1
|
Han W, Zhou H, Zhang X, Li H, Han X, Su L, Tian L, Xue X. HMGB2 is a biomarker associated with poor prognosis promoting radioresistance in glioma by targeting base excision repair pathway. Transl Oncol 2024; 45:101977. [PMID: 38728871 PMCID: PMC11107350 DOI: 10.1016/j.tranon.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/27/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND High mobility group box 2 (HMGB2) is considered as a biomarker of poor prognosis in various cancers.This study aims to investigate the effect and mechanism of HMGB2 in gliomas. METHODS With the glioma related on-line and our local hospital databases, the expression differences of HMGB2,Kaplan-Meier survival analysis and COX regression analysis were performed.The correlation analysis between the clinicopathological features and imaging parameters with the HMGB2 expression had been done. Then GSEA and PPI networks were carried out to find out the most significant pathway. The pathway inhibitor was applied to verify HMGB2's participation. CCK8,EDU assays,γ-H2AX immunofluorescence staining and colony formation assay were conducted to observe effects on glioma cells. RESULTS Available datasets showed that HMGB2 was highly expressed in glioma and patients with high expression of HMGB2 had poorer prognosis and molecular characteristics. Protein level evidence of western blot and immunohistochemistry from our center supported the conclusions above. Analysis on imaging features suggested that HMGB2 expression level had an inverse association with ADCmean but positively with the thickness of enhancing margin. Results from GSEA and PPI network analysis exhibited that HMGB2 was involved in base excision repair (BER) signaling pathway. Experimental evidence demonstrated that the overexpression of HMGB2 promoted the proliferation of glioma cells and enhanced the radio-resistance. CONCLUSIONS HMGB2 could promote glioma development and enhance the radioresistance of glioma cells, potentially related to the BER pathway, suggesting it may serve as an underlying biomarker for patients with glioma.
Collapse
Affiliation(s)
- Wei Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, Hebei General Hospital, Shijiazhuang, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xinyuan Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China; Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, China
| | - Haonan Li
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lei Tian
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
| |
Collapse
|
2
|
Becker AP, Becker V, McElroy J, Webb A, Han C, Guo Y, Bell EH, Fleming J, Popp I, Staszewski O, Prinz M, Otero JJ, Haque SJ, Grosu AL, Chakravarti A. Proteomic Analysis of Spatial Heterogeneity Identifies HMGB2 as Putative Biomarker of Tumor Progression in Adult-Type Diffuse Astrocytomas. Cancers (Basel) 2024; 16:1516. [PMID: 38672598 PMCID: PMC11049315 DOI: 10.3390/cancers16081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Although grading is defined by the highest histological grade observed in a glioma, most high-grade gliomas retain areas with histology reminiscent of their low-grade counterparts. We sought to achieve the following: (i) identify proteins and molecular pathways involved in glioma evolution; and (ii) validate the high mobility group protein B2 (HMGB2) as a key player in tumor progression and as a prognostic/predictive biomarker for diffuse astrocytomas. We performed liquid chromatography tandem mass spectrometry (LC-MS/MS) in multiple areas of adult-type astrocytomas and validated our finding in multiplatform-omics studies and high-throughput IHC analysis. LC-MS/MSdetected proteomic signatures characterizing glioma evolution towards higher grades associated with, but not completely dependent, on IDH status. Spatial heterogeneity of diffuse astrocytomas was associated with dysregulation of specific molecular pathways, and HMGB2 was identified as a putative driver of tumor progression, and an early marker of worse overall survival in grades 2 and 3 diffuse gliomas, at least in part regulated by DNA methylation. In grade 4 astrocytomas, HMGB2 expression was strongly associated with proliferative activity and microvascular proliferation. Grounded in proteomic findings, our results showed that HMGB2 expression assessed by IHC detected early signs of tumor progression in grades 2 and 3 astrocytomas, as well as identified GBMs that had a better response to the standard chemoradiation with temozolomide.
Collapse
Affiliation(s)
- Aline P. Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Valesio Becker
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Joseph McElroy
- Center for Biostatistics, The Ohio State University, Columbus, OH 43210, USA;
| | - Amy Webb
- School of Biomedical Science-Biomedical Informatics, The Ohio State University, Columbus, OH 43210, USA;
| | - Chunhua Han
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Yingshi Guo
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Erica H. Bell
- Department of Neurology, The Ohio State University, Columbus, OH 43210, USA;
| | - Jessica Fleming
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Ilinca Popp
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty of the Saarland University, 66421 Homburg, Germany;
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- Signalling Research Centres BIOSS & CIBSS, University of Freiburg, 79098 Freiburg, Germany
| | - Jose J. Otero
- Department of Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - Saikh Jaharul Haque
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, University of Freiburg, 79110 Freiburg, Germany; (I.P.); (A.-L.G.)
| | - Arnab Chakravarti
- Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA; (A.P.B.); (V.B.); (C.H.); (Y.G.); (J.F.); (S.J.H.)
| |
Collapse
|
3
|
Starkova T, Polyanichko A, Tomilin AN, Chikhirzhina E. Structure and Functions of HMGB2 Protein. Int J Mol Sci 2023; 24:ijms24098334. [PMID: 37176041 PMCID: PMC10179549 DOI: 10.3390/ijms24098334] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
High-Mobility Group (HMG) chromosomal proteins are the most numerous nuclear non-histone proteins. HMGB domain proteins are the most abundant and well-studied HMG proteins. They are involved in variety of biological processes. HMGB1 and HMGB2 were the first members of HMGB-family to be discovered and are found in all studied eukaryotes. Despite the high degree of homology, HMGB1 and HMGB2 proteins differ from each other both in structure and functions. In contrast to HMGB2, there is a large pool of works devoted to the HMGB1 protein whose structure-function properties have been described in detail in our previous review in 2020. In this review, we attempted to bring together diverse data about the structure and functions of the HMGB2 protein. The review also describes post-translational modifications of the HMGB2 protein and its role in the development of a number of diseases. Particular attention is paid to its interaction with various targets, including DNA and protein partners. The influence of the level of HMGB2 expression on various processes associated with cell differentiation and aging and its ability to mediate the differentiation of embryonic and adult stem cells are also discussed.
Collapse
Affiliation(s)
- Tatiana Starkova
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexander Polyanichko
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Alexey N Tomilin
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| | - Elena Chikhirzhina
- Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
4
|
Vöcking O, Famulski JK. A temporal single cell transcriptome atlas of zebrafish anterior segment development. Sci Rep 2023; 13:5656. [PMID: 37024546 PMCID: PMC10079958 DOI: 10.1038/s41598-023-32212-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Anterior segment dysgenesis (ASD), resulting in vision impairment, stems from maldevelopment of anterior segment (AS) tissues. Incidence of ASD has been linked to malfunction of periocular mesenchyme cells (POM). POM cells specify into anterior segment mesenchyme (ASM) cells which colonize and produce AS tissues. In this study we uncover ASM developmental trajectories associated with formation of the AS. Using a transgenic line of zebrafish that fluorescently labels the ASM throughout development, Tg[foxc1b:GFP], we isolated GFP+ ASM cells at several developmental timepoints (48-144 hpf) and performed single cell RNA sequencing. Clustering analysis indicates subdifferentiation of ASM as early as 48 hpf and subsequent diversification into corneal epithelium/endothelium/stroma, or annular ligament (AL) lineages. Tracking individual clusters reveals common developmental pathways, up to 72 hpf, for the AL and corneal endothelium/stroma and distinct pathways for corneal epithelium starting at 48 hpf. Spatiotemporal validation of over 80 genes found associated with AS development demonstrates a high degree of conservation with mammalian trabecular meshwork and corneal tissues. In addition, we characterize thirteen novel genes associated with annular ligament and seven with corneal development. Overall, the data provide a molecular verification of the long-standing hypothesis that POM derived ASM give rise to AS tissues and highlight the high degree of conservation between zebrafish and mammals.
Collapse
Affiliation(s)
- Oliver Vöcking
- Department of Biology, University of Kentucky, Lexington, USA
| | - J K Famulski
- Department of Biology, University of Kentucky, Lexington, USA.
| |
Collapse
|
5
|
Jo HR, Jeong JH. MicroRNA-Mediated Downregulation of HMGB2 Contributes to Cellular Senescence in Microvascular Endothelial Cells. Cells 2022; 11:cells11030584. [PMID: 35159393 PMCID: PMC8834370 DOI: 10.3390/cells11030584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/24/2022] Open
Abstract
High mobility group box 2 (HMGB2) is a non-histone chromosomal protein involved in various biological processes, including cellular senescence. However, its role in cellular senescence has not been evaluated extensively. To determine the regulatory role and mechanism of HMGB2 in cellular senescence, we performed gene expression analysis, senescence staining, and tube formation assays using young and senescent microvascular endothelial cells (MVECs) after small RNA treatment or HMGB2 overexpression. HMGB2 expression decreased with age and was regulated at the transcriptional level. siRNA-mediated downregulation inhibited cell proliferation and accelerated cellular senescence. In contrast, ectopic overexpression delayed senescence and maintained relatively higher tube-forming activity. To determine the HMGB2 downregulation mechanism, we screened miRNAs that were significantly upregulated in senescent MVECs and selected HMGB2-targeting miRNAs. Six miRNAs, miR-23a-3p, 23b-3p, -181a-5p, -181b-5p, -221-3p, and -222-3p, were overexpressed in senescent MVECs. Ectopic introduction of miR-23a-3p, -23b-3p, -181a-5p, -181b-5p, and -221-3p, with the exception of miR-222-3p, led to the downregulation of HMGB2, upregulation of senescence-associated markers, and decreased tube formation activity. Inhibition of miR-23a-3p, -181a-5p, -181b-5p, and -221-3p delayed cellular senescence. Restoration of HMGB2 expression using miRNA inhibitors represents a potential strategy to overcome the detrimental effects of cellular senescence in endothelial cells.
Collapse
Affiliation(s)
- Hye-Ram Jo
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea;
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Korea
| | - Jae-Hoon Jeong
- Division of Radiation Biomedical Research, Korea Institute of Radiological & Medical Science, Seoul 01812, Korea;
- Radiological and Medico-Oncological Sciences, University of Science and Technology, Daejeon 34113, Korea
- Correspondence: ; Tel.: +82-2970-1386
| |
Collapse
|
6
|
Du J, Kageyama SI, Hirata H, Motegi A, Nakamura M, Hirano Y, Okumura M, Yamashita R, Tsuchihara K, Hojo H, Hirayama R, Akimoto T. Comparative analysis of the immune responses in cancer cells irradiated with X-ray, proton and carbon-ion beams. Biochem Biophys Res Commun 2021; 585:55-60. [PMID: 34784552 DOI: 10.1016/j.bbrc.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
Radiotherapy (RT) is an effective treatment option for cancer; however, its efficacy remains less than optimal in locally advanced cancer. Immune checkpoint inhibitor-based therapy, including the administration of anti-PD-L1 antibodies, is a promising approach that works synergistically with RT. Proton beam therapy and carbon-ion therapy are common options for patients with cancer. Proton and carbon ions are reported to induce an immune reaction in cancer cells; however, the underlying mechanisms remain unclear. Here, we aimed to compare the immune responses after irradiation (IR) with X-ray, protons, and carbon ions in an oesophageal cancer cell line and the underlying mechanisms. An oesophageal cancer cell line, KYSE450, was irradiated with 1 fraction/15 GyE (Gy equivalent) of X-ray, proton, or carbon-ion beams, and then, the cells were harvested for RNA sequencing and gene enrichment analysis. We also knocked out STING and STAT1 in the quest for mechanistic insights. RNA sequencing data revealed that gene expression signatures and biological processes were different in KYSE450 irradiated with X-ray, proton, and carbon-ion beams 6-24 h after IR. However, after 3 days, a common gene expression signature was detected, associated with biological pathways involved in innate immune responses. Gene knock-out experiments revealed that the STING-STAT1 axis underlies the immune reactions after IR. X-Ray, proton, and carbon-ion IRs induced similar immune responses, regulated by the STING-STAT1 axis.
Collapse
Affiliation(s)
- Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hidenari Hirata
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Motegi
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masaki Nakamura
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yasuhiro Hirano
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Masayuki Okumura
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Hidehiro Hojo
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan.
| | - Ryoichi Hirayama
- Radiation and Cancer Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science (iQMS), Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), Chiba, Japan
| | - Tetsuo Akimoto
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan; Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| |
Collapse
|
7
|
STING protects breast cancer cells from intrinsic and genotoxic-induced DNA instability via a non-canonical, cell-autonomous pathway. Oncogene 2021; 40:6627-6640. [PMID: 34625708 DOI: 10.1038/s41388-021-02037-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 09/13/2021] [Accepted: 09/23/2021] [Indexed: 01/13/2023]
Abstract
STING (Stimulator of Interferon Genes) is an endoplasmic reticulum-anchored adaptor of the innate immunity best known to trigger pro-inflammatory cytokine expression in response to pathogen infection. In cancer, this canonical pathway can be activated by intrinsic or drug-induced genomic instability, potentiating antitumor immune responses. Here we report that STING downregulation decreases cell survival and increases sensitivity to genotoxic treatment in a panel of breast cancer cell lines in a cell-autonomous manner. STING silencing impaired DNA Damage Response (53BP1) foci formation and increased DNA break accumulation. These newly identified properties were found to be independent of STING partner cGAS and of its canonical pro-inflammatory pathway. STING was shown to partially localize at the inner nuclear membrane in a variety of breast cancer cell models and clinical tumor samples. Interactomics analysis of nuclear STING identified several proteins of the DNA Damage Response, including the three proteins of the DNA-PK complex, further supporting a role of STING in the regulation of genomic stability. In breast and ovarian cancer patients that received adjuvant chemotherapy, high STING expression is associated with increased risk of relapse. In summary, this study highlights an alternative, non-canonical tumor-promoting role of STING that opposes its well-documented function in tumor immunosurveillance.
Collapse
|
8
|
Shomali N, Marofi F, Tarzi S, Tamjdidfar R, Akbari M, Parvari S, Sadeghvand S, Deljavan M, Moridi O, Javadi M, Shotorbani SS. HSP90 inhibitor modulates HMGA1 and HMGB2 expression along with cell viability via NF-KB signaling pathways in melanoma in-vitro. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
El-Masry OS, Goja A, Rateb M, Owaidah AY, Alsamman K. RNA sequencing identified novel target genes for Adansonia digitata in breast and colon cancer cells. Sci Prog 2021; 104:368504211032084. [PMID: 34251294 PMCID: PMC10450698 DOI: 10.1177/00368504211032084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adansonia digitata exhibits numerous beneficial effects. In the current study, we investigated the anti-cancer effects of four different extracts of A. digitata (polar and non-polar extracts of fruit powder and fibers) on the proliferation of human colon cancer (HCT116), human breast cancer (MCF-7), and human ovarian cancer (OVCAR-3 and OVCAR-4) cell lines. RNA sequencing revealed the influence of the effective A. digitata fraction on the gene expression profiles of responsive cells. The results indicated that only the polar extract of the A. digitata fibers exhibited anti-proliferative activities against HCT116 and MCF-7 cells, but not ovarian cancer cells. Moreover, the polar extract of the fibers resulted in the modulation of the expression of multiple genes in HCT116 and MCF-7 cells. We propose that casein kinase 2 alpha 3 (CSNK2A3) is a novel casein kinase 2 (CSNK2) isoform in HCT116 cells and report, for the first time, the potential involvement of FYVE, RhoGEF, and PH domain-containing 3 (FGD3) in colon cancer. Together, these findings provide evidence supporting the anti-cancer potential of the polar extract of A. digitata fibers in this experimental model of breast and colon cancers.
Collapse
Affiliation(s)
- Omar S. El-Masry
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arafat Goja
- Department of Clinical Nutrition, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mostafa Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, Paisley, UK
- Marine Biodiscovery Centre, School of Natural & Computing Sciences, University of Aberdeen, Aberdeen, UK
| | - Amani Y Owaidah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Khaldoon Alsamman
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
10
|
Wen B, Wei YT, Zhao K. The role of high mobility group protein B3 (HMGB3) in tumor proliferation and drug resistance. Mol Cell Biochem 2021; 476:1729-1739. [PMID: 33428061 DOI: 10.1007/s11010-020-04015-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
The high mobility group protein B (HMGB) family (including HMGB1, HMGB2, HMGB3, and HMGB4) can regulate the mechanisms of DNA replication, transcription, recombination, and repair, and act as cytokines to mediate responses to infection, injury, and inflammation. HMGB1/2/3 has a high similarity in sequence and structure, while HMGB4 has no acidic C-terminal tail. Among them, HMGB3 can regulate the self-renewal and differentiation of normal hematopoietic stem cell population, but the decrease of its expression is easy to induce leukemia. Up-regulation of its expression promotes tumor development and chemotherapy resistance through a variety of mechanisms, and non-coding RNA can regulate to promote tumor cell proliferation, invasion, and migration and inhibit cancer cell apoptosis.
Collapse
Affiliation(s)
- Bin Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Ying-Ting Wei
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China
| | - Kui Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, 149 Dalian Road, Huichuan District, Zunyi, 563003, Guizhou, P. R. China.
| |
Collapse
|
11
|
Li Z, Zhang Y, Sui S, Hua Y, Zhao A, Tian X, Wang R, Guo W, Yu W, Zou K, Deng W, He L, Zou L. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:243. [PMID: 33187536 PMCID: PMC7664109 DOI: 10.1186/s13046-020-01737-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 10/14/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Radiotherapy is regarded as a milestone for the cure of cervical cancer. However, clinical outcome heavily be hindered by radioresistance. So, exploring the underlying mechanism of radioresistance, and find potential target, well deserve fully emphasis. METHODS In this study, we developed two novel radiation resistance cervical cancer cell lines, which could mimic clinical radioresistance. In order to find new potential targets, RNA-Seq, database analysis, streptavidin-agarose and LC/MS were used. Pull-down, luciferase and rescue assays were conducted to explore the regulatory mechanisms. To further evaluate the correlation between therapeutic responses and HMGB3/hTERT expression, 172 cervical cancer patients were recruited. RESULTS Knockdown of HMGB3 significantly inhibit the DNA damage repair and induced more γH2AX foci, leading to enhanced chemo- and radio-sensitivity in vitro and in vivo, whereas HMGB3 overexpression has the opposite effects. HMGB3 promotes cell growth and radioresistance by transcriptionally up-regulating hTERT via the specifical binding of HMGB3 at the hTERT promoter region from - 902 to - 321. HMGB3 knockdown-mediated radiosensitization could be reversed by the overexpressed hTERT in both cervical cancer cell lines and xenograft tumor mouse model. Furthermore, clinical data from 172 cervical cancer patients proved that there was a positive correlation between HMGB3 and hTERT expression, and high expression of HMGB3/hTERT predicted poor response to radiotherapy, worse TNM stages and shorter survival time. CONCLUSION Here, we have identified HMGB3/hTERT signaling axis as a new target for cervical cancer radioresistance. Our results provide new insights into the mechanism of cervical cancer radioresistance and indicate that targeting the HMGB3/hTERT signaling axis may benefit cervical cancer patients.
Collapse
Affiliation(s)
- Zongjuan Li
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yang Zhang
- Qingdao University Medical College Affiliated Yantai Yuhuangding Hospital, Yantai, China
| | - Silei Sui
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yijun Hua
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Anshi Zhao
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoyuan Tian
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruonan Wang
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wei Guo
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wendan Yu
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Wuguo Deng
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Liru He
- SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center of Cancer Medicine, Guangzhou, China.
| | - Lijuan Zou
- The Second Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| |
Collapse
|
12
|
Zhang X, Dang Y, Liu R, Zhao S, Ma J, Qin Y. MicroRNA-127-5p impairs function of granulosa cells via HMGB2 gene in premature ovarian insufficiency. J Cell Physiol 2020; 235:8826-8838. [PMID: 32391592 DOI: 10.1002/jcp.29725] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/10/2020] [Indexed: 12/30/2022]
Abstract
Distinct microRNA (miRNA) profiles have been reported in premature ovarian insufficiency (POI), but their functional relevance in POI is not yet clearly stated. In this study, aberrant expressions of miR-127-5p and high mobility group box 2 (HMGB2) were observed by microarrays in granulosa cells (GCs) from biochemical POI (bPOI) women and further confirmed by a quantitative reverse-transcription polymerase chain reaction. Immortalized human granulosa cell line and mouse primary ovarian GCs were used for functional validation. Orthotopic mouse model was established to examine the role of miR-127-5p in vivo. Finally, the expression of miR-127-5p was measured in the plasma of bPOI women. The receiver operating characteristic curve analysis was performed to determine the indicative role of miR-127-5p for ovarian reserve. Results showed the upregulation of miR-127-5p was identified in GCs from bPOI patients. It inhibited GCs proliferation and impaired DNA damage repair capacity through targeting HMGB2, which was significantly downregulated in GCs from the same cohort of cases. miR-127-5p was confirmed to attenuate DNA repair capability via HMGB2 in mouse ovary in vivo. Intriguingly, the upexpression of miR-127-5p was also detected in plasma of bPOI individuals, suggesting that miR-127-5p could be a promising indicator for bPOI. Taken together, our results discovered the deleterious effects of miR-127-5p on GCs function and its predictive value in POI process. The target gene HMGB2 could be considered as a new candidate for POI. This study highlights the importance of DNA repair capacity for ovarian function and sheds light on the epigenetic mechanism in the pathogenicity of POI.
Collapse
Affiliation(s)
- Xinyue Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yujie Dang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Ran Liu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Jinlong Ma
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, China
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, Shandong, China
| |
Collapse
|
13
|
Mukherjee A, Vasquez KM. Targeting Chromosomal Architectural HMGB Proteins Could Be the Next Frontier in Cancer Therapy. Cancer Res 2020; 80:2075-2082. [PMID: 32152151 DOI: 10.1158/0008-5472.can-19-3066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/24/2020] [Accepted: 03/04/2020] [Indexed: 12/18/2022]
Abstract
Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, Texas.
| |
Collapse
|
14
|
Kučírek M, Bagherpoor AJ, Jaroš J, Hampl A, Štros M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells. FASEB J 2019; 33:14307-14324. [PMID: 31661640 DOI: 10.1096/fj.201901465rrr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
High-mobility group box (HMGB)1 and HMGB2 proteins are the subject of intensive research because of their involvement in DNA replication, repair, transcription, differentiation, proliferation, cell signaling, inflammation, and tumor migration. Using inducible, stably transfected human embryonic stem cells (hESCs) capable of the short hairpin RNA-mediated knockdown (KD) of HMGB1 and HMGB2, we provide evidence that deregulation of HMGB1 or HMGB2 expression in hESCs and their differentiated derivatives (neuroectodermal cells) results in distinct modulation of telomere homeostasis. Whereas HMGB1 enhances telomerase activity, HMGB2 acts as a negative regulator of telomerase activity in the cell. Stimulation of telomerase activity in the HMGB2-deficient cells may be related to activation of the PI3K/protein kinase B/ glycogen synthase kinase-3β/β-catenin signaling pathways by HMGB1, augmented TERT/telomerase RNA subunit transcription, and possibly also because of changes in telomeric repeat-containing RNA (TERRA) and TERRA-polyA+ transcription. The impact of HMGB1/2 KD on telomerase transcriptional regulation observed in neuroectodermal cells is partially masked in hESCs by their pluripotent state. Our findings on differential roles of HMGB1 and HMGB2 proteins in regulation of telomerase activity may suggest another possible outcome of HMGB1 targeting in cells, which is currently a promising approach aiming at increasing the anticancer activity of cytotoxic agents.-Kučírek, M., Bagherpoor, A. J., Jaroš, J., Hampl, A., Štros, M. HMGB2 is a negative regulator of telomerase activity in human embryonic stem and progenitor cells.
Collapse
Affiliation(s)
- Martin Kučírek
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Alireza J Bagherpoor
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Josef Jaroš
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Aleš Hampl
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Cell and Tissue Regeneration, International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michal Štros
- Laboratory of Analysis of Chromosomal Proteins, Department of Cell Biology and Radiobiology, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
15
|
Zhang P, Lu Y, Gao S. High-mobility group box 2 promoted proliferation of cervical cancer cells by activating AKT signaling pathway. J Cell Biochem 2019; 120:17345-17353. [PMID: 31209930 DOI: 10.1002/jcb.28998] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Cervical cancer is one of the leading killers for female worldwide. Nevertheless, the less knowledge of molecular mechanism for cervical cancer limited the improvement of treatment effects. High-mobility group box 2 (HMGB2) belongs to the HMGB family, which could play diverse roles in cell proliferation. This work mainly aimed to study the functions of HMGB2 on cervical cancer cells proliferation. HMGB2 was highly expressed in cervical cancer tissue. The results of real-time polymerase chain reaction and Western blot analysis showed that HMGB2 was expressed in all the five cervical cancer cells (HeLa, CaSki, SiHa, C-33A, and C4-1 cells). In addition, HMGB2 overexpression obviously improved cell viability and promoted cell cycle progression, which suggested that HMGB2 could promote proliferation of cervical cancer cells. Moreover, HMGB2 overexpression increased the level of p-AKT and reduced the levels of p21 and p27. However, HMGB2 downregulation had contrary influences on cell proliferation, cell cycle distribution and the levels of p-AKT, p21, and p27. Notably, LY294002, as an inhibitor of AKT signaling pathway, could significantly weaken the effects of HMGB2 overexpression, which indicated that HMGB2 might promote cell proliferation by activating AKT signaling pathway. Therefore, HMGB2 was hopeful to be a candidate as a new biomarker and therapy target for cervical cancer.
Collapse
Affiliation(s)
- Pengnan Zhang
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Yuan Lu
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| | - Shujun Gao
- Shanghai Key Laboratory of Female Reproductive Endocrine-Related Disease, Fudan University, Shanghai, People's Republic of China.,Center of Diagnosis and Treatment for Cervical Diseases, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Mukherjee A, Huynh V, Gaines K, Reh WA, Vasquez KM. Targeting the High-Mobility Group Box 3 Protein Sensitizes Chemoresistant Ovarian Cancer Cells to Cisplatin. Cancer Res 2019; 79:3185-3191. [PMID: 31061066 DOI: 10.1158/0008-5472.can-19-0542] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/16/2022]
Abstract
Chemotherapeutic regimens for ovarian cancer often include the use of DNA interstrand crosslink-inducing agents (e.g., platinum drugs) or DNA double-strand break-inducing agents. Unfortunately, the majority of patients fail to maintain a durable response to treatment, in part, due to drug resistance, contributing to a poor survival rate. In this study, we report that cisplatin sensitivity can be restored in cisplatin-resistant ovarian cancer cells by targeting the chromatin-associated high-mobility group box 3 (HMGB3) protein. HMGB proteins have been implicated in the pathogenesis and prognosis of ovarian cancer, and HMGB3 is often upregulated in cancer cells, making it a potential selective target for therapeutic intervention. Depletion of HMGB3 in cisplatin-sensitive and cisplatin-resistant cells resulted in transcriptional downregulation of the kinases ATR and CHK1, which attenuated the ATR/CHK1/p-CHK1 DNA damage signaling pathway. HMGB3 was associated with the promoter regions of ATR and CHK1, suggesting a new role for HMGB3 in transcriptional regulation. Furthermore, HMGB3 depletion significantly increased apoptosis in cisplatin-resistant A2780/CP70 cells after cisplatin treatment. Taken together, our results indicate that targeted depletion of HMGB3 attenuates cisplatin resistance in human ovarian cancer cells, increasing tumor cell sensitivity to platinum drugs. SIGNIFICANCE: This study shows that targeting HMGB3 is a potential therapeutic strategy to overcome chemoresistance in ovarian cancer.
Collapse
Affiliation(s)
- Anirban Mukherjee
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Van Huynh
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Kailee Gaines
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Wade Alan Reh
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
17
|
Dynamic expression of ZNF382 and its tumor-suppressor role in hepatitis B virus-related hepatocellular carcinogenesis. Oncogene 2019; 38:4804-4819. [PMID: 30804458 DOI: 10.1038/s41388-019-0759-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/24/2018] [Accepted: 02/10/2019] [Indexed: 02/07/2023]
Abstract
Hepatitis B virus (HBV) infection is the primary cause of hepatocellular carcinoma (HCC). Zinc-finger protein 382 (ZNF382), which belongs to zinc-finger protein family, has been documented to be downregulated in certain types of cancer. However, its role in HCC remains largely unknown. In this study, we demonstrated that ZNF382 expression was significantly elevated in HBV-infected liver cirrhosis tissues relative to HBV-negative normal liver tissues at protein levels, but not at mRNA levels, and was positively correlated with the levels of HBV DNA and hepatitis B virus X protein (HBx). Further studies revealed that ZNF382 was a target of miR-6867, and HBx promoted the translation of ZNF382 during HBV chronic infection through Erk-mediated miR-6867 inhibition. In addition, our data showed that ZNF382 was frequently downregulated by promoter methylation in HBV-related HCCs relative to HBV-infected liver cirrhosis tissues, and decreased expression of ZNF382 was strongly correlated with poor survival in early-stage HCC patients. Functional studies demonstrated that ZNF382 was a potent tumor suppressor in HCC cells through inhibiting cell proliferation, colony formation, migration, invasion, and tumorigenic potential in nude mice, and inducing cell apoptosis. Mechanistically, ZNF382 exerted its tumor-suppressor functions in HCC through transcriptionally repressing its downstream targets such as Fos proto-oncogene (FOS), Jun proto-oncogene (JUN), disheveled segment polarity protein 2 (DVL2), and frizzled class receptor 1 (FZD1), thereby impairing the activities of activating protein 1 (AP-1) and Wnt/β-catenin pathways and activating p53 signaling. Altogether, our data show that ZNF382 acts as a tumor suppressor, and is co-regulated by HBx and epigenetic mechanism in HBV-related hepatocellular carcinogenesis.
Collapse
|
18
|
Suzuki S, Kato H, Fuji S, Naiki T, Naiki-Ito A, Yamashita Y, Takahashi S. Early detection of prostate carcinogens by immunohistochemistry of HMGB2. J Toxicol Sci 2018; 43:359-367. [PMID: 29877212 DOI: 10.2131/jts.43.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Screening prostatic carcinogens is time-consuming due to the time needed to induce preneoplastic and neoplastic lesions. To overcome this, we investigated alternative molecular markers for detection of prostatic carcinogens in a short period in rats. After treatment with 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), expression of high-mobility group protein B2 (HMGB2) was up-regulated in rat ventral prostate. To evaluate the applicability of HMGB2 in the early detection of carcinogenicity of chemicals using animal models, we examined HMGB2 expression in prostate of rats. Six-week-old male F344 rats were gavaged for four weeks with a total of eight individual chemicals, divided into two categories based on prostate carcinogenicity. Animals were sacrificed at the end of the study and HMGB2 immunohistochemistry was performed. HMGB2 expression in least one prostate lobe was significantly increased by all four prostate carcinogens compared with the controls. In contrast, the four chemicals that were not carcinogenic in the prostate did not cause HMGB2 up-regulation. Additionally, high HMGB2 expression in neoplastic lesions in both rat and human was detected. Therefore HMGB2 expression may be a good screening tool for the identification of potential of prostate carcinogens.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences.,Pathology Division, Nagoya City East Medical Center
| | - Hiroyuki Kato
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Satoshi Fuji
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Taku Naiki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Aya Naiki-Ito
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Yoriko Yamashita
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| | - Satoru Takahashi
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences
| |
Collapse
|
19
|
Li H, Zhang H, Wang Y. Centromere protein U facilitates metastasis of ovarian cancer cells by targeting high mobility group box 2 expression. Am J Cancer Res 2018; 8:835-851. [PMID: 29888106 PMCID: PMC5992511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023] Open
Abstract
Ovarian carcinoma is a fatal malignancy in gynecological malignancies, and the prognosis still remains poor due to the lack of effective therapeutic targets. This study demonstrated that centromere protein U (CENPU) was up-regulated in ovarian cancer. The ectopic expression of CENPU in ovarian cancer cells expedited the proliferation, migration and invasion of ovarian cancer cells in vitro. Besides, the over-expression of CENPU markedly advanced the tumorigenicity of ovarian cancer cells in vivo whereas knocked-down CENPU resulted in opposite outcome. In addition, high mobility group box 2 (HMGB2) identified as a down-target of CENPU in ovarian cancer cells was positively correlated with the expression level of CENPU in ovarian cancer tissues. Finally, it was demonstrated that CENPU could enhance the aggressiveness ability of the ovarian cancer cells by regulating HMGB2. This research provided new insight for CENPU, promoted the progression of ovarian cancer and represented a novel target for anti-ovarian cancer therapy.
Collapse
Affiliation(s)
- Hongjuan Li
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| | - Hui Zhang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| | - Yali Wang
- Department of Obstetrics and Gynecology, Zhengzhou Central Hospital Affiliated to Zhengzhou University Zhengzhou 450007, P. R. China
| |
Collapse
|
20
|
Kim HK, Kang MA, Kim MS, Shin YJ, Chi SG, Jeong JH. Transcriptional Repression of High-Mobility Group Box 2 by p21 in Radiation-Induced Senescence. Mol Cells 2018; 41:362-372. [PMID: 29487276 PMCID: PMC5935093 DOI: 10.14348/molcells.2018.2291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 01/30/2023] Open
Abstract
High mobility group box 2 (HMGB2) is an abundant, chromatin-associated, non-histone protein involved in transcription, chromatin remodeling, and recombination. Recently, the HMGB2 gene was found to be significantly downregulated during senescence and shown to regulate the expression of senescent-associated secretory proteins. Here, we demonstrate that HMGB2 transcription is repressed by p21 during radiation-induced senescence through the ATM-p53-p21 DNA damage signaling cascade. The loss of p21 abolished the downregulation of HMGB2 caused by ionizing radiation, and the conditional induction of p21 was sufficient to repress the transcription of HMGB2. We also showed that the p21 protein binds to the HMGB2 promoter region, leading to sequestration of RNA polymerase and transcription factors E2F1, Sp1, and p300. In contrast, NF-Y, a CCAAT box-binding protein complex, is required for the expression of HMGB2, but NF-Y binding to the HMGB2 promoter was unaffected by either radiation or p21 induction. A proximity ligation assay results confirmed that the chromosome binding of E2F1 and Sp1 was inhibited by p21 induction. As HMGB2 have been shown to regulate premature senescence by IR, targeting the p21-mediated repression of HMGB2 could be a strategy to overcome the detrimental effects of radiation-induced senescence.
Collapse
Affiliation(s)
- Hyun-Kyung Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Mi Ae Kang
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Mi-Sook Kim
- Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Young-Joo Shin
- Department of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul 01757, Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Korea
| | - Jae-Hoon Jeong
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
- Radiological & Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon 34113, Korea
| |
Collapse
|
21
|
Zhang Z, Chang Y, Zhang J, Lu Y, Zheng L, Hu Y, Zhang F, Li X, Zhang W, Li X. HMGB3 promotes growth and migration in colorectal cancer by regulating WNT/β-catenin pathway. PLoS One 2017; 12:e0179741. [PMID: 28678825 PMCID: PMC5497964 DOI: 10.1371/journal.pone.0179741] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading cause of cancer-related deaths and a major health problem. High mobility group box 3 (HMGB3), a member of the high-mobility group box (HMGB) family, was reported to be over-expressed in gastric carcinoma and bladder cancer. However, the function of HMGB3 in CRC remains unclear. Here, we found that HMGB3 was up-regulated in CRC at both mRNA and protein levels. qRT-PCR results showed that high expression of HMGB3 had positive correlation with serosal invasion, lymph metastasis, and tumor–node–metastasis (TNM) stage in CRC patient. Functional experiments showed that HMGB3 can promote CRC cells proliferation and migration in vitro. Moreover, we found HMGB3 can active WNT/β-catenin pathway to increase the expression level of c-Myc and MMP7. These results may be the reason for HMGB3 oncogene role in CRC. In summary, our data indicated that HMGB3 may serve as an oncoprotein and could be used as a potential prognostic marker in CRC.
Collapse
Affiliation(s)
- Zheying Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Pathology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yaya Chang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- ShijingShan Teaching Hospital of Capital Medical University, Beijing, China
| | - Jianming Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanxia Lu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Zheng
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yuhan Hu
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaomin Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenjuan Zhang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xuenong Li
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- * E-mail:
| |
Collapse
|
22
|
Specific TP53 Mutants Overrepresented in Ovarian Cancer Impact CNV, TP53 Activity, Responses to Nutlin-3a, and Cell Survival. Neoplasia 2016; 17:789-803. [PMID: 26585234 PMCID: PMC4656807 DOI: 10.1016/j.neo.2015.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/19/2015] [Accepted: 10/23/2015] [Indexed: 01/22/2023] Open
Abstract
Evolutionary Action analyses of The Cancer Gene Atlas data sets show that many specific p53 missense and gain-of-function mutations are selectively overrepresented and functional in high-grade serous ovarian cancer (HGSC). As homozygous alleles, p53 mutants are differentially associated with specific loss of heterozygosity (R273; chromosome 17); copy number variation (R175H; chromosome 9); and up-stream, cancer-related regulatory pathways. The expression of immune-related cytokines was selectively related to p53 status, showing for the first time that specific p53 mutants impact, and are related to, the immune subtype of ovarian cancer. Although the majority (31%) of HGSCs exhibit loss of heterozygosity, a significant number (24%) maintain a wild-type (WT) allele and represent another HGSC subtype that is not well defined. Using human and mouse cell lines, we show that specific p53 mutants differentially alter endogenous WT p53 activity; target gene expression; and responses to nutlin-3a, a small molecular that activates WT p53 leading to apoptosis, providing "proof of principle" that ovarian cancer cells expressing WT and mutant alleles represent a distinct ovarian cancer subtype. We also show that siRNA knock down of endogenous p53 in cells expressing homozygous mutant alleles causes apoptosis, whereas cells expressing WT p53 (or are heterozygous for WT and mutant p53 alleles) are highly resistant. Therefore, despite different gene regulatory pathways associated with specific p53 mutants, silencing mutant p53 might be a suitable, powerful, global strategy for blocking ovarian cancer growth in those tumors that rely on mutant p53 functions for survival. Knowing p53 mutational status in HGSC should permit new strategies tailored to control this disease.
Collapse
|
23
|
Lucas ES, Dyer NP, Murakami K, Lee YH, Chan YW, Grimaldi G, Muter J, Brighton PJ, Moore JD, Patel G, Chan JKY, Takeda S, Lam EWF, Quenby S, Ott S, Brosens JJ. Loss of Endometrial Plasticity in Recurrent Pregnancy Loss. Stem Cells 2015; 34:346-56. [PMID: 26418742 DOI: 10.1002/stem.2222] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/30/2015] [Accepted: 09/04/2015] [Indexed: 12/15/2022]
Abstract
Menstruation drives cyclic activation of endometrial progenitor cells, tissue regeneration, and maturation of stromal cells, which differentiate into specialized decidual cells prior to and during pregnancy. Aberrant responsiveness of human endometrial stromal cells (HESCs) to deciduogenic cues is strongly associated with recurrent pregnancy loss (RPL), suggesting a defect in cellular maturation. MeDIP-seq analysis of HESCs did not reveal gross perturbations in CpG methylation in RPL cultures, although quantitative differences were observed in or near genes that are frequently deregulated in vivo. However, RPL was associated with a marked reduction in methylation of defined CA-rich motifs located throughout the genome but enriched near telomeres. Non-CpG methylation is a hallmark of cellular multipotency. Congruently, we demonstrate that RPL is associated with a deficiency in endometrial clonogenic cell populations. Loss of epigenetic stemness features also correlated with intragenic CpG hypomethylation and reduced expression of HMGB2, coding high mobility group protein 2. We show that knockdown of this sequence-independent chromatin protein in HESCs promotes senescence and impairs decidualization, exemplified by blunted time-dependent secretome changes. Our findings indicate that stem cell deficiency and accelerated stromal senescence limit the differentiation capacity of the endometrium and predispose for pregnancy failure.
Collapse
Affiliation(s)
- Emma S Lucas
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Nigel P Dyer
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Keisuke Murakami
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Yie Hou Lee
- Interdisciplinary Research Groups of BioSystems and Micromechanics, and Infectious Diseases, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Yi-Wah Chan
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Giulia Grimaldi
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Joanne Muter
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Paul J Brighton
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Jonathan D Moore
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Gnyaneshwari Patel
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Jerry K Y Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, United Kingdom
| | - Siobhan Quenby
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| | - Sascha Ott
- Warwick Systems Biology Centre, University of Warwick, Coventry, England, United Kingdom
| | - Jan J Brosens
- Division of Reproductive Health, Clinical Science Research Laboratories, Warwick Medical School, University of Warwick, Coventry, England, United Kingdom
| |
Collapse
|
24
|
Syed N, Chavan S, Sahasrabuddhe NA, Renuse S, Sathe G, Nanjappa V, Radhakrishnan A, Raja R, Pinto SM, Srinivasan A, Prasad TSK, Srikumar K, Gowda H, Santosh V, Sidransky D, Califano JA, Pandey A, Chatterjee A. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma. Proteomics 2015; 15:383-93. [PMID: 25327479 DOI: 10.1002/pmic.201400338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/24/2014] [Accepted: 10/13/2014] [Indexed: 12/16/2022]
Abstract
Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737).
Collapse
Affiliation(s)
- Nazia Syed
- Institute of Bioinformatics, International Technology Park, Bangalore, India; Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiao WH, Qu XL, Li XM, Sun YL, Zhao HX, Wang S, Zhou X. Identification of commonly dysregulated genes in colorectal cancer by integrating analysis of RNA-Seq data and qRT-PCR validation. Cancer Gene Ther 2015; 22:278-84. [PMID: 25908452 DOI: 10.1038/cgt.2015.20] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 02/07/2023]
Abstract
The progression of colorectal cancer (CRC) is a multistep process and metastatic CRC is always incurable; consequently, CRC is the leading cause of cancer-related deaths. There is therefore an urgent need for identifying useful biomarkers with enough sensitivity and specificity to detect this disease at early stages, which will significantly reduce the mortality for this malignancy. In this study, we performed an integrating analysis of different RNA-Seq data sets to find new candidate biomarkers for diagnosis, prognosis and as therapeutic targets for this malignancy, as well as to elucidate the molecular mechanisms of CRC carcinogenesis. We identified 883 differentially expressed genes (DEGs) across the studies between CRC and normal control (NC) tissues by combining five RNA-Seq data sets. Gene function analysis revealed high correlation with carcinogenesis. The top 10 most significantly DEGs were further evaluated by quantitative real-time polymerase chain reaction (qRT-PCR) in both rectal cancer (RC) and colon cancer (CC), and the results matched well with integrating data, suggesting that the method of integrating analysis of different RNA-seq data sets is acceptable. Therefore, integrating analysis of different RNA-seq data sets may be a useful way to overcome the limitation of small sample size in a single RNA-seq study. In addition, our study showed that some genes, such as SIM2, ADAMTS6, FOXD4L4 and DNAH5, may have an important role in the development of CRC, which could be applied for diagnosis, prognosis and as therapy for this malignancy. Our findings would also help to understand the pathology of CRC.
Collapse
Affiliation(s)
- W H Xiao
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| | - X L Qu
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| | - X M Li
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| | - Y L Sun
- Beijing Yangshen Bioinformatic Technology, Beijing, China
| | - H X Zhao
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| | - S Wang
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| | - X Zhou
- Department of Oncology, The First affiliated Hospital of PLA General Hospital, Beijing, China
| |
Collapse
|
26
|
Yang X, Song JH, Cheng Y, Wu W, Bhagat T, Yu Y, Abraham JM, Ibrahim S, Ravich W, Roland BC, Khashab M, Singh VK, Shin EJ, Yang X, Verma AK, Meltzer SJ, Mori Y. Long non-coding RNA HNF1A-AS1 regulates proliferation and migration in oesophageal adenocarcinoma cells. Gut 2014; 63:881-90. [PMID: 24000294 PMCID: PMC4612639 DOI: 10.1136/gutjnl-2013-305266] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Long non-coding RNAs (lncRNA) have been shown to play important roles in the development and progression of cancer. However, functional lncRNAs and their downstream mechanisms are largely unknown in the molecular pathogenesis of oesophageal adenocarcinoma (EAC) and its progression. DESIGN lncRNAs that are abnormally upregulated in EACs were identified by RNA-sequencing analysis, followed by quantitative RT-PCR (qRTPCR) validation using tissues from 25 EAC patients. Cell biological assays in combination with small interfering RNA-mediated knockdown were performed in order to probe the functional relevance of these lncRNAs. RESULTS We discovered that a lncRNA, HNF1A-AS1, is markedly upregulated in human primary EACs relative to their corresponding normal oesophageal tissues (mean fold change 10.6, p<0.01). We further discovered that HNF1A-AS1 knockdown significantly inhibited cell proliferation and anchorage-independent growth, suppressed S-phase entry, and inhibited cell migration and invasion in multiple in vitro EAC models (p<0.05). A gene ontological analysis revealed that HNF1A-AS1 knockdown preferentially affected genes that are linked to assembly of chromatin and the nucleosome, a mechanism essential to cell cycle progression. The well known cancer-related lncRNA, H19, was the gene most markedly inhibited by HNF1A-AS1 knockdown. Consistent to this finding, there was a significant positive correlation between HNF1A-AS1 and H19 expression in primary EACs (p<0.01). CONCLUSIONS We have discovered abnormal upregulation of a lncRNA, HNF1A-AS1, in human EAC. Our findings suggest that dysregulation of HNF1A-AS1 participates in oesophageal tumorigenesis, and that this participation may be mediated, at least in part, by modulation of chromatin and nucleosome assembly as well as by H19 induction.
Collapse
Affiliation(s)
- Xue Yang
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Model Organism Division, E-Institutes of Shanghai Universities, Shanghai Jiao-tong University School of Medicine, Shanghai, People’s Republic of China,State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, People’s Republic of China
| | - Jee Hoon Song
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wenjing Wu
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tushar Bhagat
- Department of Medicine and Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Yiting Yu
- Department of Medicine and Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John M Abraham
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sariat Ibrahim
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William Ravich
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bani Chander Roland
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mouen Khashab
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vikesh K Singh
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eun Ji Shin
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xiao Yang
- Model Organism Division, E-Institutes of Shanghai Universities, Shanghai Jiao-tong University School of Medicine, Shanghai, People’s Republic of China,State Key Laboratory of Proteomics, Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, People’s Republic of China
| | - Amit K Verma
- Department of Medicine and Oncology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yuriko Mori
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|