1
|
Pratummanee K, Kerdkumthong K, Roytrakul S, Tantimetta P, Runsaeng P, Saeheng S, Obchoei S. Knockdown of cullin 3 inhibits progressive phenotypes and increases chemosensitivity in cholangiocarcinoma cells. Mol Med Rep 2024; 30:198. [PMID: 39239747 PMCID: PMC11406421 DOI: 10.3892/mmr.2024.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Cholangiocarcinoma (CCA) is an extremely aggressive malignancy arising from the epithelial cells lining the bile ducts. It presents a substantial global health issue, with the highest incidence rates, ranging from 40‑100 cases/100,000 individuals, found in Southeast Asia, where liver fluke infection is endemic. In Europe and America, incidence rates range from 0.4‑2 cases/100,000 individuals. Globally, mortality rates range from 0.2‑2 deaths/100,000 person‑years and are increasing in most countries. Chemotherapy is the primary treatment for advanced CCA due to limited options from late‑stage diagnosis, but its efficacy is hindered by drug‑resistant phenotypes. In a previous study, proteomics analysis of drug‑resistant CCA cell lines (KKU‑213A‑FR and KKU‑213A‑GR) and the parental KKU‑213A line identified cullin 3 (Cul3) as markedly overexpressed in drug‑resistant cells. Cul3, a scaffold protein within CUL3‑RING ubiquitin ligase complexes, is crucial for ubiquitination and proteasome degradation, yet its role in drug‑resistant CCA remains to be elucidated. The present study aimed to elucidate the role of Cul3 in drug‑resistant CCA cell lines. Reverse transcription‑quantitative PCR and western blot analyses confirmed significantly elevated Cul3 mRNA and protein levels in drug‑resistant cell lines compared with the parental control. Short interfering RNA‑mediated Cul3 knockdown sensitized cells to 5‑fluorouracil and gemcitabine and inhibited cell proliferation, colony formation, migration and invasion. In addition, Cul3 knockdown induced G0/G1 cell cycle arrest and suppressed key cell cycle regulatory proteins, cyclin D, cyclin‑dependent kinase (CDK)4 and CDK6. Bioinformatics analysis of CCA patient samples using The Cancer Genome Atlas data revealed Cul3 upregulation in CCA tissues compared with normal bile duct tissues. STRING analysis of upregulated proteins in drug‑resistant CCA cell lines identified a highly interactive Cul3 network, including COMM Domain Containing 3, Ariadne RBR E3 ubiquitin protein ligase 1, Egl nine homolog 1, Proteasome 26S Subunit Non‑ATPase 13, DExH‑box helicase 9 and small nuclear ribonucleoprotein polypeptide G, which showed a positive correlation with Cul3 in CCA tissues. Knocking down Cul3 significantly suppressed the mRNA expression of these genes, suggesting that Cul3 may act as an upstream regulator of them. Gene Ontology analysis revealed that the majority of these genes were categorized under binding function, metabolic process, cellular anatomical entity, protein‑containing complex and protein‑modifying enzyme. Taken together, these findings highlighted the biological and clinical significance of Cul3 in drug resistance and progression of CCA.
Collapse
Affiliation(s)
- Kandawasri Pratummanee
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Kankamol Kerdkumthong
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumtani 12120, Thailand
| | - Phonprapavee Tantimetta
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Phanthipha Runsaeng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Sompop Saeheng
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| | - Sumalee Obchoei
- Department of Biochemistry, Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90110, Thailand
| |
Collapse
|
2
|
Pantazi V, Miklós V, Smith P, Oláh-Németh O, Pankotai-Bodó G, Teja Dondapati D, Ayaydin F, D'Angiolella V, Pankotai T. Prognostic potential of CUL3 ligase with differential roles in luminal A and basal type breast cancer tumors. Sci Rep 2024; 14:14912. [PMID: 38942922 PMCID: PMC11213933 DOI: 10.1038/s41598-024-65692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024] Open
Abstract
Breast cancer is a prevalent and significant cause of mortality in women, and manifests as six molecular subtypes. Its further histologic classification into non-invasive ductal or lobular carcinoma (DCIS) and invasive carcinoma (ILC or IDC) underscores its heterogeneity. The ubiquitin-proteasome system plays a crucial role in breast cancer, with inhibitors targeting the 26S proteasome showing promise in clinical treatment. The Cullin-RING ubiquitin ligases, including CUL3, have direct links to breast cancer. This study focuses on CUL3 as a potential biomarker, leveraging high-throughput sequencing, gene expression profiling, experimental and data analysis tools. Through comprehensive analysis using databases like GEPIA2 and UALCAN, as well as TCGA datasets, CUL3's expression and its association with prognostic values were assessed. Additionally, the impact of CUL3 overexpression was explored in MCF-7 and MDA-MB-231 breast cancer cell lines, revealing distinct differences in molecular and phenotypic characteristics. We further profiled its expression and localization in breast cancer tissues identifying prominent differences between luminal A and TNBC tumors. Conclusively, CUL3 was found to be associated with cell cycle progression, and DNA damage response, exhibiting diverse roles depending on the tumor's molecular type. It exhibits a tendency to act as an oncogene in triple-negative tumors and as a tumor suppressor in luminal A types, suggesting a potential significance in breast cancer progression and therapeutic directions.
Collapse
Affiliation(s)
- Vasiliki Pantazi
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary
| | - Vanda Miklós
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
| | - Paul Smith
- The Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Orsolya Oláh-Németh
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Gabriella Pankotai-Bodó
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Divya Teja Dondapati
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | - Ferhan Ayaydin
- Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Functional Cell Biology and Immunology Advanced Core Facility, University of Szeged, Szeged, Hungary
| | | | - Tibor Pankotai
- Genome Integrity and DNA Repair Core Group, Hungarian Centre of Excellence for Molecular Medicine (HCEMM), Szeged, Hungary.
- Department of Pathology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary.
- Competence Centre of the Life Sciences Cluster of the Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, Szeged, Hungary.
| |
Collapse
|
3
|
Zhang L, Hua M, Wang Y, Sun A. Comprehensive analysis of the Cullin family of genes reveals that CUL7 and CUL9 are the significant prognostic biomarkers in colorectal cancer. Am J Transl Res 2024; 16:1907-1924. [PMID: 38883340 PMCID: PMC11170594 DOI: 10.62347/chib8915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
OBJECTIVES The purpose of this study is to decipher the role of Cullin family genes in colorectal cancer (CRC), drawing insights from comprehensive analyses encompassing multiple databases and experimental validations. METHODS UALCAN, GEPIA2, Human Protein Atlas (HPA), KM plotter, cBioPortal, TISIDB, DAVID, colon cancer cell lines culturing, gene knockdown, CCK8 assay, colony formation, and Reverse Transcription Quantitative Polymerase Chain Reaction (RT-qPCR) assays. RESULTS Initial scrutiny of The Cancer Genome Atlas (TCGA) CRC datasets through the UALCAN and GEPIA databases unveiled significant alterations in Cullin family gene expressions. Elevations in CUL1, CUL2, CUL4A, CUL4B, CUL5, CUL7, and CUL9 were observed in CRC tissues compared to normal counterparts, while CUL3 demonstrated down-regulation consistently across datasets. Further exploration revealed notable correlations between Cullin gene expressions and various clinical parameters of CRC patients, substantiating the potential diagnostic and prognostic utility of these genes. Protein expression analyses conducted via the HPA corroborated the transcriptomic findings, indicating high levels of Cullin proteins in CRC tissues. Prognostic assessments identified CUL7 and CUL9 as significant predictors of poor survival outcomes in CRC patients, emphasizing their clinical relevance. Genetic alterations within the Cullin family genes were elucidated through the cBioPortal database, shedding light on the mutation landscape and prevalence of missense mutations in CRC. Immune subtype and tumor immune microenvironment analyses underscored the intricate interplay between Cullin family genes and immune processes in CRC. Experimental validation in CRC cell lines demonstrated the functional significance of CUL7 and CUL9 in promoting CRC growth, further solidifying their roles as potential therapeutic targets. CONCLUSION Overall, these multifaceted analyses elucidated the intricate involvement of Cullin family genes in CRC pathogenesis and provided valuable insights for future diagnostic and therapeutic endeavors in CRC management.
Collapse
Affiliation(s)
- Linsen Zhang
- Department of Clinical Laboratory, Yantaishan Hospital Yantai 264000, Shandong, China
| | - Mingtao Hua
- Second Department of Oncology, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University Jinan 250031, Shandong, China
| | - Ying Wang
- Department of Hyperbaric Oxygen, Eneral Hospital of Western Theater of Chinese People's Liberation Army Chengdu 610000, Sichuan, China
| | - Aiqian Sun
- Department of Gastroenterology, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University Jinan 250218, Shandong, China
| |
Collapse
|
4
|
Odongo R, Demiroglu-Zergeroglu A, Çakır T. A network-based drug prioritization and combination analysis for the MEK5/ERK5 pathway in breast cancer. BioData Min 2024; 17:5. [PMID: 38378612 PMCID: PMC10880212 DOI: 10.1186/s13040-024-00357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/12/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Prioritizing candidate drugs based on genome-wide expression data is an emerging approach in systems pharmacology due to its holistic perspective for preclinical drug evaluation. In the current study, a network-based approach was proposed and applied to prioritize plant polyphenols and identify potential drug combinations in breast cancer. We focused on MEK5/ERK5 signalling pathway genes, a recently identified potential drug target in cancer with roles spanning major carcinogenesis processes. RESULTS By constructing and identifying perturbed protein-protein interaction networks for luminal A breast cancer, plant polyphenols and drugs from transcriptome data, we first demonstrated their systemic effects on the MEK5/ERK5 signalling pathway. Subsequently, we applied a pathway-specific network pharmacology pipeline to prioritize plant polyphenols and potential drug combinations for use in breast cancer. Our analysis prioritized genistein among plant polyphenols. Drug combination simulations predicted several FDA-approved drugs in breast cancer with well-established pharmacology as candidates for target network synergistic combination with genistein. This study also highlights the concept of target network enhancer drugs, with drugs previously not well characterised in breast cancer being prioritized for use in the MEK5/ERK5 pathway in breast cancer. CONCLUSION This study proposes a computational framework for drug prioritization and combination with the MEK5/ERK5 signaling pathway in breast cancer. The method is flexible and provides the scientific community with a robust method that can be applied to other complex diseases.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey.
| | - Asuman Demiroglu-Zergeroglu
- Department of Molecular Biology & Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Faculty of Engineering, Gebze Technical University, Gebze, Kocaeli, 41400, Turkey
| |
Collapse
|
5
|
The Next Frontier: Translational Development of Ubiquitination, SUMOylation, and NEDDylation in Cancer. Int J Mol Sci 2022; 23:ijms23073480. [PMID: 35408841 PMCID: PMC8999128 DOI: 10.3390/ijms23073480] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 01/01/2023] Open
Abstract
Post-translational modifications of proteins ensure optimized cellular processes, including proteostasis, regulated signaling, cell survival, and stress adaptation to maintain a balanced homeostatic state. Abnormal post-translational modifications are associated with cellular dysfunction and the occurrence of life-threatening diseases, such as cancer and neurodegenerative diseases. Therefore, some of the frequently seen protein modifications have been used as disease markers, while others are targeted for developing specific therapies. The ubiquitin and ubiquitin-like post-translational modifiers, namely, small ubiquitin-like modifier (SUMO) and neuronal precursor cell-expressed developmentally down-regulated protein 8 (NEDD8), share several features, such as protein structures, enzymatic cascades mediating the conjugation process, and targeted amino acid residues. Alterations in the regulatory mechanisms lead to aberrations in biological processes during tumorigenesis, including the regulation of tumor metabolism, immunological modulation of the tumor microenvironment, and cancer stem cell stemness, besides many more. Novel insights into ubiquitin and ubiquitin-like pathways involved in cancer biology reveal a potential interplay between ubiquitination, SUMOylation, and NEDDylation. This review outlines the current understandings of the regulatory mechanisms and assay capabilities of ubiquitination, SUMOylation, and NEDDylation. It will further highlight the role of ubiquitination, SUMOylation, and NEDDylation in tumorigenesis.
Collapse
|
6
|
Tang X, Xiao Q, Yu K. Breast Cancer Candidate Gene Detection Through Integration of Subcellular Localization Data With Protein–Protein Interaction Networks. IEEE Trans Nanobioscience 2020; 19:556-561. [DOI: 10.1109/tnb.2020.2990178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
7
|
Liu A, Zhang S, Shen Y, Lei R, Wang Y. Association of mRNA expression levels of Cullin family members with prognosis in breast cancer: An online database analysis. Medicine (Baltimore) 2019; 98:e16625. [PMID: 31374029 PMCID: PMC6709298 DOI: 10.1097/md.0000000000016625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cullin proteins couple with RING-finger proteins, adaptor proteins and substrate recognition receptors to form E3 ubiquitin ligases for recognizing numerous substrates and participating in a variety of cellular processes, especially in genome stability and tumorigenesis. However, the prognostic values of Cullins in breast cancer remain elusive.A "Kaplan-Meier plotter" (KM plotter) online survival analysis tool was used to evaluate the association of individual Cullin members' mRNA expression with overall survival (OS) in breast cancer patients.Our results revealed that elevated mRNA expression of CUL4A and PARC were significantly associated with poor OS for breast cancer patients. While high mRNA expression of CUL2, CUL4B, and CUL5 were correlated with better survival for breast cancers.The associated results suggested that some Cullin members could serve as new predictive prognostic indicators for breast cancer.
Collapse
Affiliation(s)
- Aiyu Liu
- Department of Anesthesiology, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Shizhen Zhang
- Institute of Translational Medicine, Zhejiang University School of Medicine
| | - Yanwen Shen
- Institute of Translational Medicine, Zhejiang University School of Medicine
| | - Rui Lei
- Department of Plastic Surgery, First Affiliated Hospital, Zhejiang University School of Medicine
| | - Yannan Wang
- Department of Scientific Research, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
A first-in-class inhibitor, MLN4924 (pevonedistat), induces cell-cycle arrest, senescence, and apoptosis in human renal cell carcinoma by suppressing UBE2M-dependent neddylation modification. Cancer Chemother Pharmacol 2018; 81:1083-1093. [PMID: 29667067 DOI: 10.1007/s00280-018-3582-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 03/26/2018] [Indexed: 12/28/2022]
Abstract
PURPOSE MLN4924 is a second-generation inhibitor that targets ubiquitin-proteasome system by inhibiting neddylation activation enzyme (NAE), and subsequently blocking the neddylation-dependent activation of Cullin-RING E3 ligases (CRLs), which leads to the accumulation of CRLs substrates and hence, suppressing diverse tumor development. In this study, we investigated the potential application of this first-in-class inhibitor MLN4924 in the treatment of human renal cell carcinoma both in vitro and in vivo. METHODS The impact of MLN4924 on renal cancer cells was determined by measuring viability (MTS), proliferation cell count test and clonogenic assays, cell cycle progression (flow cytometry with propidium iodide staining), apoptosis (flow cytometry with annexin V-FITC labeling) and DNA damage (immunofluorescent staining). The cell cycle regulatory molecules, apoptosis-related molecules, and cell stress-related proteins were examined by Western blotting. The influence of tumor cell migration was analyzed by wound healing assays. A well-established SCID xenograft mouse model was used to evaluate the effects of MLN4924 on tumor growth in vivo. RESULTS The data showed that MLN4924 induced a dose-dependent cytotoxicity, anti-proliferation, anti-migration, and apoptosis in human renal cancer cells; and caused cell cycle arrested at the G2 phase. In addition, the E2 conjugating enzymes of Neddylation UBE2M played a major role in the proliferation control of renal cancer cells. Finally, we confirmed MLN4924 inhibited tumor growth in a RCC xenograft mouse model with minimal general toxicity. CONCLUSION We concluded that MLN4924 induces apoptosis and cell cycle arrest. These findings implied that MLN4924 provides a novel strategy for the treatment of RCC.
Collapse
|
9
|
Bisdemethoxycurcumin exerts pro-apoptotic effects in human pancreatic adenocarcinoma cells through mitochondrial dysfunction and a GRP78-dependent pathway. Oncotarget 2018; 7:83641-83656. [PMID: 27845899 PMCID: PMC5347794 DOI: 10.18632/oncotarget.13272] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/14/2016] [Indexed: 12/27/2022] Open
Abstract
Pancreatic cancer is a highly aggressive malignancy, which is intrinsically resistant to current chemotherapies. Herein, we investigate whether bisdemethoxycurcumin (BDMC), a derivative of curcumin, potentiates gemcitabine in human pancreatic cancer cells. The result suggests that BDMC sensitizes gemcitabine by inducing mitochondrial dysfunctions and apoptosis in PANC-1 and MiaPaCa-2 pancreatic cancer cells. Utilizing two-dimensional gel electrophoresis and mass spectrometry, we identify 13 essential proteins with significantly altered expressions in response to gemcitabine alone or combined with BDMC. Protein-protein interaction network analysis pinpoints glucose-regulated protein 78 (GRP78) as the key hub activated by BDMC. We then reveal that BDMC upregulates GRP78 and facilitates apoptosis through eIF2α/CHOP pathway. Moreover, DJ-1 and prohibitin, two identified markers of chemoresistance, are increased by gemcitabine in PANC-1 cells. This could be meaningfully reversed by BDMC, suggesting that BDMC partially offsets the chemoresistance induced by gemcitabine. In summary, these findings show that BDMC promotes apoptosis through a GRP78-dependent pathway and mitochondrial dysfunctions, and potentiates the antitumor effect of gemcitabine in human pancreatic cancer cells.
Collapse
|
10
|
Zhang C, Liu J, Huang G, Zhao Y, Yue X, Wu H, Li J, Zhu J, Shen Z, Haffty BG, Hu W, Feng Z. Cullin3-KLHL25 ubiquitin ligase targets ACLY for degradation to inhibit lipid synthesis and tumor progression. Genes Dev 2017; 30:1956-70. [PMID: 27664236 PMCID: PMC5066239 DOI: 10.1101/gad.283283.116] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022]
Abstract
ATP-citrate lyase (ACLY), a key enzyme for lipid synthesis, is frequently overexpressed or activated in cancer to promote lipid synthesis and tumor progression. Zhang et al. show that Cullin3 (CUL3), a core protein of the CUL3–RING ubiquitin ligase complex, interacts with ACLY through its adaptor protein, KLHL25, to ubiquitinate and degrade ACLY in cells. Through negative regulation of ACLY, CUL3 inhibits lipid synthesis, cell proliferation, and tumor growth in lung cancer cells. Increased lipid synthesis is a key characteristic of many cancers that is critical for cancer progression. ATP-citrate lyase (ACLY), a key enzyme for lipid synthesis, is frequently overexpressed or activated in cancer to promote lipid synthesis and tumor progression. Cullin3 (CUL3), a core protein for the CUL3–RING ubiquitin ligase complex, has been reported to be a tumor suppressor and frequently down-regulated in lung cancer. Here, we found that CUL3 interacts with ACLY through its adaptor protein, KLHL25 (Kelch-like family member 25), to ubiquitinate and degrade ACLY in cells. Through negative regulation of ACLY, CUL3 inhibits lipid synthesis, cell proliferation, and xenograft tumor growth of lung cancer cells. Furthermore, ACLY inhibitor SB-204990 greatly abolishes the promoting effect of CUL3 down-regulation on lipid synthesis, cell proliferation, and tumor growth. Importantly, low CUL3 expression is associated with high ACLY expression and poor prognosis in human lung cancer. In summary, our results identify CUL3–KLHL25 ubiquitin ligase as a novel negative regulator for ACLY and lipid synthesis and demonstrate that decreased CUL3 expression is an important mechanism for increased ACLY expression and lipid synthesis in lung cancer. These results also reveal that negative regulation of ACLY and lipid synthesis is a novel and critical mechanism for CUL3 in tumor suppression.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Grace Huang
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York University, Tuxedo, New Jersey 10987, USA
| | - Yuhan Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Xuetian Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Hao Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Jun Li
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Junlan Zhu
- Nelson Institute of Environmental Medicine, New York University School of Medicine, New York University, Tuxedo, New Jersey 10987, USA
| | - Zhiyuan Shen
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, The State University of New Jersey, New Brunswick, New Jersey 08903, USA; Department of Pharmacology, Rutgers University, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
11
|
Zeng R, Tan G, Li W, Ma Y. Increased Expression of Cullin 3 in Nasopharyngeal Carcinoma and Knockdown Inhibits Proliferation and Invasion. Oncol Res 2017; 26:111-122. [PMID: 28429677 PMCID: PMC7844559 DOI: 10.3727/096504017x14924753593574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
This study aimed to investigate the clinical significance of cullin 3 expression in nasopharyngeal carcinoma (NPC), as well as to explore the regulatory mechanism of cullin 3 underlying the growth and metastasis of NPC cells. Our findings showed that the expression levels of cullin 3 were significantly increased in both NPC tissues and cell lines. A strong positive correlation was found between cullin 3 expression and the Ki-67-based proliferation index in NPC tissues. Moreover, cullin 3 overexpression was correlated with local relapse and distant metastasis in NPC patients. In vitro experiments showed that knockdown of cullin 3 caused a significant reduction in the proliferation of NPC cells, probably by inducing cell cycle arrest. In addition, downregulation of cullin 3 inhibited colony formation and the migratory and invasive capacities of NPC cells. The expression levels of PCNA and epithelial-to-mesenchymal transition (EMT)-related proteins were also meditated by cullin 3 in NPC cells. Based on these findings, we demonstrated that cullin 3 plays a promoting role in the malignant progression of NPC and suggest that the cullin 3-based ubiquitin proteasome pathway may be used as a promising therapeutic target for NPC.
Collapse
Affiliation(s)
- Ruifang Zeng
- Department of Otolaryngology/Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Guolin Tan
- Department of Otolaryngology/Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Wei Li
- Department of Otolaryngology/Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| | - Yanhong Ma
- Department of Otolaryngology/Head and Neck Surgery, Third Xiangya Hospital, Central South University, Changsha, Hunan, P.R. China
| |
Collapse
|
12
|
Prolactin/androgen-inducible carboxypeptidase-D increases with nitrotyrosine and Ki67 for breast cancer progression in vivo, and upregulates progression markers VEGF-C and Runx2 in vitro. Breast Cancer Res Treat 2017; 164:27-40. [PMID: 28364216 DOI: 10.1007/s10549-017-4223-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/24/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Carboxypeptidase-D (CPD) cleaves C-terminal arginine (Arg) to produce nitric oxide (NO). Upregulation of CPD and NO by 17β-estradiol, prolactin (PRL), and androgen increases survival of human breast cancer (BCa) cells in vitro. To demonstrate similar events in vivo, CPD, nitrotyrosine (NT, hallmark of NO action), androgen receptor (AR), prolactin receptor (PRLR), and phospho-Stat5a (for activated PRLR) levels were evaluated in benign and malignant human breast tissues, and correlated with cell proliferation (Ki67) and BCa progression (Cullin-3) biomarkers. METHODS Paraffin-embedded breast tissues were analyzed by immunohistochemistry (IHC). BCa progression markers in human MCF-7 and T47D BCa cell lines treated with NO donor SIN-1 or PRL, ±CPD inhibitors were analyzed by RT-qPCR and immunoblotting. RESULTS IHC showed progressive increases in CPD, NT, Ki67, and Cullin-3 from low levels in benign tissues to high levels in ductal carcinoma in situ, low-grade, high-grade, and triple-negative BCa. CPD and NT staining were closely associated, implicating CPD in NO production. Phospho-Stat5a increased significantly from benign to high-grade BCa and was mostly nuclear. AR and PRLR were abundant in benign breast and BCa, including triple-negative tumors. SIN-1 and PRL increased VEGF-C and Runx2, but not Cullin-3, in BCa cell lines. PRL induction of VEGF-C and Runx2 was inhibited partly by CPD inhibitors, implicating NO, produced by PRL-regulated CPD, in BCa progression. CONCLUSIONS The CPD-Arg-NO pathway contributes to BCa progression in vitro and in vivo. PRL/androgen activation of the pathway support combined AR and PRLR blockade as an additional therapy for BCa.
Collapse
|
13
|
Zhang Y, Fan H, Fang S, Wang L, Chen L, Jin Y, Jiang W, Lin Z, Shi Y, Zhan C, Wang Q. Mutations and expression of the NFE2L2/KEAP1/CUL3 pathway in Chinese patients with lung squamous cell carcinoma. J Thorac Dis 2016; 8:1639-44. [PMID: 27499952 DOI: 10.21037/jtd.2016.06.08] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
BACKGROUND Recent studies have reported an abnormally high alteration rate in the nuclear factor erythroid 2-like 2 (NFE2L2)/kelch-like ECH-associated protein 1 (KEAP1)/cullin 3 (CUL3) pathway. But the status of this pathway in Chinese patients with lung squamous cell carcinoma (SqCC) has not been thoroughly studied, and there are many uncertainties regarding the expression of pathway intermediates. METHODS cDNA sequencing and TaqMan qRT-PCR were carried out in paired cancer and adjacent normal samples obtained from 100 Chinese patients with lung SqCC. Immunohistochemical staining was performed in 50 other paraffin-embedded specimens. RESULTS We detected 47 mutations in 36 patients (36%), and 143 single nucleotide polymorphism (SNP) in 59 patients (59%), of which 41 mutations and 31 SNPs resulted in amino acid (AA) and possibly functional changes. By combining qRT-PCR and immunohistochemistry staining, we confirmed that the expression of NFE2L2 and KEAP1 were highly increased, while the expression of CUL3 was not significantly changed in lung SqCC samples from Chinese patients. CONCLUSIONS Considering the frequent mutations and abnormal expression, the NFE2L2/KEAP1/CUL3 pathway may play an important role in the therapy of Chinese patients with lung SqCC.
Collapse
Affiliation(s)
- Yongxing Zhang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Shuo Fang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lin Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulin Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Jiang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Roldan-Deamicis A, Alonso E, Brie B, Braico DA, Balogh GA. Maitake Pro4X has anti-cancer activity and prevents oncogenesis in BALBc mice. Cancer Med 2016; 5:2427-41. [PMID: 27401257 PMCID: PMC5055164 DOI: 10.1002/cam4.744] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 02/17/2016] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
The understanding of the molecular mechanisms of the immune tolerance induced by the tumoral microenvironment is fundamental to prevent cancer development or to treat cancer patients using immunotherapy. Actually, there are investigations about "addressed-drugs" against cancer cells without affecting normal cells. It could be ideal to find selective and specific compounds that only recognize and destroy tumor cells without damaging the host normal cells. For thousands of years, mushrooms have been used for medicinal purposes because of their curative properties. D-Fraction, an extract of Maitake (from the edible Grifola frondosa mushroom), rich in β-glucans, exert notable effects in the immune system. Until now, some published articles suggest that Maitake D-Fraction could have anti-tumoral activity, prevent oncogenesis and metastasis in some tumor types. However, there are no clear data about Maitake D-Fraction action on breast cancer prevention and its exact molecular mechanisms are not yet elucidated. The experiments were performed employing 25 female BALBc mice that were treated with and without Maitake D-Fraction Pro4X or Maitake Standard for 15 days by daily intraperitoneal injection. After treatment period, all mice were implanted with murine tumor cells LM3 to induce mammary tumorigenesis. Animals were checked weekly and killed after 46 days of LM3 transplant; percentage of cancer prevention, rate of tumor growing, and overall survival were determined. Under dissection, the internal organs were evaluated histologically and genetically by RT-PCR. We found that 5 mg/kg per day of Maitake D-Fraction Pro4X, administered dairy during 15 days to BALBc mice was able to block more than 60% breast cancer development. However, Maitake Standard prevents oncogenesis in 26% to respect control. In this work, we found that Maitake D-Fraction Pro4X, administered to BALBc mice, prevents breast carcinogenesis, block tumor invasiveness, reduce angiogenesis, and increase overall survival.
Collapse
Affiliation(s)
- Agustina Roldan-Deamicis
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias Medicas, Pontificia Universidad Católica Argentina - UCA - CONICET, Buenos Aires, Argentina
| | - Eliana Alonso
- Laboratorio de Hongos Comestibles y Medicinales, Centro Científico Tecnológico, CERZOS-CONICET, Camino La Carrindanga Km7, Bahía Blanca-8000, Buenos Aires, Argentina
| | - Belén Brie
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias Medicas, Pontificia Universidad Católica Argentina - UCA - CONICET, Buenos Aires, Argentina
| | - Diego Aguilera Braico
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias Medicas, Pontificia Universidad Católica Argentina - UCA - CONICET, Buenos Aires, Argentina
| | - Gabriela Andrea Balogh
- Instituto de Investigaciones Biomédicas, Facultad de Ciencias Medicas, Pontificia Universidad Católica Argentina - UCA - CONICET, Buenos Aires, Argentina.
| |
Collapse
|
15
|
Zhang Q, Yu S, Huang X, Tan Y, Zhu C, Wang YL, Wang H, Lin HY, Fu J, Wang H. New insights into the function of Cullin 3 in trophoblast invasion and migration. Reproduction 2015; 150:139-49. [PMID: 26021998 DOI: 10.1530/rep-15-0126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/28/2015] [Indexed: 12/27/2022]
Abstract
Cullin 3 (CUL3), a scaffold protein, assembles a large number of ubiquitin ligase complexes, similar to Skp1-Cullin 1-F-box protein complex. Several genetic models have shown that CUL3 is crucial for early embryonic development. Nevertheless, the role of CUL3 in human trophoblast function remains unclear. In this study, immunostaining revealed that CUL3 was strongly expressed in the villous cytotrophoblasts, the trophoblast column, and the invasive extravillous trophoblasts. Silencing CUL3 significantly inhibited the outgrowth of villous explant ex vivo and decreased invasion and migration of trophoblast HTR8/SVneo cells. Furthermore, CUL3 siRNA decreased pro-MMP9 activity and increased the levels of TIMP1 and 2. We also found that the level of CUL3 in the placental villi from pre-eclamptic patients was significantly lower as compared to that from their gestational age-matched controls. Moreover, in the lentiviral-mediated placenta-specific CUL3 knockdown mice, lack of CUL3 resulted in less invasive trophoblast cells in the maternal decidua. Taken together, these results suggest an essential role for CUL3 in the invasion and migration of trophoblast cells, and dysregulation of its expression may be associated with the onset of pre-eclampsia.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Song Yu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xing Huang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yi Tan
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Cheng Zhu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yan-Ling Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Haibin Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hai-Yan Lin
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Jiejun Fu
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Hongmei Wang
- State Key Laboratory of Reproductive BiologyInstitute of Zoology, Chinese Academy of Sciences, Beijing 100101, People's Republic of ChinaDepartment of ObstetricsBeijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, People's Republic of ChinaKey Laboratory of Longevity and Ageing-related DiseasesMinistry of Education, Guangxi Medical University, Nanning 530021, People's Republic of ChinaLaboratory Animal CenterChongqing Medical University, Chongqing 400016, People's Republic of ChinaSchool of Life SciencesUniversity of Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| |
Collapse
|
16
|
Abidi N, Xirodimas DP. Regulation of cancer-related pathways by protein NEDDylation and strategies for the use of NEDD8 inhibitors in the clinic. Endocr Relat Cancer 2015; 22:T55-70. [PMID: 25504797 DOI: 10.1530/erc-14-0315] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Post-translational modification of proteins with ubiquitin and ubiquitin-like molecules (UBLs) controls a vast if not every biological process in the cell. It is not surprising that deregulation in ubiquitin and UBL signalling has been implicated in the pathogenesis of many diseases and that these pathways are considered as major targets for therapeutic intervention. In this review, we summarise recent advances in our understanding of the role of the UBL neural precursor cell expressed developmentally downregulated-8 (NEDD8) in cancer-related processes and potential strategies for the use of NEDD8 inhibitors as chemotherapeutics.
Collapse
Affiliation(s)
- Naima Abidi
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| | - Dimitris P Xirodimas
- Centre de Recherche de Biochimie MacromoléculaireUMR5235, 1919 Route de Mende, Montpellier 34293, France
| |
Collapse
|
17
|
Zhou W, Wei W, Sun Y. Genetically engineered mouse models for functional studies of SKP1-CUL1-F-box-protein (SCF) E3 ubiquitin ligases. Cell Res 2013; 23:599-619. [PMID: 23528706 PMCID: PMC3641602 DOI: 10.1038/cr.2013.44] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The SCF (SKP1 (S-phase-kinase-associated protein 1), Cullin-1, F-box protein) E3 ubiquitin ligases, the founding member of Cullin-RING ligases (CRLs), are the largest family of E3 ubiquitin ligases in mammals. Each individual SCF E3 ligase consists of one adaptor protein SKP1, one scaffold protein cullin-1 (the first family member of the eight cullins), one F-box protein out of 69 family members, and one out of two RING (Really Interesting New Gene) family proteins RBX1/ROC1 or RBX2/ROC2/SAG/RNF7. Various combinations of these four components construct a large number of SCF E3s that promote the degradation of many key regulatory proteins in cell-context, temporally, and spatially dependent manners, thus controlling precisely numerous important cellular processes, including cell cycle progression, apoptosis, gene transcription, signal transduction, DNA replication, maintenance of genome integrity, and tumorigenesis. To understand how the SCF E3 ligases regulate these cellular processes and embryonic development under in vivo physiological conditions, a number of mouse models with transgenic (Tg) expression or targeted deletion of components of SCF have been established and characterized. In this review, we will provide a brief introduction to the ubiquitin-proteasome system (UPS) and the SCF E3 ubiquitin ligases, followed by a comprehensive overview on the existing Tg and knockout (KO) mouse models of the SCF E3s, and discuss the role of each component in mouse embryogenesis, cell proliferation, apoptosis, carcinogenesis, as well as other pathogenic processes associated with human diseases. We will end with a brief discussion on the future directions of this research area and the potential applications of the knowledge gained to more effective therapeutic interventions of human diseases.
Collapse
Affiliation(s)
- Weihua Zhou
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|