department of Cancer Biology University of Massachusetts Medical School Worcester, MA, USA
| | | |
Collapse
|
24
|
Sharma A, Verhaagen J, Harvey AR. Receptor complexes for each of the Class 3 Semaphorins. Front Cell Neurosci 2012; 6:28. [PMID: 22783168 PMCID: PMC3389612 DOI: 10.3389/fncel.2012.00028] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
The Class 3 Semaphorins (Sema3s) are a sub-family of proteins whose known biological roles are varied and growing. The mechanism of action of the Sema3s requires binding to transmembrane receptors that comprise heteromeric complexes of Neuropilins, Plexins and cell adhesion molecules (CAMs). However, knowledge of the receptor components of the Sema3s remains incomplete, and there may be receptor components which are as yet undiscovered. The receptor complexes of the Sema3s share receptor components with each other, and it is the specific combination of these components within a heteromeric complex that is thought to give rise to selective binding and signalling for individual Sema3s. This crosstalk makes it experimentally difficult to define a single holoreceptor for each Sema3. Furthermore, the receptor composition for a given Sema3 may differ between cell types, and change as a function of developmental state or pathological situation. Nevertheless, there are at least some known differences in the constitutive structure of the receptors for the Sema3s. For example in neural cells, Sema3a and Sema3f signal through different Neuropilins (Nrp1 and Nrp2 respectively) and L1cam only appears important for Sema3a signaling, while Nrcam forms a complex with Nrp2. Further complexity arises from crosstalk of other families of ligands (e.g., VEGF) with Sema3 receptor components. Thus the Sema3s, which have been shown as antagonists for each other, can also act as antagonists for other families of molecules. This review compiles experimental evidence describing the receptor components for the Sema3s, detailing the current state of knowledge of which components are important for signaling of each Sema3 before going on to consider possible future directions for the field.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, Crawley WA, Australia
| | | | | |
Collapse
|
25
|
Perälä N, Sariola H, Immonen T. More than nervous: the emerging roles of plexins. Differentiation 2011; 83:77-91. [PMID: 22099179 DOI: 10.1016/j.diff.2011.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/27/2011] [Accepted: 08/04/2011] [Indexed: 12/30/2022]
Abstract
Plexins are the receptors for semaphorins, a large family of axon guidance cues. Accordingly, the role of plexins in the development of the nervous system was the first to be acknowledged. However, the expression of plexins is not restricted to neuronal cells, and recent research has been increasingly focused on the roles of plexin-semaphorin signalling outside of the nervous system. During embryogenesis, plexins regulate the development of many organs, including the cardiovascular system, skeleton and kidney. They have also been shown to be involved in immune system functions and tumour progression. Analyses of the plexin signalling in different tissues and cell types have provided new insight to the versatility of plexin interactions with semaphorins and other cell-surface receptors. In this review we try to summarise the current understanding of the roles of plexins in non-neural development and immunity.
Collapse
Affiliation(s)
- Nina Perälä
- Institute of Biomedicine/Biochemistry and Developmental Biology, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
26
|
Moss ML, Powell G, Miller MA, Edwards L, Qi B, Sang QXA, De Strooper B, Tesseur I, Lichtenthaler SF, Taverna M, Zhong JL, Dingwall C, Ferdous T, Schlomann U, Zhou P, Griffith LG, Lauffenburger DA, Petrovich R, Bartsch JW. ADAM9 inhibition increases membrane activity of ADAM10 and controls α-secretase processing of amyloid precursor protein. J Biol Chem 2011; 286:40443-51. [PMID: 21956108 DOI: 10.1074/jbc.m111.280495] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein β levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.
Collapse
|
27
|
Semaphorin 5A and plexin-B3 regulate human glioma cell motility and morphology through Rac1 and the actin cytoskeleton. Oncogene 2011; 31:595-610. [PMID: 21706053 DOI: 10.1038/onc.2011.256] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Semaphorins are implicated in glioma progression, although little is known about the underlying mechanisms. We have reported plexin-B3 expression in human gliomas, which upon stimulation by Sema5A causes significant inhibition of cell migration and invasion. The concomitant inactivation of Rac1 is of mechanistic importance because forced expression of constitutively active Rac1 abolishes these inhibitory effects. Furthermore, Sema5A induces prominent cell collapse and ramification of processes reminiscent of astrocytic morphology, which temporally associate with extensive disassembly of actin stress fibers and disruption of focal adhesions, followed by accumulation of actin patches in protrusions. Mechanistically, Sema5A induces transient protein kinase C (PKC) phosphorylation of fascin-1, which can reduce its actin-binding/bundling activities and temporally parallels its translocation from cell body to extending processes. PKC inhibition or fascin-1 knockdown is sufficient to abrogate Sema5A-induced morphological differentiation, whereas the process is hastened by forced expression of fascin-1. Intriguingly, Sema5A induces re-expression of glial fibrillary acidic protein (GFAP), which when silenced restricts differentiation of glioma cells to bipolar instead of multipolar morphology. Therefore, we hypothesize complementary functions of fascin-1 and GFAP in the early and late phases of Sema5A-induced astrocytic differentiation of gliomas, respectively. In summary, Sema5A and plexin-B3 impede motility but promote differentiation of human gliomas. These effects are plausibly compromised in high-grade human astrocytomas in which Sema5A expression is markedly reduced, hence leading to infiltrative and anaplastic characteristics. This is evident by increased invasiveness of glioma cells when endogenous Sema5A is silenced. Therefore, Sema5A and plexin-B3 represent potential novel targets in counteracting glioma progression.
Collapse
|
28
|
Cariboni A, Davidson K, Rakic S, Maggi R, Parnavelas JG, Ruhrberg C. Defective gonadotropin-releasing hormone neuron migration in mice lacking SEMA3A signalling through NRP1 and NRP2: implications for the aetiology of hypogonadotropic hypogonadism. Hum Mol Genet 2010; 20:336-44. [PMID: 21059704 DOI: 10.1093/hmg/ddq468] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Kallmann syndrome (KS) is a genetic disease characterized by hypogonadotropic hypogonadism and impaired sense of smell. The genetic causes underlying this syndrome are still largely unknown, but are thought to be due to a developmental defect in the migration of gonadotropin-releasing hormone (GnRH) neurons. Understanding the causes of the disease is hampered by lack of appropriate mouse models. GnRH neurons are hypothalamic cells that centrally control reproduction in mammals by secreting the GnRH decapeptide into the portal blood vessels of the pituitary to stimulate the production of gonadotropins. During development, these cells are born in the nasal placode outside the brain and migrate in association with olfactory/vomeronasal axons to reach the forebrain and position themselves in the hypothalamus. By combining the analysis of genetically altered mice with in vitro models, we demonstrate here that a secreted guidance cue of the class 3 semaphorin family, SEMA3A, is essential for the development of the GnRH neuron system: loss of SEMA3A signalling alters the targeting of vomeronasal nerves and the migration of GnRH neurons into the brain, resulting in reduced gonadal size. We found that SEMA3A signals redundantly through both its classical receptors neuropilin (NRP) 1 and, unconventionally, NRP2, while the usual NRP2 ligand SEMA3F is dispensable for this process. Strikingly, mice lacking SEMA3A or semaphorin signalling through both NRP1 and NRP2 recapitulate the anatomical features of a single case of KS analysed so far, and may therefore be used as genetic models to elucidate the pathogenesis of KS.
Collapse
Affiliation(s)
- Anna Cariboni
- Department of Cell and Developmental Biology, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
29
|
Peptide-based interference of the transmembrane domain of neuropilin-1 inhibits glioma growth in vivo. Oncogene 2010; 29:2381-92. [PMID: 20140015 DOI: 10.1038/onc.2010.9] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Angiogenesis in glioblastoma is largely dependent on vascular endothelial growth factor (VEGF) signalling. Consistently, the VEGF coreceptor NRP1 promotes angiogenesis and tumour growth in gliomas. Here, we provide data showing that an innovative peptidic tool targeting the transmembrane domain of NRP1 efficiently blocks rat and human glioma growth in vivo. We show both in vivo and in vitro that the antitumour effect results from the anti-proliferative, anti-migratory and anti-angiogenic properties of the compound. The proposed NRP1 antagonizing peptide is therefore a promising novel class of anti-angiogenic drugs that might prolong glioma patient survival. Our results finally show for the first time that the transmembrane domain of important signalling receptors can be antagonized in vivo thereby providing a new avenue towards the development of atypical antagonists with strong therapeutic potential.
Collapse
|