1
|
Daimon T, Bhattacharya A, Wang K, Haratake N, Nakashoji A, Ozawa H, Morimoto Y, Yamashita N, Kosaka T, Oya M, Kufe DW. MUC1-C is a target of salinomycin in inducing ferroptosis of cancer stem cells. Cell Death Discov 2024; 10:9. [PMID: 38182558 PMCID: PMC10770371 DOI: 10.1038/s41420-023-01772-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
The oncogenic MUC1-C transmembrane protein is a critical effector of the cancer stem cell (CSC) state. Addiction to MUC1-C for self-renewal in the progression of human cancers has emphasized the need for development of anti-MUC1-C agents. However, there are presently no approved small molecules for targeting MUC1-C-dependent CSCs. In screening for small molecules, we identified salinomycin (SAL), an inducer of ferroptosis, as a potent inhibitor of MUC1-C signaling. We demonstrate that SAL suppresses MUC1-C expression by disrupting a NF-κB/MUC1-C auto-inductive circuit that is necessary for ferroptosis resistance. Our results show that SAL-induced MUC1-C suppression downregulates a MUC1-C→MYC pathway that activates genes encoding (i) glutathione-disulfide reductase (GSR), and (ii) the LDL receptor related protein 8 (LRP8), which inhibit ferroptosis by generating GSH and regulating selenium levels, respectively. GSR and LRP8 contribute to the function of glutathione peroxidase 4 (GPX4), an essential negative regulator of ferroptotic cell death. We demonstrate that targeting MUC1-C genetically or with the GO-203 peptide inhibitor suppresses GPX4 expression and GPX activity in association with the induction of ferroptosis. Studies of CSCs enriched by serial passage as tumorspheres further demonstrate that the effects of SAL are mediated by downregulation of MUC1-C and thereby overcoming resistance to ferroptosis. As confirmation of these results, rescue of MUC1-C downregulation with the MUC1-C cytoplasmic domain (i) reversed the suppression of GSR, LRP8 and GPX4 expression, and (ii) attenuated the induction of ferroptosis. These findings identify SAL as a unique small molecule inhibitor of MUC1-C signaling and demonstrate that MUC1-C is an important effector of resistance to ferroptosis.
Collapse
Affiliation(s)
- Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Keyi Wang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayako Nakashoji
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Hiroki Ozawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yoshihiro Morimoto
- Department of Gastroenterological Surgery, Kinan Hospital, Wakayama, Japan
| | - Nami Yamashita
- Breast Surgical Oncology, Breast Oncology Center, The Cancer Institute Hospital of the JFCR, Tokyo, Japan
| | - Takeo Kosaka
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Mototsugu Oya
- Department of Urology, Keio University School of Medicine, Tokyo, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Jin W, Zhang M, Dong C, Huang L, Luo Q. The multifaceted role of MUC1 in tumor therapy resistance. Clin Exp Med 2023; 23:1441-1474. [PMID: 36564679 DOI: 10.1007/s10238-022-00978-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Tumor therapeutic resistances are frequently linked to the recurrence and poor prognosis of cancers and have been a key bottleneck in clinical tumor treatment. Mucin1 (MUC1), a heterodimeric transmembrane glycoprotein, exhibits abnormally overexpression in a variety of human tumors and has been confirmed to be related to the formation of therapeutic resistance. In this review, the multifaceted roles of MUC1 in tumor therapy resistance are summarized from aspects of pan-cancer principles shared among therapies and individual mechanisms dependent on different therapies. Concretely, the common mechanisms of therapy resistance across cancers include interfering with gene expression, promoting genome instability, modifying tumor microenvironment, enhancing cancer heterogeneity and stemness, and activating evasion and metastasis. Moreover, the individual mechanisms of therapy resistance in chemotherapy, radiotherapy, and biotherapy are introduced. Last but not least, MUC1-involved therapy resistance in different types of cancers and MUC1-related clinical trials are summarized.
Collapse
Affiliation(s)
- Weiqiu Jin
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mengwei Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Changzi Dong
- Department of Bioengineering, School of Engineering and Science, University of Pennsylvania, Philadelphia, 19104, USA
| | - Lei Huang
- Department of Histoembryology, Genetics and Developmental Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Innovative Research Team of High-Level Local Universities in Shanghai, Shanghai, China.
| | - Qingquan Luo
- Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200025, China.
| |
Collapse
|
3
|
Morimoto Y, Yamashita N, Hirose H, Fushimi A, Haratake N, Daimon T, Bhattacharya A, Ahmad R, Suzuki Y, Takahashi H, Kufe DW. MUC1-C is necessary for SHP2 activation and BRAF inhibitor resistance in BRAF(V600E) mutant colorectal cancer. Cancer Lett 2023; 559:216116. [PMID: 36878307 PMCID: PMC10408991 DOI: 10.1016/j.canlet.2023.216116] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/19/2023] [Accepted: 03/02/2023] [Indexed: 03/07/2023]
Abstract
Colorectal cancers (CRCs) harboring the BRAF(V600E) mutation are associated with aggressive disease and resistance to BRAF inhibitors by feedback activation of the receptor tyrosine kinase (RTK)→RAS→MAPK pathway. The oncogenic MUC1-C protein promotes progression of colitis to CRC; whereas there is no known involvement of MUC1-C in BRAF(V600E) CRCs. The present work demonstrates that MUC1 expression is significantly upregulated in BRAF(V600E) vs wild-type CRCs. We show that BRAF(V600E) CRC cells are dependent on MUC1-C for proliferation and BRAF inhibitor (BRAFi) resistance. Mechanistically, MUC1-C integrates induction of MYC in driving cell cycle progression with activation of the SHP2 phosphotyrosine phosphatase, which enhances RTK-mediated RAS→ERK signaling. We demonstrate that targeting MUC1-C genetically and pharmacologically suppresses (i) activation of MYC, (ii) induction of the NOTCH1 stemness factor, and (iii) the capacity for self-renewal. We also show that MUC1-C associates with SHP2 and is required for SHP2 activation in driving BRAFi-induced feedback of ERK signaling. In this way, targeting MUC1-C in BRAFi-resistant BRAF(V600E) CRC tumors inhibits growth and sensitizes to BRAF inhibition. These findings demonstrate that MUC1-C is a target for the treatment of BRAF(V600E) CRCs and for reversing their resistance to BRAF inhibitors by suppressing the feedback MAPK pathway.
Collapse
Affiliation(s)
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Haruka Hirose
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Naoki Haratake
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tatsuaki Daimon
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | - Rehan Ahmad
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Yozo Suzuki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Hidekazu Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Yamashita N, Kufe D. Addiction of Cancer Stem Cells to MUC1-C in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2022; 23:8219. [PMID: 35897789 PMCID: PMC9331006 DOI: 10.3390/ijms23158219] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive malignancy with limited treatment options. TNBC progression is associated with expansion of cancer stem cells (CSCs). Few insights are available regarding druggable targets that drive the TNBC CSC state. This review summarizes the literature on TNBC CSCs and the compelling evidence that they are addicted to the MUC1-C transmembrane protein. In normal epithelia, MUC1-C is activated by loss of homeostasis and induces reversible wound-healing responses of inflammation and repair. However, in settings of chronic inflammation, MUC1-C promotes carcinogenesis. MUC1-C induces EMT, epigenetic reprogramming and chromatin remodeling in TNBC CSCs, which are dependent on MUC1-C for self-renewal and tumorigenicity. MUC1-C-induced lineage plasticity in TNBC CSCs confers DNA damage resistance and immune evasion by chronic activation of inflammatory pathways and global changes in chromatin architecture. Of therapeutic significance, an antibody generated against the MUC1-C extracellular domain has been advanced in a clinical trial of anti-MUC1-C CAR T cells and in IND-enabling studies for development as an antibody-drug conjugate (ADC). Agents targeting the MUC1-C cytoplasmic domain have also entered the clinic and are undergoing further development as candidates for advancing TNBC treatment. Eliminating TNBC CSCs will be necessary for curing this recalcitrant cancer and MUC1-C represents a promising druggable target for achieving that goal.
Collapse
Affiliation(s)
- Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
5
|
Hosseinzadeh A, Merikhian P, Naseri N, Eisavand MR, Farahmand L. MUC1 is a potential target to overcome trastuzumab resistance in breast cancer therapy. Cancer Cell Int 2022; 22:110. [PMID: 35248049 PMCID: PMC8897942 DOI: 10.1186/s12935-022-02523-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 02/12/2022] [Indexed: 02/07/2023] Open
Abstract
Although resistance is its major obstacle in cancer therapy, trastuzumab is the most successful agent in treating epidermal growth factor receptor 2 positive (HER2 +) breast cancer (BC). Some patients show resistance to trastuzumab, and scientists want to circumvent this problem. This review elaborately discusses possible resistance mechanisms to trastuzumab and introduces mucin 1 (MUC1) as a potential target efficient for overcoming such resistance. MUC1 belongs to the mucin family, playing the oncogenic/mitogenic roles in cancer cells and interacting with several other oncogenic receptors and pathways, such as HER2, β-catenin, NF-κB, and estrogen receptor (ERα). Besides, it has been established that MUC1- Cytoplasmic Domain (MUC1-CD) accelerates the development of resistance to trastuzumab and that silencing MUC1-C proto-oncogene is associated with increased sensitivity of HER2+ cells to trastuzumab-induced growth inhibitors. We mention why targeting MUC1 can be useful in overcoming trastuzumab resistance in cancer therapy.
Collapse
|
6
|
Kufe DW. MUC1-C in chronic inflammation and carcinogenesis; emergence as a target for cancer treatment. Carcinogenesis 2021; 41:1173-1183. [PMID: 32710608 DOI: 10.1093/carcin/bgaa082] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/14/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic inflammation is a highly prevalent consequence of changes in environmental and lifestyle factors that contribute to the development of cancer. The basis for this critical association has largely remained unclear. The MUC1 gene evolved in mammals to protect epithelia from the external environment. The MUC1-C subunit promotes responses found in wound healing and cancer. MUC1-C induces EMT, epigenetic reprogramming, dedifferentiation and pluripotency factor expression, which when prolonged in chronic inflammation promote cancer progression. As discussed in this review, MUC1-C also drives drug resistance and immune evasion, and is an important target for cancer therapeutics now under development.
Collapse
Affiliation(s)
- Donald W Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Abstract
Cancer is the second leading cause of death worldwide, and the search for specialised therapy options has been a challenge for decades. The emergence of active targeted therapies provides the opportunity to treat cancerous tissues without harming healthy ones due to peculiar physiological changes. Herein, peptides and peptide analogs have been gaining a lot of attention over the last decade, especially for the on-site delivery of therapeutics to target tissues in order to achieve efficient and reliable cancer treatment. Combining peptides with highly efficient drug delivery platforms could potentially eliminate off-target adverse effects encountered during active targeting of conventional chemotherapeutics. Small size, ease of production and characterisation, low immunogenicity and satisfactory binding affinity of peptides offer some advantages over other complex targeting moiety, no wonder the market of peptide-based drugs continues to expand expeditiously. It is estimated that the global peptide drug market will be worth around USD 48.04 billion by 2025, with a compound annual growth rate of 9.4%. In this review, the current state of art of peptide-based therapeutics with special interest on tumour targeting peptides has been discussed. Moreover, various active targeting strategies such as the use functionalised peptides or peptide analogs are also elaborated.
Collapse
Affiliation(s)
- Selin Seda Timur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - R Neslihan Gürsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
8
|
Relationship between neuropilin-1 expression and prognosis, according to gastric cancer histology. J Mol Histol 2020; 51:199-208. [PMID: 32242307 DOI: 10.1007/s10735-020-09870-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/23/2020] [Indexed: 02/08/2023]
Abstract
Neuropilin-1 (NRP-1) is known to be related to various types of cancer and is considered a novel tumor marker or therapeutic target. The aim of this study was to identify the clinical implications of NRP-1 expression in terms of prognosis in patients with gastric cancer. A total of 265 patients who underwent radical gastrectomy for the treatment of gastric cancer from 2008 to 2011 were included in this retrospective study. NRP-1 expression of tumors was determined by immunohistochemistry. The patients' clinicopathological characteristics, operative details, and long-term outcomes were retrospectively analyzed. A total of 181 (68.3%) patients demonstrated expression of NRP-1. No survival difference was observed according to NRP-1 expression in any patient. The patients were divided into the gland formation (GF) and the no gland formation (nGF) types, according to histology. NRP-1 expression rates were 65.6% (84/128) and 70.8% (97/137), respectively. NRP-1 expression was not an independent prognostic factor in the GF group, although patients who expressed NRP-1 had better survival outcomes. In contrast, patients who expressed NRP-1 in the nGF group had worse 5-year survival rates (p = 0.027), and NRP-1 was an independent prognostic factor in a multivariate analysis (hazard ratio, 1.923; 95% confidence interval, 1.041-3.551). NRP-1 expression in patients with nGF type gastric cancer is predictive of a poor prognosis.
Collapse
|
9
|
Reynolds IS, Fichtner M, McNamara DA, Kay EW, Prehn JHM, Burke JP. Mucin glycoproteins block apoptosis; promote invasion, proliferation, and migration; and cause chemoresistance through diverse pathways in epithelial cancers. Cancer Metastasis Rev 2020; 38:237-257. [PMID: 30680581 DOI: 10.1007/s10555-019-09781-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Overexpression of mucin glycoproteins has been demonstrated in many epithelial-derived cancers. The significance of this overexpression remains uncertain. The aim of this paper was to define the association of mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers by performing a systematic review of all published data. A systematic review of PubMed, Embase, and the Cochrane Central Register of Controlled Trials was performed to identify all papers that evaluated the association between mucin glycoproteins with apoptosis, cell growth, invasion, migration, adhesion, and clonogenicity in vitro as well as tumor growth, tumorigenicity, and metastasis in vivo in epithelial-derived cancers. PRISMA guidelines were adhered to. Results of individual studies were extracted and pooled together based on the organ in which the cancer was derived from. The initial search revealed 2031 papers, of which 90 were deemed eligible for inclusion in the study. The studies included details on MUC1, MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16. The majority of studies evaluated MUC1. MUC1 overexpression was consistently associated with resistance to apoptosis and resistance to chemotherapy. There was also evidence that overexpression of MUC2, MUC4, MUC5AC, MUC5B, MUC13, and MUC16 conferred resistance to apoptosis in epithelial-derived cancers. The overexpression of mucin glycoproteins is associated with resistance to apoptosis in numerous epithelial cancers. They cause resistance through diverse signaling pathways. Targeting the expression of mucin glycoproteins represents a potential therapeutic target in the treatment of epithelial-derived cancers.
Collapse
Affiliation(s)
- Ian S Reynolds
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Michael Fichtner
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Deborah A McNamara
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland
- Department of Surgery, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Elaine W Kay
- Department of Pathology, Beaumont Hospital, Dublin 9, Ireland
- Department of Pathology, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2, Ireland
| | - John P Burke
- Department of Colorectal Surgery, Beaumont Hospital, Dublin 9, Ireland.
| |
Collapse
|
10
|
Lee PC, Chen ST, Kuo TC, Lin TC, Lin MC, Huang J, Hung JS, Hsu CL, Juan HF, Lee PH, Huang MC. C1GALT1 is associated with poor survival and promotes soluble Ephrin A1-mediated cell migration through activation of EPHA2 in gastric cancer. Oncogene 2020; 39:2724-2740. [PMID: 32005975 PMCID: PMC7098884 DOI: 10.1038/s41388-020-1178-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 11/09/2022]
Abstract
C1GALT1 controls the crucial step of GalNAc-type O-glycosylation and is associated with both physiologic and pathologic conditions, including cancers. EPH receptors comprise the largest family of receptor tyrosine kinases (RTKs) and modulate a diverse range of developmental processes and human diseases. However, the role of C1GALT1 in the signaling of EPH receptors remains largely overlooked. Here, we showed that C1GALT1 high expression in gastric adenocarcinomas correlated with adverse clinicopathologic features and is an independent prognostic factor for poor overall survival. Silencing or loss of C1GALT1 inhibited cell viability, migration, invasion, tumor growth and metastasis, as well as increased apoptosis and cytotoxicity of 5-fluorouracil in AGS and MKN45 cells. Phospho-RTK array and western blot analysis showed that C1GALT1 depletion suppressed tyrosine phosphorylation of EPHA2 induced by soluble Ephrin A1-Fc. O-glycans on EPHA2 were modified by C1GALT1 and both S277A and T429A mutants, which are O-glycosites on EPHA2, dramatically enhanced phosphorylation of Y588, suggesting that not only overall O-glycan structures but also site-specific O-glycosylation can regulate EPHA2 activity. Furthermore, depletion of C1GALT1 decreased Ephrin A1-Fc induced migration and reduced Ephrin A1 binding to cell surfaces. The effects of C1GALT1 knockdown or knockout on cell invasiveness in vitro and in vivo were phenocopied by EPHA2 knockdown in gastric cancer cells. These results suggest that C1GALT1 promotes phosphorylation of EPHA2 and enhances soluble Ephrin A1-mediated migration primarily by modifying EPHA2 O-glycosylation. Our study highlights the importance of GalNAc-type O-glycosylation in EPH receptor-regulated diseases and identifies C1GALT1 as a potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Po-Chu Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Syue-Ting Chen
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Chun Kuo
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Traumatology, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chi Lin
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Mei-Chun Lin
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - John Huang
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Ji-Shiang Hung
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Lang Hsu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Huang Lee
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.,Department of Surgery, E-DA Hospital, Kaohsiung City, Taiwan
| | - Min-Chuan Huang
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
11
|
Syrkina MS, Rubtsov MA. MUC1 in Cancer Immunotherapy - New Hope or Phantom Menace? BIOCHEMISTRY (MOSCOW) 2019; 84:773-781. [PMID: 31509728 DOI: 10.1134/s0006297919070083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Understanding of the functioning of MUC1 (human mucin) has advanced significantly over 40 years of its investigation. The anti-adhesive properties of the extracellular domain, which were the main focus of early studies initially explaining overexpression of MUC1 in progressing oncological diseases, were gradually put on the back burner. Researchers became more interested in its regulatory and signaling functions in cells rather in its anti-adhesive properties. The found the ability of MUC1 for signal transduction, and its ability to participate in cell metabolism opened new possibilities for improved control over cancer cells in addition to just attracting antigens of the immune system to a target. Nevertheless, there are issues in the functioning of MUC1 that raise doubts about its effectiveness in cancer immunotherapy.
Collapse
Affiliation(s)
- M S Syrkina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119234, Russia. .,Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia
| | - M A Rubtsov
- Lomonosov Moscow State University, Department of Biology, Moscow, 119234, Russia. .,Lomonosov Moscow State University, Laboratoire Franco-Russe de Recherches en Oncologie, Moscow, 119234, Russia.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia
| |
Collapse
|
12
|
Yamamoto M, Jin C, Hata T, Yasumizu Y, Zhang Y, Hong D, Maeda T, Miyo M, Hiraki M, Suzuki Y, Hinohara K, Rajabi H, Kufe D. MUC1-C Integrates Chromatin Remodeling and PARP1 Activity in the DNA Damage Response of Triple-Negative Breast Cancer Cells. Cancer Res 2019; 79:2031-2041. [PMID: 30824588 DOI: 10.1158/0008-5472.can-18-3259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/15/2019] [Accepted: 02/26/2019] [Indexed: 11/16/2022]
Abstract
The oncogenic MUC1-C protein is overexpressed in triple-negative breast cancer (TNBC) cells and contributes to their epigenetic reprogramming and chemoresistance. Here we show that targeting MUC1-C genetically or pharmacologically with the GO-203 inhibitor, which blocks MUC1-C nuclear localization, induced DNA double-strand breaks and potentiated cisplatin (CDDP)-induced DNA damage and death. MUC1-C regulated nuclear localization of the polycomb group proteins BMI1 and EZH2, which formed complexes with PARP1 during the DNA damage response. Targeting MUC1-C downregulated BMI1-induced H2A ubiquitylation, EZH2-driven H3K27 trimethylation, and activation of PARP1. As a result, treatment with GO-203 synergistically sensitized both mutant and wild-type BRCA1 TNBC cells to the PARP inhibitor olaparib. These findings uncover a role for MUC1-C in the regulation of PARP1 and identify a therapeutic strategy for enhancing the effectiveness of PARP inhibitors against TNBC. SIGNIFICANCE: These findings demonstrate that targeting MUC1-C disrupts epigenetics of the PARP1 complex, inhibits PARP1 activity, and is synergistic with olaparib in TNBC cells.
Collapse
Affiliation(s)
- Masaaki Yamamoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tsuyoshi Hata
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yan Zhang
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Deli Hong
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takahiro Maeda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masaaki Miyo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yozo Suzuki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kunihiko Hinohara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
13
|
Avci FG, Akbulut BS, Ozkirimli E. Membrane Active Peptides and Their Biophysical Characterization. Biomolecules 2018; 8:biom8030077. [PMID: 30135402 PMCID: PMC6164437 DOI: 10.3390/biom8030077] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/13/2018] [Indexed: 12/12/2022] Open
Abstract
In the last 20 years, an increasing number of studies have been reported on membrane active peptides. These peptides exert their biological activity by interacting with the cell membrane, either to disrupt it and lead to cell lysis or to translocate through it to deliver cargos into the cell and reach their target. Membrane active peptides are attractive alternatives to currently used pharmaceuticals and the number of antimicrobial peptides (AMPs) and peptides designed for drug and gene delivery in the drug pipeline is increasing. Here, we focus on two most prominent classes of membrane active peptides; AMPs and cell-penetrating peptides (CPPs). Antimicrobial peptides are a group of membrane active peptides that disrupt the membrane integrity or inhibit the cellular functions of bacteria, virus, and fungi. Cell penetrating peptides are another group of membrane active peptides that mainly function as cargo-carriers even though they may also show antimicrobial activity. Biophysical techniques shed light on peptide–membrane interactions at higher resolution due to the advances in optics, image processing, and computational resources. Structural investigation of membrane active peptides in the presence of the membrane provides important clues on the effect of the membrane environment on peptide conformations. Live imaging techniques allow examination of peptide action at a single cell or single molecule level. In addition to these experimental biophysical techniques, molecular dynamics simulations provide clues on the peptide–lipid interactions and dynamics of the cell entry process at atomic detail. In this review, we summarize the recent advances in experimental and computational investigation of membrane active peptides with particular emphasis on two amphipathic membrane active peptides, the AMP melittin and the CPP pVEC.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Bioengineering Department, Marmara University, Kadikoy, 34722 Istanbul, Turkey.
| | | | - Elif Ozkirimli
- Chemical Engineering Department, Bogazici University, Bebek, 34342 Istanbul, Turkey.
| |
Collapse
|
14
|
Rajabi H, Hiraki M, Kufe D. MUC1-C activates polycomb repressive complexes and downregulates tumor suppressor genes in human cancer cells. Oncogene 2018; 37:2079-2088. [PMID: 29379165 PMCID: PMC5908737 DOI: 10.1038/s41388-017-0096-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 12/11/2022]
Abstract
The PRC2 and PRC1 complexes are aberrantly expressed in human cancers and have been linked to decreases in patient survival. MUC1-C is an oncoprotein that is also overexpressed in diverse human cancers and is associated with a poor prognosis. Recent studies have supported a previously unreported function for MUC1-C in activating PRC2 and PRC1 in cancer cells. In the regulation of PRC2, MUC1-C (i) drives transcription of the EZH2 gene, (ii) binds directly to EZH2, and (iii) enhances occupancy of EZH2 on target gene promoters with an increase in H3K27 trimethylation. Regarding PRC1, which is recruited to PRC2 sites in the hierarchical model, MUC1-C induces BMI1 transcription, forms a complex with BMI1, and promotes H2A ubiquitylation. MUC1-C thereby contributes to the integration of PRC2 and PRC1-mediated repression of tumor suppressor genes, such as CDH1, CDKN2A, PTEN and BRCA1. Like PRC2 and PRC1, MUC1-C is associated with the epithelial-mesenchymal transition (EMT) program, cancer stem cell (CSC) state, and acquisition of anticancer drug resistance. In concert with these observations, targeting MUC1-C downregulates EZH2 and BMI1, inhibits EMT and the CSC state, and reverses drug resistance. These findings emphasize the significance of MUC1-C as a therapeutic target for inhibiting aberrant PRC function and reprogramming the epigenome in human cancers.
Collapse
Affiliation(s)
- Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Gastrointestinal Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
STAT3 as a promising chemoresistance biomarker associated with the CD44 +/high /CD24 -/low /ALDH + BCSCs-like subset of the triple-negative breast cancer (TNBC) cell line. Exp Cell Res 2018; 363:283-290. [DOI: 10.1016/j.yexcr.2018.01.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/31/2022]
|
16
|
Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules 2018; 23:molecules23020295. [PMID: 29385037 PMCID: PMC6017757 DOI: 10.3390/molecules23020295] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 12/21/2022] Open
Abstract
Cell membranes with their selective permeability play important functions in the tight control of molecular exchanges between the cytosol and the extracellular environment as the intracellular membranes do within the internal compartments. For this reason the plasma membranes often represent a challenging obstacle to the intracellular delivery of many anti-cancer molecules. The active transport of drugs through such barrier often requires specific carriers able to cross the lipid bilayer. Cell penetrating peptides (CPPs) are generally 5–30 amino acids long which, for their ability to cross cell membranes, are widely used to deliver proteins, plasmid DNA, RNA, oligonucleotides, liposomes and anti-cancer drugs inside the cells. In this review, we describe the several types of CPPs, the chemical modifications to improve their cellular uptake, the different mechanisms to cross cell membranes and their biological properties upon conjugation with specific molecules. Special emphasis has been given to those with promising application in cancer therapy.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Anna Lucia Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy.
| |
Collapse
|
17
|
Jin W, Liao X, Lv Y, Pang Z, Wang Y, Li Q, Liao Y, Ye Q, Chen G, Zhao K, Huang L. MUC1 induces acquired chemoresistance by upregulating ABCB1 in EGFR-dependent manner. Cell Death Dis 2017; 8:e2980. [PMID: 28796259 PMCID: PMC5596566 DOI: 10.1038/cddis.2017.378] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/11/2017] [Accepted: 07/03/2017] [Indexed: 01/15/2023]
Abstract
Chemoresistance contributes to cancer relapse and increased mortality in a variety of cancer types, raising a pressing need to better understand the underlying mechanism. MUC1 is abnormally overexpressed in numerous carcinomas and associated with poor prognosis. However, the functional significance of MUC1 in chemoresistance has not been fully elucidated. Here, we showed that MUC1 expression was considerably induced in cells that had acquired chemoresistance at both transcriptional and post-translational levels. Using gain- and loss-of function approaches, we demonstrated a critical role of MUC1 in induction of drug resistance. Through stimulation of EGFR activation and nuclear translocation, MUC1 increased the expression of ATP-binding cassette transporter B1 (ABCB1). Remarkably, targeted suppression of EGFR or ABCB1 by both shRNAs and inhibitors effectively reversed chemoresistance. Moreover, co-administration of the inhibitors of MUC1-EGFR-ABCB1 with paclitaxel significantly blocked not only tumor growth but also relapse in xenograft mouse model. Our data collectively support a model in which MUC1 induces acquired chemotherapy resistance by upregulating ABCB1 in an EGFR-dependent manner, providing a novel molecular basis of using the EGFR inhibitor in MUC1-positive cancers to prevent chemotherapy resistance.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Western
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Cell Survival/drug effects
- Cell Survival/genetics
- Chromatin Immunoprecipitation
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Erlotinib Hydrochloride/pharmacology
- Female
- Fluorescent Antibody Technique
- Gene Expression Regulation, Neoplastic/genetics
- Gene Expression Regulation, Neoplastic/physiology
- HEK293 Cells
- Humans
- Immunoprecipitation
- In Situ Nick-End Labeling
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mucin-1/genetics
- Mucin-1/metabolism
- Real-Time Polymerase Chain Reaction
Collapse
Affiliation(s)
- Wei Jin
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaodong Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yaping Lv
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Pang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuming Wang
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quanfu Li
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yahui Liao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Ye
- Department of Cardiothoracic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoqiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kewen Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Huang
- Key Laboratory of Cell Differentiation and Apoptosis of The Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Chemotherapy treatment induces an increase of autophagy in the luminal breast cancer cell MCF7, but not in the triple-negative MDA-MB231. Sci Rep 2017; 7:7201. [PMID: 28775276 PMCID: PMC5543200 DOI: 10.1038/s41598-017-07489-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/27/2017] [Indexed: 11/30/2022] Open
Abstract
Autophagy is one of the chemotherapy resistance mechanisms in breast cancer. The aim of this study was to determine the level of recruitment of the autophagy pathway in the triple-negative breast cancer (TNBC) cell line MDA-MB231 compared with that in the control luminal breast cancer cell line MCF7 before and after treatment with chemotherapy drugs. Furthermore, we investigated the relationship between autophagy and EGFR, MUC1 and IL17-receptors as activators of autophagy. Immunohistochemistry was performed in cell culture blocks using LC3b, MUC1-C, EGFR, IL17A, IL17-RA and IL17-RB antibodies. We found that the basal autophagy level in MDA-MB231 was high, whereas it was low in MCF7. However, in contrast to MDA-MB231, the autophagy level was increased in MCF7 upon treatment with chemotherapy agents. Interestingly, we observed that the expression levels of MUC1-C, EGFR, IL17-RA, and IL17-RB were not modified by the same treatments. Furthermore, the chemotherapy treatments did not increase autophagy in TNBC cells without affecting the expression levels of MUC1-C, EGFR, IL17-RA or IL17-RB.
Collapse
|
19
|
Gong YF, Zhou QB, Liao YD, Mai C, Chen TJ, Tang YQ, Chen RF. Optimized construction of MUC1-VNTR n DNA vaccine and its anti-pancreatic cancer efficacy. Oncol Lett 2017; 13:2198-2206. [PMID: 28454381 PMCID: PMC5403551 DOI: 10.3892/ol.2017.5717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/03/2016] [Indexed: 12/11/2022] Open
Abstract
Considering mucin 1-variable number tandem repeat (MUC1-VNTRn) as a novel target for pancreatic cancer immunotherapy, the present study aimed to screen and identify the pVAX1-MUC1-VNTRn DNA vaccine with the strongest immunogenicity. Following construction of a pVAX1-MUC1-VNTRn plasmid, immature dendritic cells (DCs) were subjected to transfection, and mature DCs were then co-cultured with autologous T-cells. The numbers of cytotoxic T lymphocytes (CTLs) secreting interferon (IFN)-γ were determined using an enzyme-linked immunospot assay, and CytoTox® was also used to examine the MUC1-VNTRn-specific Lethal effect of CTLs on Capan2 cells. Additional in vivo experiments in mice were performed to confirm the antitumor effect of the DNA vaccine candidate. The present study successfully constructed the pVAX1-MUC1-VNTRn plasmid, which expresses the target protein in eukaryotic cells. Additionally, upon uptake of the pVAX1-MUC1-VNTRn plasmid, the immature DCs differentiated into mature DCs. The levels of the DC surface molecules cluster of differentiation (CD) 80, CD86, human leukocyte antigen-antigen D related, interleukin (IL)-12, IL-17 and IFN-γ were significantly higher, while the levels of IL-10 and IL-14 were lower, in mature DCs of the stimulated groups compared with the immature DCs of the non-stimulated groups (all P<0.01). In addition, the MUC1-VNTR6 and MUC1-VNTR9 groups, in which DCs were capable of activating autologous T-cells, showed increased IFN-γ-producing T-cells compared with the other groups (strong MUC1-VNTR1, weak VNTR1, VNTR3, VNTR4 and MUC1-cDNA groups; all P<0.001). In addition, the Lethal effect of CTLs on Capan2 cells in these two groups was stronger compared with the other groups (all P<0.001). Furthermore, the induced protective and therapeutic immune responses in mouse experiments showed that the pVAX1-MUC1-VNTR6DNA vaccine likely possessed the strongest immunogenicity, and its ability to inhibit panc02-MUC1 tumor growth was superior to other DNA vaccines (P<0.01). The present study provides compelling evidence that pVAX1-MUC1-VNTRn has the potential to express the target protein in eukaryotic cells, and thatpVAX1-MUC1-VNTR6 was characterized by the strongest Lethal effect in both in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Yuan-Feng Gong
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Quan-Bo Zhou
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Ya-Di Liao
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Cong Mai
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Tie-Jun Chen
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Yun-Qiang Tang
- Department of Hepatobiliary Surgery, Affiliated Cancer Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510095, P.R. China
| | - Ru-Fu Chen
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong 510120, P.R. China
| |
Collapse
|
20
|
Tyuryaeva II, Lyublinskaya OG, Podkorytov IS, Skrynnikov NR. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties. Sci Rep 2017; 7:40217. [PMID: 28091523 PMCID: PMC5238392 DOI: 10.1038/srep40217] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022] Open
Abstract
Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.
Collapse
Affiliation(s)
- Irina I. Tyuryaeva
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Olga G. Lyublinskaya
- Department of Intracellular Signaling and Transport, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ivan S. Podkorytov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Nikolai R. Skrynnikov
- Laboratory of Biomolecular NMR, St. Petersburg State University, St. Petersburg 199034, Russia
- Department of Chemistry, Purdue University, West Lafayette IN 47907, USA
| |
Collapse
|
21
|
Hiraki M, Suzuki Y, Alam M, Hinohara K, Hasegawa M, Jin C, Kharbanda S, Kufe D. MUC1-C Stabilizes MCL-1 in the Oxidative Stress Response of Triple-Negative Breast Cancer Cells to BCL-2 Inhibitors. Sci Rep 2016; 6:26643. [PMID: 27217294 PMCID: PMC4877578 DOI: 10.1038/srep26643] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/06/2016] [Indexed: 01/15/2023] Open
Abstract
Aberrant expression of myeloid cell leukemia-1 (MCL-1) is a major cause of drug resistance in triple-negative breast cancer (TNBC) cells. Mucin 1 (MUC1) is a heterodimeric oncoprotein that is aberrantly overexpressed in most TNBC. The present studies show that targeting the oncogenic MUC1 C-terminal subunit (MUC1-C) in TNBC cells with silencing or pharmacologic inhibition with GO-203 is associated with downregulation of MCL-1 levels. Targeting MUC1-C suppresses the MEK → ERK and PI3K → AKT pathways, and in turn destabilizes MCL-1. The small molecules ABT-737 and ABT-263 target BCL-2, BCL-XL and BCL-w, but not MCL-1. We show that treatment with ABT-737 increases reactive oxygen species and thereby MUC1-C expression. In this way, MUC1-C is upregulated in TNBC cells resistant to ABT-737 or ABT-263. We also demonstrate that MUC1-C is necessary for the resistance-associated increases in MCL-1 levels. Significantly, combining GO-203 with ABT-737 is synergistic in inhibiting survival of parental and drug resistant TNBC cells. These findings indicate that targeting MUC1-C is a potential strategy for reversing MCL-1-mediated resistance in TNBC.
Collapse
Affiliation(s)
- Masayuki Hiraki
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Yozo Suzuki
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Maroof Alam
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Kunihiko Hinohara
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Masanori Hasegawa
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Caining Jin
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Surender Kharbanda
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| | - Donald Kufe
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA 02215, USA
| |
Collapse
|
22
|
Barham W, Chen L, Tikhomirov O, Onishko H, Gleaves L, Stricker TP, Blackwell TS, Yull FE. Aberrant activation of NF-κB signaling in mammary epithelium leads to abnormal growth and ductal carcinoma in situ. BMC Cancer 2015; 15:647. [PMID: 26424146 PMCID: PMC4590702 DOI: 10.1186/s12885-015-1652-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 09/15/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Approximately 1 in 5 women diagnosed with breast cancer are considered to have in situ disease, most often termed ductal carcinoma in situ (DCIS). Though recognized as a risk factor for the development of more invasive cancer, it remains unclear what factors contribute to DCIS development. It has been shown that inflammation contributes to the progression of a variety of tumor types, and nuclear factor kappa B (NF-κB) is recognized as a master-regulator of inflammatory signaling. However, the contributions of NF-κB signaling to tumor initiation are less well understood. Aberrant up-regulation of NF-κB activity, either systemically or locally within the breast, could occur due to a variety of commonly experienced stimuli such as acute infection, obesity, or psychological stress. In this study, we seek to determine if activation of NF-κB in mammary epithelium could play a role in the formation of hyperplastic ductal lesions. METHODS Our studies utilize a doxycycline-inducible transgenic mouse model in which constitutively active IKKβ is expressed specifically in mammary epithelium. All previously published models of NF-κB modulation in the virgin mammary gland have been constitutive models, with transgene or knock-out present throughout the life and development of the animal. For the first time, we will induce activation at later time points after normal ducts have formed, thus being able to determine if NF-κB activation can promote pre-malignant changes in previously normal mammary epithelium. RESULTS We found that even a short pulse of NF-κB activation could induce profound remodeling of mammary ductal structures. Short-term activation created hyperproliferative, enlarged ducts with filled lumens. Increased expression of inflammatory markers was concurrent with the down-regulation of hormone receptors and markers of epithelial differentiation. Furthermore, the oncoprotein mucin 1, known to be up-regulated in human and mouse DCIS, was over-expressed and mislocalized in the activated ductal tissue. CONCLUSIONS These results indicate that aberrant NF-κB activation within mammary epithelium can lead to molecular and morphological changes consistent with the earliest stages of breast cancer. Thus, inhibition of NF-κB signaling following acute inflammation or the initial signs of hyperplastic ductal growth could represent an important opportunity for breast cancer prevention.
Collapse
Affiliation(s)
- Whitney Barham
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Lianyi Chen
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Oleg Tikhomirov
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Halina Onishko
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA.
| | - Linda Gleaves
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Thomas P Stricker
- Department of Pathology, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA.
| | - Timothy S Blackwell
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, 1161 21st Ave, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center, 691 Preston Building, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| | - Fiona E Yull
- Department of Cancer Biology, Vanderbilt University Medical Center, 23rd Ave S and Pierce PRB 325, Nashville, TN, 37232, USA. .,Vanderbilt-Ingram Cancer Center, 691 Preston Building, 2220 Pierce Ave, Nashville, TN, 37232, USA.
| |
Collapse
|
23
|
The combined treatment with novel platinum(II) complex and anti-MUC1 increases apoptotic response in MDA-MB-231 breast cancer cells. Mol Cell Biochem 2015; 408:103-13. [PMID: 26112902 PMCID: PMC4768227 DOI: 10.1007/s11010-015-2486-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 06/18/2015] [Indexed: 12/20/2022]
Abstract
New strategy of cancer’s targeting treatment is combining monoclonal antibodies with chemotherapeutic agents. An important goal of targeted therapy appears to be a transmembrane glycoprotein type I—mucin 1 (MUC1), which is overexpressed in tumors of epithelial origin, especially in breast cancer. The goal of the study was to check the effect of monoclonal antibody against MUC1 with novel platinum(II) complex (Pt12) on selected aspects of apoptosis in human MDA-MB-231 breast cancer cells. The number of apoptotic and necrotic cells was measured using annexin V binding assay. The decrease of mitochondrial membrane potential (MMP) and DNA fragmentation was analyzed. Finally, the influence of novel platinum(II) complex (Pt12) used with anti-MUC1 on the concentration of selected markers of apoptosis such as Bax, caspase-8, -9, and caspase-3 was performed using ELISA. The results from combined treatment were compared with those obtained using monotherapy. In our study, we proved that anti-MUC1 used in combination with Pt12 strongly induced apoptosis in MDA-MB-231 breast cancer cell line. The effect was stronger than treatment with Pt12, cisplatin, anti-MUC1, and anti-MUC1 used with cisplatin. We also observed the highest decrease of MMP and the strongest DNA fragmentation after such a combined treatment. The results obtained from ELISA showed increased concentration of Bax, caspases-8, -9, -3 compared to monotherapy. Our study proved that Pt12 together with anti-MUC1 strongly induced apoptosis in estrogen-negative breast cancer cell line (MDA-MB-231). The apoptosis may go through extrinsic pathway associated with caspase-8 as well as intrinsic pathway connected with caspase-9.
Collapse
|
24
|
Hasegawa M, Sinha RK, Kumar M, Alam M, Yin L, Raina D, Kharbanda A, Panchamoorthy G, Gupta D, Singh H, Kharbanda S, Kufe D. Intracellular Targeting of the Oncogenic MUC1-C Protein with a Novel GO-203 Nanoparticle Formulation. Clin Cancer Res 2015; 21:2338-47. [PMID: 25712682 DOI: 10.1158/1078-0432.ccr-14-3000] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/11/2015] [Indexed: 12/13/2022]
Abstract
PURPOSE The MUC1-C oncoprotein is an intracellular target that is druggable with cell-penetrating peptide inhibitors. However, development of peptidyl drugs for treating cancer has been a challenge because of unfavorable pharmacokinetic parameters and limited cell-penetrating capabilities. EXPERIMENTAL DESIGN Encapsulation of the MUC1-C inhibitor GO-203 in novel polymeric nanoparticles was studied for effects on intracellular targeting of MUC1-C signaling and function. RESULTS Our results show that loading GO-203 into tetrablock polylactic acid (PLA)-polyethylene glycol (PEG)-polypropylene glycol (PPG)-PEG copolymers is achievable and, notably, is enhanced by increasing PEG chain length. In addition, we found that release of GO-203 from these nanoparticles is controllable over at least 7 days. GO-203/nanoparticle treatment of MUC1-C-positive breast and lung cancer cells in vitro was more active with less frequent dosing than that achieved with nonencapsulated GO-203. Moreover, treatment with GO-203/nanoparticles blocked MUC1-C homodimerization, consistent with on-target effects. GO-203/nanoparticle treatment was also effective in downregulating TIGAR, disrupting redox balance, and inhibiting the self-renewal capacity of cancer cells. Significantly, weekly administration of GO-203/nanoparticles to mice bearing syngeneic or xenograft tumors was associated with regressions that were comparable with those found when dosing on a daily basis with GO-203. CONCLUSIONS These findings thus define an effective approach for (i) sustained administration of GO-203 in polymeric PLA-(PEG-PPG-PEG) nanoparticles to target MUC1-C in cancer cells and (ii) the potential delivery of other anticancer peptide drugs.
Collapse
Affiliation(s)
- Masanori Hasegawa
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Raj Kumar Sinha
- Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Manoj Kumar
- Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Maroof Alam
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Li Yin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Akriti Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | | | - Dikshi Gupta
- Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India
| | - Harpal Singh
- Center for Biomedical Engineering, Indian Institute of Technology, New Delhi, India.
| | | | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
25
|
Alam M, Rajabi H, Ahmad R, Jin C, Kufe D. Targeting the MUC1-C oncoprotein inhibits self-renewal capacity of breast cancer cells. Oncotarget 2015; 5:2622-34. [PMID: 24770886 PMCID: PMC4058032 DOI: 10.18632/oncotarget.1848] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capacity of breast cancer cells to form mammospheres in non-adherent serum-free culture is used as a functional characteristic of the self-renewing stem-like cell population. The present studies demonstrate that silencing expression of the MUC1-C oncoprotein inhibits growth of luminal MCF-7 and HER2-overexpressing SKBR3 breast cancer cells as mammospheres. We also show that triple-negative MDA-MB-468 breast cancer cells are dependent on MUC1-C for growth as mammospheres and tumor xenografts. Similar results were obtained when MUC1-C function was inhibited by expression of a MUC1-C(CQC→AQA) mutant. Moreover, treatment with the MUC1-C inhibitor GO-203, a cell penetrating peptide that binds to the MUC1-C cytoplasmic domain and blocks MUC1-C function, confirmed the importance of this target for self-renewal. The mechanistic basis for these findings is supported by the demonstration that MUC1-C activates NF-κB, occupies the IL-8 promoter with NF-κB, and induces IL-8 transcription. MUC1-C also induces NF-κB-dependent expression of the IL-8 receptor, CXCR1. In concert with these results, targeting MUC1-C with GO-203 suppresses IL-8/CXCR1 expression and disrupts the formation of established mammospheres. Our findings indicate that MUC1-C contributes to the self-renewal of breast cancer cells by activating the NF-κB→IL-8/CXCR1 pathway and that targeting MUC1-C represents a potential approach for the treatment of this population.
Collapse
Affiliation(s)
- Maroof Alam
- Dana-Farber Cancer Institute Harvard Medical School Boston, MA
| | | | | | | | | |
Collapse
|
26
|
Hou Y, Gao J, Xu H, Xu Y, Zhang Z, Xu Q, Zhang C. PPARγ E3 ubiquitin ligase regulates MUC1-C oncoprotein stability. Oncogene 2014; 33:5619-25. [PMID: 24292674 DOI: 10.1038/onc.2013.504] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2013] [Revised: 10/14/2013] [Accepted: 10/18/2013] [Indexed: 12/11/2022]
Abstract
MUC1-C oncoprotein is associated with colon, breast, ovarian, lung and pancreatic cancers. MUC1-C interacts with intracellular proteins to elicit signaling cascades that induce cell proliferation and tumor growth. Here we report that peroxisome proliferator-activated receptor gamma (PPARγ), an E3 ubiquitin ligase, is an inhibitor of MUC1-C-mediated cell proliferation. PPARγ does so by binding to and inducing MUC1-C proteasome-dependent degradation that was independent of PPARγ transcriptional activity. Lys134 residue was found to be critically important for PPARγ-mediated MUC1-C degradation, as it terminated MUC1-C-mediated cell proliferation. These findings demonstrate PPARγ induces MUC1-C ubiquitination and degradation that is critical to terminate MUC1-C signaling pathway-elicited cancer.
Collapse
Affiliation(s)
- Y Hou
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - J Gao
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - H Xu
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - Y Xu
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - Z Zhang
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - Q Xu
- Institute of Life Science, JiangSu University, Zhenjiang, China
| | - C Zhang
- Institute of Life Science, JiangSu University, Zhenjiang, China
| |
Collapse
|
27
|
Jonckheere N, Skrypek N, Van Seuningen I. Mucins and tumor resistance to chemotherapeutic drugs. Biochim Biophys Acta Rev Cancer 2014; 1846:142-51. [PMID: 24785432 DOI: 10.1016/j.bbcan.2014.04.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 12/30/2022]
Abstract
Epithelial cancer patients not considered eligible for surgical resection frequently benefit from chemotherapy. Chemotherapy is the treatment of cancer with one or combination of cytotoxic or cytostatic drugs. Recent advances in chemotherapy allowed a great number of cancer patients to receive treatment with significant results. Unfortunately, resistance to chemotherapeutic drug treatment is a major challenge for clinicians in the majority of epithelial cancers because it is responsible for the inefficiency of therapies. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Implications of mucins have been described in relation to cancer cell behavior and cell signaling pathways associated with epithelial tumorigenesis. Because of the frequent alteration of the pattern of mucin expression in cancers as well as their structural and functional characteristics, mucins are thought to also be involved in response to therapies. In this report, we review the roles of mucins in chemoresistance and the associated underlying molecular mechanisms (physical barrier, resistance to apoptosis, drug metabolism, cell stemness, epithelial-mesenchymal transition) and discuss the therapeutic tools/strategies and/or prognosis biomarkers for personalized chemotherapy that could be proposed from these studies.
Collapse
Affiliation(s)
- Nicolas Jonckheere
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France.
| | - Nicolas Skrypek
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| | - Isabelle Van Seuningen
- Inserm, UMR837, Jean Pierre Aubert Research Center, Team #5 "Mucins, Epithelial Differentiation and Carcinogenesis", rue Polonovski, 59045 Lille Cedex, France; Université Lille Nord de France, Lille, France; Centre Hospitalier Régional et Universitaire de Lille, Place de Verdun, 59037 Lille Cedex, France
| |
Collapse
|
28
|
Andrulis M, Ellert E, Mandel U, Clausen H, Lehners N, Raab MS, Goldschmidt H, Schwartz-Albiez R. Expression of Mucin-1 in multiple myeloma and its precursors: correlation with glycosylation and subcellular localization. Histopathology 2014; 64:799-806. [PMID: 24251368 DOI: 10.1111/his.12330] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/18/2013] [Indexed: 12/18/2022]
Abstract
AIMS Recent reports suggest a possible role for extracellular (MUC1N) and transmembrane (MUC1C) subunits of Mucin 1 (MUC1) in the pathogenesis of multiple myeloma (MM). Nuclear translocation of MUC1C is involved in activation of various oncogenic signalling pathways and both MUC1 subunits are potential therapeutic targets. We aimed at performing a comprehensive expression analysis of the MUC1 subunits in plasma cell dyscrasias. METHODS AND RESULTS Immunohistochemistry with monoclonal antibodies against the MUC1N subunit (EMA and 5E10) tumour-associated glycoforms of MUC1N (5E5) and the MUC1C subunit were applied to a series of biopsies from normal controls (n = 10) and plasma cell dyscrasias (n = 121). Clonal plasma cells showed reduced MUC1N expression, and the 5E5 MUC1N epitope was expressed only in neoplastic plasma cells. Nuclear localization of MUC1C was equally frequent in all disease stages and did not differ from the control cases. Loss of both MUC1 subunits in MM (n = 12) was associated with significantly shorter overall survival and was more frequent in pretreated MM samples. CONCLUSIONS Our findings indicate that aberrant glycosylation of MUC1 is an early event in the pathogenesis of MM. In contrast, MUC1C nuclear localization is not likely to be a driver of tumour progression.
Collapse
|
29
|
Schlom J, Hodge JW, Palena C, Tsang KY, Jochems C, Greiner JW, Farsaci B, Madan RA, Heery CR, Gulley JL. Therapeutic cancer vaccines. Adv Cancer Res 2014; 121:67-124. [PMID: 24889529 PMCID: PMC6324585 DOI: 10.1016/b978-0-12-800249-0.00002-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Therapeutic cancer vaccines have the potential of being integrated in the therapy of numerous cancer types and stages. The wide spectrum of vaccine platforms and vaccine targets is reviewed along with the potential for development of vaccines to target cancer cell "stemness," the epithelial-to-mesenchymal transition (EMT) phenotype, and drug-resistant populations. Preclinical and recent clinical studies are now revealing how vaccines can optimally be used with other immune-based therapies such as checkpoint inhibitors, and so-called nonimmune-based therapeutics, radiation, hormonal therapy, and certain small molecule targeted therapies; it is now being revealed that many of these traditional therapies can lyse tumor cells in a manner as to further potentiate the host immune response, alter the phenotype of nonlysed tumor cells to render them more susceptible to T-cell lysis, and/or shift the balance of effector:regulatory cells in a manner to enhance vaccine efficacy. The importance of the tumor microenvironment, the appropriate patient population, and clinical trial endpoints is also discussed in the context of optimizing patient benefit from vaccine-mediated therapy.
Collapse
Affiliation(s)
- Jeffrey Schlom
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - James W Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Claudia Palena
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwong-Yok Tsang
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Caroline Jochems
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John W Greiner
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Benedetto Farsaci
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ravi A Madan
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christopher R Heery
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James L Gulley
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
30
|
Jochems C, Tucker JA, Vergati M, Boyerinas B, Gulley JL, Schlom J, Tsang KY. Identification and characterization of agonist epitopes of the MUC1-C oncoprotein. Cancer Immunol Immunother 2013; 63:161-74. [PMID: 24233342 DOI: 10.1007/s00262-013-1494-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
The MUC1 tumor-associated antigen is overexpressed in the majority of human carcinomas and several hematologic malignancies. Much attention has been paid to the hypoglycosylated variable number of tandem repeats (VNTR) region of the N-terminus of MUC1 as a vaccine target, and recombinant viral vector vaccines are also being evaluated that express the entire MUC1 transgene. While previous studies have described MUC1 as a tumor-associated tissue differentiation antigen, studies have now determined that the C-terminus of MUC1 (MUC1-C) is an oncoprotein, and its expression is an indication of poor prognosis in numerous tumor types. We report here the identification of nine potential CD8⁺ cytotoxic T lymphocyte epitopes of MUC1, seven in the C-terminus and two in the VNTR region, and have identified enhancer agonist peptides for each of these epitopes. These epitopes span HLA-A2, HLA-A3, and HLA-A24 major histocompatibility complex (MHC) class I alleles, which encompass the majority of the population. The agonist peptides, compared to the native peptides, more efficiently (a) generate T-cell lines from the peripheral blood mononuclear cells of cancer patients, (b) enhance the production of IFN-γ by peptide-activated human T cells, and (c) lyse human tumor cell targets in an MHC-restricted manner. The agonist epitopes described here can be incorporated into various vaccine platforms and for the ex vivo generation of human T cells. These studies provide the rationale for the T-cell-mediated targeting of the oncogenic MUC1-C, which has been shown to be an important factor in both drug resistance and poor prognosis for numerous tumor types.
Collapse
|
31
|
Chemoresistance is associated with MUC1 and Lewis y antigen expression in ovarian epithelial cancers. Int J Mol Sci 2013; 14:11024-33. [PMID: 23708102 PMCID: PMC3709716 DOI: 10.3390/ijms140611024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 05/09/2013] [Accepted: 05/13/2013] [Indexed: 01/15/2023] Open
Abstract
Objective The aim of this study was to analyze the correlation and clinical significance between the expression of Mucin-1 (MUC1) and the Lewis y antigen with chemoresistance in ovarian epithelial cancers. Methods Ovarian cancer patients (n = 92) treated at our hospital from May 2005 to July 2009 were divided, according to their treatment and follow-up outcomes, into a resistant group (n = 37) or sensitive group (n = 55). The expression of MUC1 and Lewis y antigen in ovarian cancer tissues was detected using immunohistochemistry and correlated with chemoresistance. Results The positive rates of MUC1 and Lewis y antigen in the resistant group were both 91.89%, significantly higher than their positive rates in the sensitive group (65.45% and 69.09%, respectively, and both p < 0.05). MUC1 or Lewis y expression and the pathological stage of the tissue were independent risk factors for chemoresistance (all p < 0.05). Conclusion The increased expression of MUC1 and the Lewis y antigen is a significant risk factor for chemoresistance in patients with ovarian epithelial cancer.
Collapse
|