1
|
Eralp B, Sefer E. Reference-free inferring of transcriptomic events in cancer cells on single-cell data. BMC Cancer 2024; 24:607. [PMID: 38769480 PMCID: PMC11107047 DOI: 10.1186/s12885-024-12331-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Cancerous cells' identity is determined via a mixture of multiple factors such as genomic variations, epigenetics, and the regulatory variations that are involved in transcription. The differences in transcriptome expression as well as abnormal structures in peptides determine phenotypical differences. Thus, bulk RNA-seq and more recent single-cell RNA-seq data (scRNA-seq) are important to identify pathogenic differences. In this case, we rely on k-mer decomposition of sequences to identify pathogenic variations in detail which does not need a reference, so it outperforms more traditional Next-Generation Sequencing (NGS) analysis techniques depending on the alignment of the sequences to a reference. RESULTS Via our alignment-free analysis, over esophageal and glioblastoma cancer patients, high-frequency variations over multiple different locations (repeats, intergenic regions, exons, introns) as well as multiple different forms (fusion, polyadenylation, splicing, etc.) could be discovered. Additionally, we have analyzed the importance of less-focused events systematically in a classic transcriptome analysis pipeline where these events are considered as indicators for tumor prognosis, tumor prediction, tumor neoantigen inference, as well as their connection with respect to the immune microenvironment. CONCLUSIONS Our results suggest that esophageal cancer (ESCA) and glioblastoma processes can be explained via pathogenic microbial RNA, repeated sequences, novel splicing variants, and long intergenic non-coding RNAs (lincRNAs). We expect our application of reference-free process and analysis to be helpful in tumor and normal samples differential scRNA-seq analysis, which in turn offers a more comprehensive scheme for major cancer-associated events.
Collapse
Affiliation(s)
- Batuhan Eralp
- Department of Computer Science, Ozyegin University, Istanbul, Turkey
| | - Emre Sefer
- Department of Computer Science, Ozyegin University, Istanbul, Turkey.
| |
Collapse
|
2
|
Kumari P, Beeraka NM, Tengli A, Bannimath G, Baath RK, Patil M. Recent Updates on Oncogenic Signaling of Aurora Kinases in Chemosensitive, Chemoresistant Cancers: Novel Medicinal Chemistry Approaches for Targeting Aurora Kinases. Curr Med Chem 2024; 31:3502-3528. [PMID: 37138483 DOI: 10.2174/0929867330666230503124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/02/2023] [Accepted: 02/27/2023] [Indexed: 05/05/2023]
Abstract
The Aurora Kinase family (AKI) is composed of serine-threonine protein kinases involved in the modulation of the cell cycle and mitosis. These kinases are required for regulating the adherence of hereditary-related data. Members of this family can be categorized into aurora kinase A (Ark-A), aurora kinase B (Ark-B), and aurora kinase C (Ark-C), consisting of highly conserved threonine protein kinases. These kinases can modulate cell processes such as spindle assembly, checkpoint pathway, and cytokinesis during cell division. The main aim of this review is to explore recent updates on the oncogenic signaling of aurora kinases in chemosensitive/chemoresistant cancers and to explore the various medicinal chemistry approaches to target these kinases. We searched Pubmed, Scopus, NLM, Pubchem, and Relemed to obtain information pertinent to the updated signaling role of aurora kinases and medicinal chemistry approaches and discussed the recently updated roles of each aurora kinases and their downstream signaling cascades in the progression of several chemosensitive/chemoresistant cancers; subsequently, we discussed the natural products (scoulerine, Corynoline, Hesperidin Jadomycin-B, fisetin), and synthetic, medicinal chemistry molecules as aurora kinase inhibitors (AKIs). Several natural products' efficacy was explained as AKIs in chemosensitization and chemoresistant cancers. For instance, novel triazole molecules have been used against gastric cancer, whereas cyanopyridines are used against colorectal cancer and trifluoroacetate derivatives could be used for esophageal cancer. Furthermore, quinolone hydrazine derivatives can be used to target breast cancer and cervical cancer. In contrast, the indole derivatives can be preferred to target oral cancer whereas thiosemicarbazone-indole could be used against prostate cancer, as reported in an earlier investigation against cancerous cells. Moreover, these chemical derivatives can be examined as AKIs through preclinical studies. In addition, the synthesis of novel AKIs through these medicinal chemistry substrates in the laboratory using in silico and synthetic routes could be beneficial to develop prospective novel AKIs to target chemoresistant cancers. This study is beneficial to oncologists, chemists, and medicinal chemists to explore novel chemical moiety synthesis to target specifically the peptide sequences of aurora kinases in several chemoresistant cancer cell types.
Collapse
Affiliation(s)
- Pooja Kumari
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Narasimha Murthy Beeraka
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
- Department of Human Anatomy, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya str., Moscow 119991, Russia
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Gurupadayya Bannimath
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| | - Ramandeep Kaur Baath
- Department of Pharmaceautics, IFTM University, Lodhipur Rajput, NH-24 Delhi Road, Moradabad 244102, Uttar Pradesh, India
| | - Mayuri Patil
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education and Research (JSS AHER), Mysuru, Karnataka, India
| |
Collapse
|
3
|
Chen HY, Li Q, Zhou PP, Yang TX, Liu SW, Zhang TF, Cui Z, Lyu JJ, Wang YG. Mechanisms of Chinese Medicine in Gastroesophageal Reflux Disease Treatment: Data Mining and Systematic Pharmacology Study. Chin J Integr Med 2023; 29:838-846. [PMID: 35997858 DOI: 10.1007/s11655-022-3538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To identify specific Chinese medicines (CMs) that may benefit patients with gastroesophageal reflux disease (GERD), and explore the action mechanism. METHODS Domestic and foreign literature on the treatment of GERD with CMs was searched and selected from China National Knowledge Infrastructure, China Science and Technology Journal Database, Wanfang Database, and PubMed from October 1, 2011 to October 1, 2021. Data from all eligible articles were extracted to establish the database of CMs for GERD. Apriori algorithm of data mining techniques was used to analyze the rules of herbs selection and core Chinese medicine formulas were identified. A system pharmacology approach was used to explore the action mechanism of these medicines. RESULTS A total of 278 prescriptions for GERD were analyzed, including 192 CMs. Results of Apriori algorithm indicated that Evodiae Fructus and Coptidis Rhizoma were the highest confidence combination. A total of 32 active ingredients and 66 targets were screened for the treatment of GERD. Enrichment analysis showed that the mechanisms of action mainly involved pathways in cancer, fluid shear stress and atherosclerosis, advanced glycation end product (AGE), the receptor for AGE signaling pathway in diabetic complications, bladder cancer, and rheumatoid arthritis. CONCLUSION Evodiae Fructus and Coptidis Rhizoma are the core drugs in the treatment of GERD and the potential mechanism of action of these medicines includes potential target and pathways.
Collapse
Affiliation(s)
- Hao-Yu Chen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Qi Li
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Ping-Ping Zhou
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Tian-Xiao Yang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Shao-Wei Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Teng-Fei Zhang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Zhen Cui
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Jing-Jing Lyu
- Department of Gastroenterology, Hebei Province Hospital of Chinese Medicine, Shijiazhuang, 050091, China
| | - Yan-Gang Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050091, China.
- Department of Gastroenterology, Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing, 100029, China.
| |
Collapse
|
4
|
Maev IV, Livzan MA, Mozgovoi SI, Gaus OV, Bordin DS. Esophageal Mucosal Resistance in Reflux Esophagitis: What We Have Learned So Far and What Remains to Be Learned. Diagnostics (Basel) 2023; 13:2664. [PMID: 37627923 PMCID: PMC10453919 DOI: 10.3390/diagnostics13162664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/21/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Gastroesophageal reflux disease (GERD) has the highest prevalence among diseases of the digestive system and is characterized by a significant decrease in patients' quality of life, comparable to arterial hypertension and coronary heart disease. One in every ten cases of reflux esophagitis leads to the formation of Barrett's esophagus, which is associated with a high risk of esophagus adenocarcinoma. The key factors determining the progression of the disease are the frequency and duration of the reflux of the stomach's contents. As a result, refluxate, which includes hydrochloric acid, pepsin, and, in the case of concomitant duodeno-gastric reflux, bile acids and lysolecithin, is thrown into the overlying sections of the digestive tract. At the same time, in addition to aggression factors, it is necessary to take into account the state of resistance in the esophageal mucosa to the effects of aggressive refluxate molecules. This review was prepared using systematized data on the protective properties of the esophageal mucosa and modern methods to assess the mucosal barrier in reflux esophagitis. Lesions of the epithelial barrier structure in the esophagus are recognized as the main pathogenetic factor in the development of reflux esophagitis and are a potentially significant therapeutic target in the treatment of GERD and Barrett's esophagus. This article presents the characteristics of the esophageal mucosal barrier and the protective mechanisms of the esophagus's mucous membrane in conditions of gastroesophageal reflux. Diagnostic approaches for assessing the course of reflux esophagitis are described for both histological criteria and the possibility of a comprehensive assessment of the state of mucins, tight-junction proteins, and the proliferative activity of the mucosa, including under the conditions of ongoing therapy.
Collapse
Affiliation(s)
- Igor V. Maev
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Maria A. Livzan
- Department of Internal Medicine and Gastroenterology, Omsk State Medical University, 644099 Omsk, Russia
| | - Sergei I. Mozgovoi
- Department of Pathological Anatomy, Omsk State Medical University, 644099 Omsk, Russia
| | - Olga V. Gaus
- Department of Internal Medicine and Gastroenterology, Omsk State Medical University, 644099 Omsk, Russia
| | - Dmitry S. Bordin
- Department of Propaedeutic of Internal Diseases and Gastroenterology, A.I. Yevdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
- Department of Pancreatic, Biliary and Upper Digestive Tract Disorders, A.S. Loginov Moscow Clinical Scientific Center, 111123 Moscow, Russia
- Department of Outpatient Therapy and Family Medicine, Tver State Medical University, 170100 Tver, Russia
| |
Collapse
|
5
|
Hu K, Zheng QM, Wang YP, Zhao MM, Sun ZG. Clinical and prognostic features of E-cadherin in adenocarcinoma of the esophagogastric junction patients. Eur J Cancer Prev 2023; 32:119-125. [PMID: 36484275 DOI: 10.1097/cej.0000000000000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The expression, activity, and functional role of E-cadherin in adenocarcinoma of the esophagogastric junction (AEG) are unclear. In this research, we evaluated the expression of E-cadherin in AEG, as well as its clinicopathological significance and prognostic value. METHODS A total of 65 AEG samples and 10 normal paracancerous tissues undergoing AEG resection in thoracic surgery were collected. The samples were immunohistochemically examined for expression levels of E-cadherin. The Chi-square test was used to determine if E-cadherin expression correlated with the clinicopathological features of AEG patients. The link between clinicopathological features and 5-year survival rates was investigated using Kaplan-Meier survival curves and multifactorial Cox regression analysis. RESULTS In AEG tissues, E-cadherin expression was considerably reduced. Differentiation grade ( P = 0.013), infiltration depth ( P = 0.033), and clinicopathological stage ( P = 0.045) were substantially linked to the level of E-cadherin expression. Five-year survival rates of AEG patients were affected by E-cadherin expression ( P = 0.037), tumor differentiation ( P = 0.010), lymph node metastasis ( P < 0.001), and clinicopathological stage ( P = 0.037). Tumor differentiation ( P = 0.033) and lymph node metastasis ( P = 0.001) were independent risk factors for shorter overall survival. CONCLUSION E-cadherin expression in AEG was significantly decreased, which was strongly related to tumor differentiation, infiltration, and clinicopathological stage. An E-cadherin deficiency would lead to poor prognosis in AEG patients. E-cadherin may play a crucial role in AEG invasion and metastasis. Low expression of E-cadherin may be a potential early biomarker and overall survival predictor for AEG patients.
Collapse
Affiliation(s)
- Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan
- School of Clinical Medicine, Weifang Medical University, Weifang
| | | | - Ye-Peng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan
| |
Collapse
|
6
|
Mohammadi Z, Asadi J, Jafari SM. Synergistic effects of BAY606583 on docetaxel in esophageal cancer through modulation of ERK1/2. Cell Biochem Funct 2022; 40:569-577. [PMID: 35758556 DOI: 10.1002/cbf.3726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/30/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Abstract
Docetaxel (DTX) is a taxane chemotherapy agent used to treat many types of cancers, including esophageal squamous cell carcinoma. Adenosine is a purinergic signaling molecule that contributes to cancer cell proliferation via A2B adenosine receptor (A2BAR) activation. Extracellular signal-regulated protein kinase (ERK) plays a crucial role in cell proliferation in various types of cancers. Stimulation of A2BAR involves a regulated ERK signaling pathway, and might provide a fascinating approach for treatment, leading to decreased proliferation in certain tumors that express A2BAR. Recent studies demonstrated that DTX and A2BAR have anticancer effects. The current study was designed to investigate the synergistic effect of the A2BAR agonist (BAY606583) on DTX in inducing antiproliferation effects on esophageal squamous cells carcinoma (ESCCs). The cell viability was assessed using the MTT assay in KYSE-30 and Ym-1 cells. In addition, the synergistic effect of DTX on the A2BAR agonist was evaluated. Subsequently, apoptosis was assessed by Annexin-V and propidium iodide staining, and Bcl-2, Bax, and ERK1/2 protein-level expressions were evaluated by Western blot. Use of BAY606583 and cotreatment of DTX and BAY606583 significantly decreased cell proliferation in KYSE-30 and Ym-1 cell lines. The use of BAY606583 and cotreatment of DTX with the A2BAR agonist induced apoptosis in KYSE-30 and Ym-1 cells. Western blot analysis revealed that the use of the A2BAR agonist and cotreatment of DTX with the A2BAR agonist inhibited the expression of apoptotic regulatory proteins as well as the expression of ERK1/2 proteins. Our findings suggested that use of BAY606583 and cotreatment of BAY606583/DTX have an antiproliferative effect on ESCC cell lines through ERK signaling pathway inhibition. BAY606583 has a synergistic effect on DTX, which could be used as an adjuvant for esophageal cancer therapy.
Collapse
Affiliation(s)
- Zinab Mohammadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Jahanbakhsh Asadi
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyyed Mehdi Jafari
- Metabolic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Biochemistry and Biophysics, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
7
|
Comprehensive RNA dataset of tissue and plasma from patients with esophageal cancer or precursor lesions. Sci Data 2022; 9:86. [PMID: 35288573 PMCID: PMC8921197 DOI: 10.1038/s41597-022-01176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 01/25/2022] [Indexed: 11/29/2022] Open
Abstract
AbstractIn the past decades, the incidence of esophageal adenocarcinoma has increased dramatically in Western populations. Better understanding of disease etiology along with the identification of novel prognostic and predictive biomarkers are urgently needed to improve the dismal survival probabilities. Here, we performed comprehensive RNA (coding and non-coding) profiling in various samples from 17 patients diagnosed with esophageal adenocarcinoma, high-grade dysplastic or non-dysplastic Barrett’s esophagus. Per patient, a blood plasma sample, and a healthy and disease esophageal tissue sample were included. In total, this comprehensive dataset consists of 102 sequenced libraries from 51 samples. Based on this data, 119 expression profiles are available for three biotypes, including miRNA (51), mRNA (51) and circRNA (17). This unique resource allows for discovery of novel biomarkers and disease mechanisms, comparison of tissue and liquid biopsy profiles, integration of coding and non-coding RNA patterns, and can serve as a validation dataset in other RNA landscaping studies. Moreover, structural RNA differences can be identified in this dataset, including protein coding mutations, fusion genes, and circular RNAs.
Collapse
|
8
|
Li F, Huang K, Pan C, Xiao Y, Zheng Q, Zhong K. Expression Patterns of Glycosylation Regulators Define Tumor Microenvironment and Immunotherapy in Gastric Cancer. Front Cell Dev Biol 2022; 10:811075. [PMID: 35242759 PMCID: PMC8886025 DOI: 10.3389/fcell.2022.811075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/06/2022] [Indexed: 11/16/2022] Open
Abstract
Glycosylation (Glyc) is prevalently related to gastric cancer (GC) pathophysiology. However, studies on the relationship between glycosylation regulators and tumor microenvironment (TME) and immunotherapy of GC remain scarce. We extracted expression data of 1,956 patients with GC from eight cohorts and systematically characterized the glycosylation patterns of six marker genes into phenotype clusters using the unsupervised clustering method. Next, we constructed a Glyc. score to quantify the glycosylation index of each patient with GC. Finally, we analyzed the relationship between Glyc. score and clinical traits including molecular subtype, TME, and immunotherapy of GC. On the basis of prognostic glycosylation-related differentially expressed genes, we constructed the Glyc. score and divided the samples into the high– and low–Glyc. score groups. The high–Glyc. score group showed a poor prognosis and was validated in multiple cohorts. Functional enrichment analysis revealed that the high–Glyc. score group was enriched in metabolism-related pathways. Furthermore, the high–Glyc. score group was associated with the infiltration of immune cells. Importantly, the established Glyc. score would contribute to predicting the response to anti–PD-1/L1 immunotherapy. In conclusion, the Glyc. score is a potentially useful tool to predict the prognosis of GC. Comprehensive analysis of glycosylation may provide novel insights into the epigenetics of GC and improve treatment strategies.
Collapse
Affiliation(s)
- Fang Li
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Kaibin Huang
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chaohu Pan
- YuceBio Technology Co., Ltd, Shenzhen, China.,Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, China
| | - Yajie Xiao
- YuceBio Technology Co., Ltd, Shenzhen, China
| | - Qijun Zheng
- Department of Cardiovascular Surgery, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Keli Zhong
- Department of Gastrointestinal, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
9
|
Rickelt S, Neyaz A, Condon C, Whittaker CA, Zaidi AH, Taylor MS, Abbruzzese G, Mattia AR, Zukerberg L, Shroff SG, Yilmaz OH, Yılmaz O, Wu EY, Choi WT, Jobe BA, Odze RD, Patil DT, Deshpande V, Hynes RO. Agrin loss in Barrett's esophagus-related neoplasia and its utility as a diagnostic and predictive biomarker. Clin Cancer Res 2021; 28:1167-1179. [PMID: 34785582 DOI: 10.1158/1078-0432.ccr-21-2822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE There is an unmet need for identifying novel biomarkers in Barrett's esophagus (BE) that could stratify patients with regards to neoplastic progression. We investigate the expression patterns of extracellular matrix (ECM) molecules in BE and BE-related neoplasia, and assess their value as biomarkers for the diagnosis of BE-related neoplasia and to predict neoplastic progression. EXPERIMENTAL DESIGN Gene expression analyses of ECM matrisome gene sets were performed using publicly available data on human BE, BE-related dysplasia, esophageal ADCA and normal esophagus. Immunohistochemical expression of basement membrane (BM) marker agrin (AGRN) and p53 was analyzed in biopsies of BE-related neoplasia from 321 patients in three independent cohorts. RESULTS Differential gene expression analysis revealed significant enrichment of ECM matrisome gene sets in dysplastic BE and ADCA compared with controls. Loss of BM AGRN expression was observed in both BE-related dysplasia and ADCA. The mean AGRN loss in BE glands was significantly higher in BErelated dysplasia and ADCA compared to non-dysplastic BE (NDBE; p<0.001; specificity=82.2% and sensitivity=96.4%). Loss of AGRN was significantly higher in NDBE samples from progressors compared to non-progressors (p<0.001) and identified patients who progressed to advanced neoplasia with a specificity of 80.2% and sensitivity of 54.8%. Moreover, the combination of AGRN loss and abnormal p53 staining identified progression to BE-related advanced neoplasia with a specificity and sensitivity of 86.5% and 58.7%. CONCLUSIONS We highlight ECM changes during BE progression to neoplasia. BM AGRN loss is a novel diagnostic biomarker that can identify NDBE patients at increased risk of developing advanced neoplasia.
Collapse
Affiliation(s)
- Steffen Rickelt
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Azfar Neyaz
- Department of Pathology, Massachusetts General Hospital
| | - Charlene Condon
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Charles A Whittaker
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | - Ali H Zaidi
- Esophageal and Lung Institute, Allegheny Health Network
| | | | - Genevieve Abbruzzese
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| | | | | | | | - Omer H Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology
| | - Osman Yılmaz
- Pathology & Laboratory Medicine, Boston University School of Medicine
| | | | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco
| | | | | | - Deepa T Patil
- Department of Pathology, Brigham and Women's Hospital
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School
| | - Richard O Hynes
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology
| |
Collapse
|
10
|
Wang Z, Zhao T, Zhang S, Wang J, Chen Y, Zhao H, Yang Y, Shi S, Chen Q, Liu K. The Wnt signaling pathway in tumorigenesis, pharmacological targets, and drug development for cancer therapy. Biomark Res 2021; 9:68. [PMID: 34488905 PMCID: PMC8422786 DOI: 10.1186/s40364-021-00323-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Wnt signaling was initially recognized to be vital for tissue development and homeostasis maintenance. Further studies revealed that this pathway is also important for tumorigenesis and progression. Abnormal expression of signaling components through gene mutation or epigenetic regulation is closely associated with tumor progression and poor prognosis in several tissues. Additionally, Wnt signaling also influences the tumor microenvironment and immune response. Some strategies and drugs have been proposed to target this pathway, such as blocking receptors/ligands, targeting intracellular molecules, beta-catenin/TCF4 complex and its downstream target genes, or tumor microenvironment and immune response. Here we discuss the roles of these components in Wnt signaling pathway in tumorigenesis and cancer progression, the underlying mechanisms that is responsible for the activation of Wnt signaling, and a series of drugs targeting the Wnt pathway provide multiple therapeutic values. Although some of these drugs exhibit exciting anti-cancer effect, clinical trials and systematic evaluation should be strictly performed along with multiple-omics technology.
Collapse
Affiliation(s)
- Zhuo Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Tingting Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Shihui Zhang
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh, EH164UU, UK
| | - Junkai Wang
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yunyun Chen
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Hongzhou Zhao
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China.,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yaxin Yang
- Department of Biology, University of Rochester, Rochester, NY, 14627, USA
| | - Songlin Shi
- School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Qiang Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Kuancan Liu
- Central Laboratory, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, P. R. China. .,School of Medicine, Xiamen University, Xiamen, Fujian, 361102, P. R. China.
| |
Collapse
|
11
|
Mahmoudian RA, Farshchian M, Abbaszadegan MR. Genetically engineered mouse models of esophageal cancer. Exp Cell Res 2021; 406:112757. [PMID: 34331909 DOI: 10.1016/j.yexcr.2021.112757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Esophageal cancer is the most common cause of cancer-related death worldwide with a diverse geographical distribution, poor prognosis, and diagnosis in advanced stages of the disease. Identification of the mechanisms involved in esophageal cancer development is evaluative to improve outcomes for patients. Genetically engineered mouse models (GEMMs) of cancer provide the physiologic, molecular, and histologic features of the human tumors to determine the pathogenesis and treatments for cancer, hence exhibiting a source of tremendous potential for oncology research. The advancement of cancer modeling in mice has improved to the extent that researchers can observe and manipulate the disease process in a specific manner. Despite the significant differences between mice and humans, mice can be great models for human oncology researches due to similarities between them at the molecular and physiological levels. Due to most of the existing esophageal cancer GEMMs do not propose an ideal system for pathogenesis of the disease, genetic risks, and microenvironment exposure, so identification of challenges in GEM modeling and well-developed technologies are required to obtain the most value for patients. In this review, we describe the biology of human and mouse, followed by the exciting esophageal cancer mouse models with a discussion of applicability and challenges of these models for generating new GEMMs in future studies.
Collapse
Affiliation(s)
| | - Moein Farshchian
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi, Mashhad, Iran.
| | | |
Collapse
|
12
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
13
|
Lyros O, Lamprecht AK, Nie L, Thieme R, Götzel K, Gasparri M, Haasler G, Rafiee P, Shaker R, Gockel I. Dickkopf-1 (DKK1) promotes tumor growth via Akt-phosphorylation and independently of Wnt-axis in Barrett's associated esophageal adenocarcinoma. Am J Cancer Res 2019; 9:330-346. [PMID: 30906632 PMCID: PMC6405970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/24/2018] [Indexed: 06/09/2023] Open
Abstract
Esophageal adenocarcinoma (EAC) is still associated with poor prognosis, despite modern multi-modal therapies. New molecular markers, which control cell cycle and promote lymph node metastases or tumor growth, may introduce novel target therapies. Dickkopf-1 (DKK1) is a secreted glycoprotein that blocks the oncogenic Wnt/β-catenin signaling and its aberrant expression has been observed in many malignancies, including EAC. In this study, we investigated the biological role of DKK1 in EAC. Analysis of DKK1 and active β-catenin expression in human esophageal tissues confirmed a simultaneous DKK1-overexpression together with aberrant activation of β-catenin signaling in EAC in comparison with Barrett's and healthy mucosa. To elucidate the molecular role of DKK1, the OE33 adenocarcinoma cells, which were found to overexpress DKK1, were subjected to functional and molecular assays following siRNA-mediated DKK1-knockdown. At the functional level, OE33 cell viability, proliferation, migration and invasion were significantly attenuated by the absence of DKK1. At the molecular level, neither DKK1-knockdown nor application of exogenous recombinant DKK1 were found to alter the baseline β-catenin signaling in OE33 cells. However, DKK1-knockdown significantly abrogated downstream Akt-phosphorylation. On the other hand, the Wnt-agonist, Wnt3a, restored the Akt-phorphorylation in the absence of DKK1, without, however, being able to further stimulate β-catenin transcription. These findings suggest that the β-catenin transcriptional activity in EAC is independent of Wnt3a/DKK1 site-of-action and define an oncogenic function for DKK1 in this type of malignancy via distinct activation of Akt-mediated intracellular pathways and independently of Wnt-axis inhibition. Taken together, DKK1 may present a novel therapeutic target in EAC.
Collapse
Affiliation(s)
- Orestis Lyros
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University HospitalLeipzig, Germany
| | - Ann-Kristin Lamprecht
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University HospitalLeipzig, Germany
| | - Linghui Nie
- Division of Gastroenterology and Hepatology, Medical College of WisconsinMilwaukee, Wisconsin, USA
| | - René Thieme
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University HospitalLeipzig, Germany
| | - Katharina Götzel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University HospitalLeipzig, Germany
| | - Mario Gasparri
- Division of Cardiothoracic Surgery, Medical College of WisconsinMilwaukee, Wisconsin, USA
| | - George Haasler
- Division of Cardiothoracic Surgery, Medical College of WisconsinMilwaukee, Wisconsin, USA
| | - Parvaneh Rafiee
- Department of Surgery of Medical College of WisconsinMilwaukee, Wisconsin, USA
| | - Reza Shaker
- Division of Gastroenterology and Hepatology, Medical College of WisconsinMilwaukee, Wisconsin, USA
| | - Ines Gockel
- Department of Visceral, Transplant, Thoracic and Vascular Surgery, University HospitalLeipzig, Germany
| |
Collapse
|
14
|
Teichman J, Dodbiba L, Thai H, Fleet A, Morey T, Liu L, McGregor M, Cheng D, Chen Z, Darling G, Brhane Y, Song Y, Espin-Garcia O, Xu W, Girgis H, Schwock J, MacKay H, Bristow R, Ailles L, Liu G. Hedgehog inhibition mediates radiation sensitivity in mouse xenograft models of human esophageal adenocarcinoma. PLoS One 2018; 13:e0194809. [PMID: 29715275 PMCID: PMC5929523 DOI: 10.1371/journal.pone.0194809] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/10/2018] [Indexed: 12/20/2022] Open
Abstract
Background The Hedgehog (Hh) signaling pathway is active in esophageal adenocarcinoma (EAC). We used a patient-derived murine xenograft (PDX) model of EAC to evaluate tumour response to conventional treatment with radiation/chemoradiation with or without Hh inhibition. Our goal was to determine the potential radioresistance effects of Hh signaling and radiosensitization by Hh inhibitors. Methods PDX models were treated with radiation, chemotherapy or combined chemoradiation. Tumour response was measured by growth delay. Hh transcript levels (qRT-PCR) were compared among frozen tumours from treated and control mice. 5E1, a monoclonal SHH antibody, or LDE225, a clinical SMO inhibitor (Novartis®) inhibited Hh signaling. Results Precision irradiation significantly delayed xenograft tumour growth in all 7 PDX models. Combined chemoradiation further delayed growth relative to either modality alone in three of six PDX models. Following irradiation, two of three PDX models demonstrated sustained up-regulation of Hh transcripts. Combined LDE225 and radiation, and 5E1 alone delayed growth relative to either treatment alone in a Hh-responsive PDX model, but not in a non-responsive model. Conclusion Hh signaling mediates the radiation response in some EAC PDX models, and inhibition of this pathway may augment the efficacy of radiation in tumours that are Hh dependent.
Collapse
Affiliation(s)
- Jennifer Teichman
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Lorin Dodbiba
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Henry Thai
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Andrew Fleet
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Trevor Morey
- Postgraduate Medical Education, University of Toronto, Toronto, Canada
| | - Lucy Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | | | | | - Zhuo Chen
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Gail Darling
- Department of Thoracic Surgery, University Health Network, Toronto, Canada
| | - Yonathan Brhane
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | - Yuyao Song
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
| | | | - Wei Xu
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
| | - Hala Girgis
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Joerg Schwock
- Department of Laboratory Medicine and Pathobiology, Toronto, Canada
| | - Helen MacKay
- Department of Medicine, Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Robert Bristow
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Laurie Ailles
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Princess Margaret Cancer Centre, Toronto, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, Toronto, Canada
- * E-mail:
| |
Collapse
|
15
|
Kotzev A, Kamenova M. Loss of P16 in Esophageal Adenocarcinoma Detected by Fluorescence in situ Hybridization and Immunohistochemistry. ACTA MEDICA BULGARICA 2017. [DOI: 10.1515/amb-2017-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Molecular biology of esophageal adenocarcinoma (EAC) is not fully elucidated. The aim of this study was to assess the expression of cycle regulator and tumor suppressor p16 in esophageal adenocarcinoma. The expression of p16 at protein and gene level was investigated using immunohistochemistry and fluorescence in situ hybridization in thirteen EAC specimens obtained by endoscopic biopsies and surgical resections. The mean age of enrolled patients was 62 years and a male predominance was observed. Loss of p16 protein expression was detected in 77% of the cases and loss of p16 gene was found in 69% of cases as hemizygous deletion was the most common. Significant correlation was found between the absence of p16 protein expression and p16 allelic loss. Cell cycle disturbances seem to play role in the EAC carcinogenesis and probably p16 gene deletions are connected with the loss of p16 protein expression.
Collapse
Affiliation(s)
- A. Kotzev
- Department of Propedeutics of Internal Diseases , Medical University – Sofia , Bulgaria
| | - M. Kamenova
- Department of Clinical Pathology , University Hospital “Pirogov” – Sofia , Bulgaria
| |
Collapse
|
16
|
Overexpression of CTEN relates to tumor malignant potential and poor outcomes of adenocarcinoma of the esophagogastric junction. Oncotarget 2017; 8:84112-84122. [PMID: 29137409 PMCID: PMC5663581 DOI: 10.18632/oncotarget.21109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/04/2017] [Indexed: 01/14/2023] Open
Abstract
Background To detect a novel treatment target for adenocarcinoma of the esophagogastric junction (AEG), we tested whether C-terminal tensin-like (CTEN), a member of the tensin gene family and frequently overexpressed in various cancers, acts as a cancer-promoting gene through overexpression in AEG. Materials and Methods We analyzed 5 gastric adenocarcinoma (GC) cell lines and 104 primary AEG tumors curatively resected in our hospital between 2000 and 2010. Results CTEN overexpression was detected in GC cell lines (2/5 cell lines; 40%) and primary AEG tumor samples (35/104 cases; 34%). CTEN knockdown using several specific siRNAs inhibited the proliferation, migration, and invasion of CTEN-overexpressing cells. CTEN overexpression was significantly correlated with more aggressive venous and lymphatic invasion, deeper tumor depth, and higher rates of lymph node metastasis and recurrence. Patients with CTEN-overexpressing tumors had a worse overall rate of survival than those with non-expressing tumors (P < 0.0001, log-rank test) in an expression-dependent manner. CTEN positivity was independently associated with a worse outcome in the multivariate analysis (P = 0.0423, hazard ratio 3.54 [1.04-16.4]). Conclusions CTEN plays a crucial role in tumor cell proliferation, migration, and invasion through its overexpression, which highlights its usefulness as a prognosticator and potential therapeutic target in AEG.
Collapse
|
17
|
Maag JLV, Fisher OM, Levert-Mignon A, Kaczorowski DC, Thomas ML, Hussey DJ, Watson DI, Wettstein A, Bobryshev YV, Edwards M, Dinger ME, Lord RV. Novel Aberrations Uncovered in Barrett's Esophagus and Esophageal Adenocarcinoma Using Whole Transcriptome Sequencing. Mol Cancer Res 2017; 15:1558-1569. [PMID: 28751461 DOI: 10.1158/1541-7786.mcr-17-0332] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 06/30/2017] [Accepted: 07/21/2017] [Indexed: 11/16/2022]
Abstract
Esophageal adenocarcinoma (EAC) has one of the fastest increases in incidence of any cancer, along with poor five-year survival rates. Barrett's esophagus (BE) is the main risk factor for EAC; however, the mechanisms driving EAC development remain poorly understood. Here, transcriptomic profiling was performed using RNA-sequencing (RNA-seq) on premalignant and malignant Barrett's tissues to better understand this disease. Machine-learning and network analysis methods were applied to discover novel driver genes for EAC development. Identified gene expression signatures for the distinction of EAC from BE were validated in separate datasets. An extensive analysis of the noncoding RNA (ncRNA) landscape was performed to determine the involvement of novel transcriptomic elements in Barrett's disease and EAC. Finally, transcriptomic mutational investigation of genes that are recurrently mutated in EAC was performed. Through these approaches, novel driver genes were discovered for EAC, which involved key cell cycle and DNA repair genes, such as BRCA1 and PRKDC. A novel 4-gene signature (CTSL, COL17A1, KLF4, and E2F3) was identified, externally validated, and shown to provide excellent distinction of EAC from BE. Furthermore, expression changes were observed in 685 long noncoding RNAs (lncRNA) and a systematic dysregulation of repeat elements across different stages of Barrett's disease, with wide-ranging downregulation of Alu elements in EAC. Mutational investigation revealed distinct pathways activated between EAC tissues with or without TP53 mutations compared with Barrett's disease. In summary, transcriptome sequencing revealed altered expression of numerous novel elements, processes, and networks in EAC and premalignant BE.Implications: This study identified opportunities to improve early detection and treatment of patients with BE and esophageal adenocarcinoma. Mol Cancer Res; 15(11); 1558-69. ©2017 AACR.
Collapse
Affiliation(s)
- Jesper L V Maag
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia.,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Oliver M Fisher
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Angelique Levert-Mignon
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Dominik C Kaczorowski
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Melissa L Thomas
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia.,University of Notre Dame School of Medicine, Sydney, Australia
| | - Damian J Hussey
- Department of Surgery, Flinders University, Adelaide, Australia
| | - David I Watson
- Department of Surgery, Flinders University, Adelaide, Australia
| | - Antony Wettstein
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Yuri V Bobryshev
- Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia.,Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | - Melanie Edwards
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia.,University of Notre Dame School of Medicine, Sydney, Australia
| | - Marcel E Dinger
- Genome Informatics, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Sydney, NSW, Australia. .,Faculty of Medicine, St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Reginald V Lord
- Gastroesophageal Cancer Program, St. Vincent's Centre for Applied Medical Research, Sydney, Australia. .,University of Notre Dame School of Medicine, Sydney, Australia
| |
Collapse
|
18
|
Fisher OM, Lord SJ, Falkenback D, Clemons NJ, Eslick GD, Lord RV. The prognostic value of TP53 mutations in oesophageal adenocarcinoma: a systematic review and meta-analysis. Gut 2017; 66:399-410. [PMID: 26733670 PMCID: PMC5534764 DOI: 10.1136/gutjnl-2015-310888] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/23/2015] [Accepted: 12/04/2015] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To clarify the prognostic role of tumour protein 53 (TP53) mutations in patients with oesophageal adenocarcinoma (OAC) as there is a need for biomarkers that assist in guiding management for patients with OAC. DESIGN A systematic review was conducted using MEDLINE, Embase, PubMed and Current Contents Connect to identify studies published between January 1990 and February 2015 of oesophageal cancer populations (with OAC diagnoses >50% of cases) that measured tumoural TP53 status and reported hazard ratios (HR), or adequate data for estimation of HR for survival for TP53-defined subgroups. Risk of bias for HR estimates was assessed using prespecified criteria for the appraisal of relevant domains as defined by the Cochrane Prognosis Methods Group including adherence to Grading of Recommendations, Assessment, Development and Evaluation and REporting recommendations for tumor MARKer prognostic studies guidelines, as well as assay method used (direct TP53 mutation assessment vs immunohistochemistry) and adjustment for standard prognostic factors. A pooled HR and 95% CI were calculated using a random-effects model. RESULTS Sixteen eligible studies (11 with OAC only and 5 mixed histology cohorts) including 888 patients were identified. TP53 mutations were associated with reduced survival (HR 1.48, 95% CI 1.16 to 1.90, I2=33%). A greater prognostic effect was observed in a sensitivity analysis of those studies that reported survival for OAC-only cohorts and were assessed at low risk of bias (HR 2.11, 95% CI 1.35 to 3.31, I2=0%). CONCLUSIONS Patients with OAC and TP53 gene mutations have reduced overall survival compared with patients without these mutations, and this effect is independent of tumour stage.
Collapse
Affiliation(s)
- Oliver M Fisher
- Gastroesophageal Cancer Program, St Vincent's Centre for Applied Medical Research University of New South Wales, Sydney, New South Wales, Australia
| | - Sarah J Lord
- Gastroesophageal Cancer Program, St Vincent's Centre for Applied Medical Research University of New South Wales, Sydney, New South Wales, Australia,NHMRC Clinical Trials Centre University of Sydney, Sydney, New South Wales, Australia,Department of Epidemiology and Medical Statistics, School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| | - Dan Falkenback
- Gastroesophageal Cancer Program, St Vincent's Centre for Applied Medical Research University of New South Wales, Sydney, New South Wales, Australia,Department of Surgery, Lund University Hospital (Skåne University Hospital) and Lund University, Lund, Sweden
| | - Nicholas J Clemons
- Cancer Biology and Surgical Oncology Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia,Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Guy D Eslick
- The Whiteley-Martin Research Centre, Discipline of Surgery, The University of Sydney, Sydney, New South Wales, Australia
| | - Reginald V Lord
- Gastroesophageal Cancer Program, St Vincent's Centre for Applied Medical Research University of New South Wales, Sydney, New South Wales, Australia,Department of Surgery, School of Medicine, University of Notre Dame, Sydney, New South Wales, Australia
| |
Collapse
|
19
|
Shah Gilani SN, Bass GA, Kharytaniuk N, Downes MR, Caffrey EF, Tobbia I, Walsh TN. Gastroesophageal Mucosal Injury after Cholecystectomy: An Indication for Surveillance? J Am Coll Surg 2016; 224:319-326. [PMID: 27993699 DOI: 10.1016/j.jamcollsurg.2016.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022]
Abstract
BACKGROUND Cholecystectomy alters bile release dynamics from pulsatile meal-stimulated to continuous, and results in retrograde duodeno-gastric bile reflux (DGR). Bile is implicated in mucosal injury after gastric surgery, but whether cholecystectomy causes esophagogastric mucosal inflammation, therefore increasing the risk of metaplasia, is unclear. STUDY DESIGN This study examined whether cholecystectomy-induced DGR promotes chronic inflammatory mucosal changes of the stomach and/or the esophagogastric junction (EGJ). Four groups of patients were studied and compared with controls. A group of patients was studied before and 1 year after cholecystectomy; 2 further groups were studied long-term post-cholecystectomy (LTPC) at 5 to 10 years and 10 to 20 years. All underwent abdominal ultrasound and upper gastrointestinal endoscopy with gastric antral and EGJ biopsies, noting the presence of gastric bile pooling. Biopsy specimens were stained for Ki67 and p53 overexpression, and the bile reflux index (BRI) was calculated. RESULTS At endoscopy, bile pooling was observed in 9 of 26 (34.6%) controls, in 8 of 25 (32%) patients pre-cholecystectomy, in 15 of 25 (60%) 1 year post-cholecystectomy patients (p = 0.047), and 23 of 29 (79.3%) LTPC patients (p = 0.001). Bile reflux index positivity at the EGJ increased from 19% of controls through 41% of LTPC patients (p = 0.032). Ki67 was overexpressed at the EGJ in 19% of controls, but in 62% of LTPC patients (p = 0.044); p53 was overexpressed at the EGJ in 19% of controls compared with 66% of LTPC patients (p = 0.001). CONCLUSIONS Duodeno-gastric bile reflux was more common in patients with gallstones than in controls, and its incidence doubled after cholecystectomy. This was associated with inflammatory changes in the gastric antrum and the EGJ, evident in most LTPC patients. Ki67 and p53 overexpression at the EGJ suggests cellular damage attributable to chronic bile exposure post-cholecystectomy, increasing the likelihood of dysplasia. Further studies are required to determine whether DGR-mediated esophageal mucosal injury is reversible or avoidable, and whether surveillance endoscopy is indicated after cholecystectomy.
Collapse
Affiliation(s)
- Syeda Nadia Shah Gilani
- Department of Surgery, Connolly Hospital, Blanchardstown, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Gary Alan Bass
- Department of Surgery, Connolly Hospital, Blanchardstown, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | | | | | - Iqbal Tobbia
- Department of Pathology, Connolly Hospital, Blanchardstown, Dublin, Ireland
| | - Thomas Noel Walsh
- Department of Surgery, Connolly Hospital, Blanchardstown, Dublin, Ireland; Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
20
|
Watanabe N, Komatsu S, Ichikawa D, Miyamae M, Ohashi T, Okajima W, Kosuga T, Konishi H, Shiozaki A, Fujiwara H, Okamoto K, Tsuda H, Otsuji E. Overexpression of YWHAZ as an independent prognostic factor in adenocarcinoma of the esophago-gastric junction. Am J Cancer Res 2016; 6:2729-2736. [PMID: 27904785 PMCID: PMC5126287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 10/24/2016] [Indexed: 06/06/2023] Open
Abstract
Several studies have demonstrated that YWHAZ (14-3-3ζ), included in the 14-3-3 family of proteins, is implicated in the initiation and progression of cancers. To detect a novel treatment target for adenocarcinoma of the esophagogastric junction (AEG), we tested whether YWHAZ acted as a cancer-promoting gene through its overexpression in AEG. We analyzed YWHAZ protein expression in 92 consecutive primary AEG tumors, which had been curatively resected in our institution between 2000 and 2010. Overexpression of the YWHAZ protein was frequently detected in primary AEG tumor samples (46% (42/92)). Overexpression of YWHAZ was significantly correlated with Siewert type III tumor, larger tumor size (≥40 mm) and higher rates of lymph node metastasis and recurrence. Patients with YWHAZ-overexpressing tumors had a worse overall rate of survival than those with non-expressing tumors (P = 0.011, log-rank test) in an intensity expression-dependent manner. Patients with YWHAZ-overexpression tumors had worse overall survival rates than those with lower-expression tumors. YWHAZ positivity was independently associated with a worse outcome in the multivariate analysis (P = 0.0015, hazard ratio 4.49 [1.736-13.06]). In conclusion, YWHAZ plays a crucial role in poor outcomes of patients with AEG through its overexpression, which highlights its usefulness as a prognosticator and potential therapeutic target and indicator in AEG.
Collapse
Affiliation(s)
- Nobuyuki Watanabe
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Shuhei Komatsu
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Daisuke Ichikawa
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Mahito Miyamae
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takuma Ohashi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wataru Okajima
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiyuki Kosuga
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hirotaka Konishi
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Fujiwara
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kazuma Okamoto
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical CollegeSaitama, Japan
- Department of Pathology, National Cancer Center HospitalTokyo, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine465 Kajii-cho, Kawaramachihirokoji, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
21
|
The Genetics of Barrett's Esophagus: A Familial and Population-Based Perspective. Dig Dis Sci 2016; 61:1826-34. [PMID: 26971090 DOI: 10.1007/s10620-016-4109-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/29/2016] [Indexed: 02/07/2023]
Abstract
Barrett's esophagus (BE) is intestinal metaplasia of the lower esophagus and a precursor lesion for esophageal adenocarcinoma (EAC). Both are important health issues as they have rising incidences in the Western world. Improving the management of BE relies on understanding the underlying biology of this disease, but the exact biological mechanisms have been difficult to determine. BE is generally thought to be an acquired condition that develops secondarily to chronic gastroesophageal reflux. However, multiple reports of familial clustering of patients with BE and/or EAC suggest a possible inherited predisposition to BE may be driving this condition, at least in a subset of patients. Identifying the genetic variants that predispose to BE in these families would open up the possibility for blood-based screening tests that could inform decision-making in regard to surveillance strategies, particularly for relatives of patients with BE and/or EAC. Perhaps more importantly, understanding the genetic mechanisms that predispose to BE may provide valuable insights into the biology of this condition and potentially identify novel targets for therapeutic intervention. Here we review the current evidence for a genetic predisposition to BE and discuss the potential implications of these findings.
Collapse
|
22
|
Kusaka G, Uno K, Iijima K, Shimosegawa T. Role of nitric oxide in the pathogenesis of Barrett’s-associated carcinogenesis. World J Gastrointest Pathophysiol 2016; 7:131-137. [PMID: 26909236 PMCID: PMC4753179 DOI: 10.4291/wjgp.v7.i1.131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/01/2015] [Accepted: 11/11/2015] [Indexed: 02/06/2023] Open
Abstract
Barrett’s esophagus (BE), a premalignant condition to Barrett’s adenocarcinoma (BAC), is closely associated with chronic inflammation due to gastro-esophageal reflux. Caudal type homeobox 2 (CDX2), a representative marker of BE, is increased during the metaplastic and neoplastic transformation of BE. Nitric oxide (NO) has been proposed to be a crucial mediator of Barrett’s carcinogenesis. We previously demonstrated that CDX2 might be induced directly under stimulation of large amounts of NO generated around the gastro-esophageal junction (GEJ) by activating epithelial growth factor receptor in a ligand-independent manner. Thus, we reviewed recent developments on the role of NO in Barrett’s carcinogenesis. Notably, recent studies have reported that microbial communities in the distal esophagus are significantly different among groups with a normal esophagus, reflux esophagitis, BE or BAC, despite there being no difference in the bacterial quantity. Considering that microorganism components can be one of the major sources of large amounts of NO, these studies suggest that the bacterial composition in the distal esophagus might play an important role in regulating NO production during the carcinogenic process. Controlling an inflammatory reaction due to gastro-esophageal reflux or bacterial composition around the GEJ might help prevent the progression of Barrett’s carcinogenesis by inhibiting NO production.
Collapse
|
23
|
Mozaffari Namin B, Soltan Dallal MM, Ebrahimi Daryani N. The Effect of Campylobacter concisus on Expression of IL-18, TNF-α and p53 in Barrett's Cell Lines. Jundishapur J Microbiol 2015; 8:e26393. [PMID: 26865939 PMCID: PMC4744463 DOI: 10.5812/jjm.26393] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 02/24/2015] [Accepted: 03/07/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Barrett's oesophagus is a pre-malignant condition at gastroesophageal junction in which normal squamous epithelium is replaced by columnar shape epithelium, which predisposes oesophageal adenocarcinoma. It is known that Barrett's oesophagus evolves as a consequence of chronic gastro-oesophageal reflux disease. Although progression of Barrett's oesophagus to adenocarcinoma is still unclear, increasing incidence of oesophageal cancer and mortality worldwide make its study necessary. Several investigations have been made on the aetiology of oesophageal cancer. Most of them assessed genetical or environmental factors. However, potential role of bacteria in the development of oesophageal adenocarcinoma as a new environmental factor has not been addressed. Previous study on Barrett's disease detected presence of Campylobacter concisus as a new emerging pathogen on Barrett's and oesophageal cancer samples compared with healthy individuals. This indicates that this organism might involve in the progression of Barrett's to oesophageal adenocarcinoma. OBJECTIVES This study aimed to determine the effects of C. concisus on expression of three biomarkers including interleukin-18 (IL-18), tumour necrosis factor-α (TNF-α) and tumour suppressor gene (p53) in three Barrett's cell lines. MATERIALS AND METHODS Quantitative real-time PCR assays were developed to measure expression of pro-inflammatory mediators (IL-18 and TNF-α) and gene expression of p53 in Barrett's cell lines in co-culture with C. concisus. RESULTS The mentioned organism was able to modulate considerably expression of p53, TNF-α and IL-18 in a time-dependent manner. CONCLUSIONS The results showed that microorganism influences expression of carcinogenesis biomarker and cytokines in cell line models and possibility promotes oesophageal adenocarcinoma.
Collapse
Affiliation(s)
- Behrooz Mozaffari Namin
- Department of Microbiology of Pathobiology, School of Public Health, Tehran University of Medical Sciences, International Campus (TUMS-IC), Tehran, IR Iran
- Microbiology and Gut Biology Group, University of Dundee, Ninewells Hospital Medical School, Dundee, UK
| | - Mohammad Mehdi Soltan Dallal
- Food Microbiology Research Center, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, IR Iran
- Corresponding author: Mohammad Mehdi Soltan Dallal, Food Microbiology Research Center, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran. Tel: +98-2188992971, Fax: +98-2188954913, E-mail:
| | - Nasser Ebrahimi Daryani
- Department of Gastroenterology and Hepatology, School of Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
24
|
Chandar AK, Devanna S, Lu C, Singh S, Greer K, Chak A, Iyer PG. Association of Serum Levels of Adipokines and Insulin With Risk of Barrett's Esophagus: A Systematic Review and Meta-Analysis. Clin Gastroenterol Hepatol 2015; 13:2241-55.e1-4; quiz e179. [PMID: 26188139 PMCID: PMC4827623 DOI: 10.1016/j.cgh.2015.06.041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 04/15/2015] [Accepted: 06/17/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Metabolically active visceral fat may be associated with esophageal inflammation, metaplasia, and neoplasia. We performed a meta-analysis to evaluate the association of serum adipokines and insulin with Barrett's esophagus (BE). METHODS We performed a systematic search of multiple electronic databases, through April 2015, to identify all studies reporting associations between leptin, adiponectin, insulin, insulin resistance, and risk of BE in adults. Comparing the highest study-specific category with the reference category for each hormone, we estimated the summary adjusted odds ratio (aOR) and 95% confidence intervals (CI), using a random effects model. RESULTS We identified 9 observational studies (10 independent cohorts; 1432 patients with BE total, and 3550 control subjects). Meta-analysis revealed that high serum level of leptin was associated with 2-fold higher risk of BE (BE cases vs population control subjects in 5 studies: aOR, 2.23; 95% CI, 1.31-3.78; I(2), 59%). Total serum level of adiponectin was not associated with BE (BE cases vs population control subjects in 5 studies: aOR, 0.79; 95% CI, 0.46-1.34; I(2), 65%), although 1 study observed decreased risk of BE with increased level of low-molecular-weight adiponectin. High serum level of insulin was associated with increased risk of BE (BE cases vs population control subjects in 3 studies: aOR, 1.74; 95% CI, 1.14-2.65; I(2), 0), whereas insulin resistance was not associated with increased risk of BE (BE cases vs gastroesophageal reflux disease control subjects in 2 studies: aOR, 0.98; 95% CI, 0.42-2.30; I(2), 64%). CONCLUSIONS Increased serum levels of leptin and insulin are associated with increased risk of BE, compared with population control subjects. In contrast, increased total serum levels of adiponectin and insulin do not seem to modify BE risk. Well-designed longitudinal studies of incident BE are needed to clarify existing associations of serum adipokines and insulin with BE.
Collapse
Affiliation(s)
- Apoorva Krishna Chandar
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Swapna Devanna
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Chang Lu
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland
| | - Siddharth Singh
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Katarina Greer
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Amitabh Chak
- Division of Gastroenterology and Liver Diseases, Case Western Reserve University, Cleveland; Digestive Health Institute, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Prasad G Iyer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
25
|
Greer KB, Falk GW, Bednarchik B, Li L, Chak A. Associations of Serum Adiponectin and Leptin With Barrett's Esophagus. Clin Gastroenterol Hepatol 2015; 13:2265-72. [PMID: 25737442 PMCID: PMC4879122 DOI: 10.1016/j.cgh.2015.02.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Central adiposity is a risk factor for Barrett's esophagus (BE). Serum levels of adiponectin and leptin are deregulated in obese states and are implicated as putative mediators in the pathophysiology of esophageal columnar metaplasia. We describe associations between serum adiponectin and leptin levels with BE. METHODS Patients were recruited prospectively for a case-control study. Fasting serum levels of adiponectin and leptin were measured in 135 patients with BE and compared with 2 separate control groups: 133 subjects with gastroesophageal reflux disease (GERD) and 1157 colon screening controls. RESULTS Multivariate analyses adjusted for age, race, and waist-to-hip ratio showed that patients within the highest tertile of serum adiponectin level had decreased odds of BE compared with screening colonoscopy controls (odds ratio [OR], 0.42; 95% confidence interval [CI], 0.22-0.80). This effect was more pronounced in men (OR, 0.35; 95% CI, 0.17-0.74) compared with women (OR, 0.71; 95% CI, 0.17-3.03). In comparisons of BE cases with GERD controls, subjects within the highest tertile of serum adiponectin level showed decreased odds of BE (OR, 0.65; 95% CI, 0.31-1.36), however, this was not statistically significant. Patients in the highest tertile of serum leptin level did not have a significantly increased risk of BE in comparison with GERD (OR, 1.32; 95% CI, 0.61-2.88) or screening colonoscopy controls (OR, 1.57; 95% CI, 0.82-3.04) in analyses including both sexes. Based on sex-specific analyses, sex did not significantly alter the association of leptin with odds of BE. CONCLUSIONS Serum adiponectin was associated inversely with BE and this effect was more pronounced in men, whereas serum leptin showed no evidence of association with BE in comparisons with multiple control groups. The exact mechanism, if any, by which these adipokines promote metaplasia in the esophagus needs to be explored further.
Collapse
Affiliation(s)
- Katarina B Greer
- Division of Gastroenterology and Liver Disease, Department of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio.
| | - Gary W Falk
- Division of Gastroenterology, Department of Internal Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Beth Bednarchik
- Division of Gastroenterology and Liver Disease, Department of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Li Li
- Department of Family Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| | - Amitabh Chak
- Division of Gastroenterology and Liver Disease, Department of Medicine, University Hospitals Case Medical Center, Cleveland, Ohio
| |
Collapse
|
26
|
Kapoor H, Agrawal DK, Mittal SK. Barrett's esophagus: recent insights into pathogenesis and cellular ontogeny. Transl Res 2015; 166:28-40. [PMID: 25701368 DOI: 10.1016/j.trsl.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/24/2015] [Accepted: 01/27/2015] [Indexed: 02/06/2023]
Abstract
Esophageal adenocarcinoma (EAC) has increased 6-fold in its incidence in the last 2 decades. Evidence supports the hypothesis of stepwise progression from normal squamous epithelium → reflux esophagitis → metaplasia (Barrett's esophagus, BE) → dysplasia → adenocarcinoma. The precursor, BE, stands as the bridge connecting the widespread but naive reflux disease and the rare but fatal EAC. The step of metaplasia from squamous to intestine-like columnar phenotype is perhaps pivotal in promoting dysplastic vulnerability. It is widely accepted that chronic inflammation because of gastroesophageal reflux disease leads to the development of metaplasia, however the precise molecular mechanism is yet to be discovered. Additionally, how this seemingly adaptive change in the cellular phenotype promotes dysplasia remains a mystery. This conceptual void is deterring further translational research and clouding clinical decision making. This article critically reviews theories on the pathogenesis of Barrett's esophagus and the various controversies surrounding its diagnosis. We further discuss unanswered questions and future directions, which are vital in formulating effective preventive and therapeutic guidelines for Barrett's esophagus.
Collapse
Affiliation(s)
- Harit Kapoor
- Esophageal Center, Department of Surgery, Creighton University School of Medicine, Omaha, Neb; Center for Clinical and Translational Sciences, Creighton University School of Medicine, Omaha, Neb
| | - Devendra K Agrawal
- Center for Clinical and Translational Sciences, Creighton University School of Medicine, Omaha, Neb
| | - Sumeet K Mittal
- Esophageal Center, Department of Surgery, Creighton University School of Medicine, Omaha, Neb.
| |
Collapse
|
27
|
Abstract
Central obesity is involved in the pathogenesis and progression of Barrett's esophagus to esophageal adenocarcinoma. Involved are likely both mechanical and nonmechanical effects. Mechanical effects of increased abdominal fat cause disruption of the gastroesophageal reflux barrier leading to increased reflux events. Nonmechanical effects may be mediated by inflammation, via classically activated macrophages, pro-inflammatory cytokines, and adipokines such as Leptin, all of which likely potentiate reflux-mediated inflammation. Insulin resistance, associated with central obesity, is also associated with both Barrett's pathogenesis and progression to adenocarcinoma. Molecular pathways activated in obesity, inflammation and insulin resistance overlap with those involved in Barrett's pathogenesis and progression.
Collapse
|
28
|
Husi H, Skipworth RJE, Cronshaw A, Stephens NA, Wackerhage H, Greig C, Fearon KCH, Ross JA. Programmed cell death 6 interacting protein (PDCD6IP) and Rabenosyn-5 (ZFYVE20) are potential urinary biomarkers for upper gastrointestinal cancer. Proteomics Clin Appl 2015; 9:586-96. [PMID: 25644331 DOI: 10.1002/prca.201400111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/02/2014] [Accepted: 01/27/2015] [Indexed: 12/19/2022]
Abstract
PURPOSE Cancer of the upper digestive tract (uGI) is a major contributor to cancer-related death worldwide. Due to a rise in occurrence, together with poor survival rates and a lack of diagnostic or prognostic clinical assays, there is a clear need to establish molecular biomarkers. EXPERIMENTAL DESIGN Initial assessment was performed on urine samples from 60 control and 60 uGI cancer patients using MS to establish a peak pattern or fingerprint model, which was validated by a further set of 59 samples. RESULTS We detected 86 cluster peaks by MS above frequency and detection thresholds. Statistical testing and model building resulted in a peak profiling model of five relevant peaks with 88% overall sensitivity and 91% specificity, and overall correctness of 90%. High-resolution MS of 40 samples in the 2-10 kDa range resulted in 646 identified proteins, and pattern matching identified four of the five model peaks within significant parameters, namely programmed cell death 6 interacting protein (PDCD6IP/Alix/AIP1), Rabenosyn-5 (ZFYVE20), protein S100A8, and protein S100A9, of which the first two were validated by Western blotting. CONCLUSIONS AND CLINICAL RELEVANCE We demonstrate that MS analysis of human urine can identify lead biomarker candidates in uGI cancers, which makes this technique potentially useful in defining and consolidating biomarker patterns for uGI cancer screening.
Collapse
Affiliation(s)
- Holger Husi
- Glasgow Cardiovascular Research Centre, University of Glasgow, Glasgow, UK.,School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Andrew Cronshaw
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Carolyn Greig
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK.,School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | | | - James A Ross
- School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Fisher OM, Levert-Mignon AJ, Lord SJ, Lee-Ng KKM, Botelho NK, Falkenback D, Thomas ML, Bobryshev YV, Whiteman DC, Brown DA, Breit SN, Lord RV. MIC-1/GDF15 in Barrett's oesophagus and oesophageal adenocarcinoma. Br J Cancer 2015; 112:1384-91. [PMID: 25867265 PMCID: PMC4402450 DOI: 10.1038/bjc.2015.100] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/05/2015] [Accepted: 02/16/2015] [Indexed: 12/22/2022] Open
Abstract
Background: Biomarkers are needed to improve current diagnosis and surveillance strategies for patients with Barrett's oesophagus (BO) and oesophageal adenocarcinoma (OAC). Macrophage inhibitory cytokine 1/growth differentiation factor 15 (MIC-1/GDF15) tissue and plasma levels have been shown to predict disease progression in other cancer types and was therefore evaluated in BO/OAC. Methods: One hundred thirty-eight patients were studied: 45 normal oesophagus (NE), 37 BO, 16 BO with low-grade dysplasia (LGD) and 40 OAC. Results: Median tissue expression of MIC-1/GDF15 mRNA was ⩾25-fold higher in BO and LGD compared to NE (P<0.001); two-fold higher in OAC vs BO (P=0.039); and 47-fold higher in OAC vs NE (P<0.001). Relative MIC-1/GDF15 tissue expression >720 discriminated between the presence of either OAC or LGD vs NE with 94% sensitivity and 71% specificity (ROC AUC 0.86, 95% CI 0.73–0.96; P<0.001). Macrophage inhibitory cytokine 1/growth differentiation factor 15 plasma values were also elevated in patients with OAC vs NE (P<0.001) or BO (P=0.015). High MIC-1/GDF15 plasma levels (⩾1140 pg ml−1) were an independent predictor of poor survival for patients with OAC (HR 3.87, 95% CI 1.01–14.75; P=0.047). Conclusions: Plasma and tissue levels of MIC-1/GDF15 are significantly elevated in patients with BO, LGD and OAC. Plasma MIC-1/GDF15 may have value in diagnosis and monitoring of Barrett's disease.
Collapse
Affiliation(s)
- O M Fisher
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - A J Levert-Mignon
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - S J Lord
- 1] St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia [2] NHMRC Clinical Trials Centre University of Sydney, Sydney, NSW 2050, Australia [3] Department of Epidemiology and Medical Statistics, School of Medicine, University of Notre Dame, Sydney, NSW 2010 Australia
| | - K K M Lee-Ng
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - N K Botelho
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - D Falkenback
- 1] St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia [2] Department of Surgery, Lund University Hospital (Skåne University Hospital) and Lund University, Lund 221 85, Sweden
| | - M L Thomas
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - Y V Bobryshev
- 1] St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia [2] Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - D C Whiteman
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - D A Brown
- 1] St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia [2] Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Sydney, NSW 2010 Australia
| | - S N Breit
- St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia
| | - R V Lord
- 1] St Vincent's Centre for Applied Medical Research and University of New South Wales, Sydney, NSW 2010 Australia [2] Department of Surgery, School of Medicine, University of Notre Dame, Sydney, NSW 2010 Australia
| |
Collapse
|
30
|
Chiang MF, Chen HH, Chi CW, Sze CI, Hsu ML, Shieh HR, Lin CP, Tsai JT, Chen YJ. Modulation of Sonic hedgehog signaling and WW domain containing oxidoreductase WOX1 expression enhances radiosensitivity of human glioblastoma cells. Exp Biol Med (Maywood) 2015; 240:392-9. [PMID: 25595187 DOI: 10.1177/1535370214565989] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.
Collapse
Affiliation(s)
- Ming-Fu Chiang
- Department of Neurosurgery, MacKay Memorial Hospital, Taipei 104, Taiwan Graduate Institute of Injury Prevention and Control, Taipei Medical University, Taipei 110, Taiwan
| | - Hsin-Hong Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chun-I Sze
- Department of Cell Biology and Anatomy, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Ling Hsu
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Hui-Ru Shieh
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Chin-Ping Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei 104, Taiwan
| | - Jo-Ting Tsai
- Department of Radiation Oncology, Taipei Medical University-Shuang Ho Hospital, Taipei, Taiwan
| | - Yu-Jen Chen
- Graduate Institute of Pharmacology, Taipei Medical University, Taipei 110, Taiwan Department of Radiation Oncology, MacKay Memorial Hospital, Taipei 104, Taiwan
| |
Collapse
|
31
|
Gaur P, Kim MP, Dunkin BJ. Esophageal cancer: Recent advances in screening, targeted therapy, and management. J Carcinog 2014; 13:11. [PMID: 25395880 PMCID: PMC4229783 DOI: 10.4103/1477-3163.143720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/14/2014] [Indexed: 12/19/2022] Open
Abstract
The incidence of esophageal cancer remains on the rise worldwide and despite aggressive research
in the field of gastrointestinal oncology, the survival remains poor. Much remains to be defined in
esophageal cancer, including the development of an effective screening tool, identifying a good
tumor marker for surveillance purposes, ways to target esophageal cancer stem cells as well as
circulating tumor cells, and developing minimally invasive protocols to treat early-stage disease.
The goal of this chapter is to highlight some of the recent advances and ongoing research in the
field of esophageal cancer.
Collapse
Affiliation(s)
- Puja Gaur
- Department of Thoracic Surgery, Weill Cornell Medical College of Cornell University, Houston Methodist Hospital, 6550 Fannin Street, Suite 1661, Houston, TX 77030, USA ; Department of General Surgery, Weill Cornell Medical College of Cornell University, Houston Methodist Hospital, 6550 Fannin Street, Suite 1661, Houston, TX 77030, USA
| | - Min P Kim
- Department of Thoracic Surgery, Weill Cornell Medical College of Cornell University, Houston Methodist Hospital, 6550 Fannin Street, Suite 1661, Houston, TX 77030, USA ; Department of General Surgery, Weill Cornell Medical College of Cornell University, Houston Methodist Hospital, 6550 Fannin Street, Suite 1661, Houston, TX 77030, USA
| | - Brian J Dunkin
- Department of General Surgery, Weill Cornell Medical College of Cornell University, Houston Methodist Hospital, 6550 Fannin Street, Suite 1661, Houston, TX 77030, USA
| |
Collapse
|
32
|
Fisher OM, Levert-Mignon AJ, Lord SJ, Botelho NK, Freeman AK, Thomas ML, Falkenback D, Wettstein A, Whiteman DC, Bobryshev YV, Lord RV. High Expression of Cathepsin E in Tissues but Not Blood of Patients with Barrett's Esophagus and Adenocarcinoma. Ann Surg Oncol 2014; 22:2431-8. [PMID: 25348778 PMCID: PMC4458267 DOI: 10.1245/s10434-014-4155-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 12/13/2022]
Abstract
Background Cathepsin E (CTSE), an aspartic proteinase, is differentially expressed in the metaplasia–dysplasia–neoplasia sequence of gastric and colon cancer. We evaluated CTSE in Barrett’s esophagus (BE) and cancer because increased CTSE levels are linked to improved survival in several cancers, and other cathepsins are up-regulated in BE and esophageal adenocarcinoma (EAC). Methods A total of 273 pretreatment tissues from 199 patients were analyzed [31 normal squamous esophagus (NE), 29 BE intestinal metaplasia, 31 BE with dysplasia (BE/D), 108 EAC]. CTSE relative mRNA expression was measured by real-time polymerase chain reaction, and protein expression was measured by immunohistochemistry. CTSE serum levels were determined by enzyme-linked immunosorbent assay. Results Median CTSE mRNA expression levels were ≥1,000-fold higher in BE/intestinal metaplasia and BE/D compared to NE. CTSE levels were significantly lower in EAC compared to BE/intestinal metaplasia and BE/D, but significantly higher than NE levels. A similar expression pattern was present in immunohistochemistry, with absent staining in NE, intense staining in intestinal metaplasia and dysplasia, and less intense EAC staining. CTSE serum analysis did not discriminate patient groups. In a uni- and multivariable Cox proportional hazards model, CTSE expression was not significantly associated with survival in patients with EAC, although CTSE expression above the 25th percentile was associated with a 41 % relative risk reduction for death (hazard ratio 0.59, 95 % confidence interval 0.27–1.26, p = 0.17). Conclusions CTSE mRNA expression is up-regulated more than any known gene in Barrett intestinal metaplasia and dysplasia tissues. Protein expression is similarly highly intense in intestinal metaplasia and dysplasia tissues. Electronic supplementary material The online version of this article (doi:10.1245/s10434-014-4155-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oliver M Fisher
- St. Vincent's Centre for Applied Medical Research, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Calpe S, Compare D, Mari L, Nardone G, Parikh K. Immune signaling and regulation in esophageal cancer. Ann N Y Acad Sci 2014; 1325:15-22. [DOI: 10.1111/nyas.12518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Silvia Calpe
- Center for Experimental Medicine; Academic Medical Center; Amsterdam the Netherlands
| | - Debora Compare
- Department of Clinical and Experimental Medicine; University of Naples Federico II; Naples Italy
| | - Luigi Mari
- Center for Experimental Medicine; Academic Medical Center; Amsterdam the Netherlands
- Department of Gastroenterology and Hepatology; Academic Medical Center; Amsterdam the Netherlands
| | - Gerardo Nardone
- Department of Clinical and Experimental Medicine; University of Naples Federico II; Naples Italy
| | - Kaushal Parikh
- Center for Experimental Medicine; Academic Medical Center; Amsterdam the Netherlands
- Department of Gastroenterology and Hepatology; Academic Medical Center; Amsterdam the Netherlands
| |
Collapse
|
34
|
Grimm JC, Valero V, Molena D. Surgical indications and optimization of patients for resectable esophageal malignancies. J Thorac Dis 2014; 6:249-57. [PMID: 24624289 DOI: 10.3978/j.issn.2072-1439.2013.11.18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 11/22/2013] [Indexed: 12/11/2022]
Abstract
Esophageal cancer is a devastating diagnosis with very dire long-term survival rates. This is largely due to its rather insidious progression, which leads to most patients being diagnosed with advanced disease. Recently, however, a greater understanding of the pathogenesis of esophageal malignancies has afforded surgeons and oncologists with new opportunities for intervention and management. Coupled with improvements in imaging, staging, and medical therapies, surgeons have continued to enhance their knowledge of the nuances of esophageal resection, which has resulted in the development of minimally invasive approaches with similar overall oncologic outcomes. This marriage of more efficacious induction therapy and diminished morbidity after esophagectomy offers new promise to patients diagnosed with this aggressive form of cancer. The following review will highlight these most recent advances and will offer insight into our own approach to patients with resectable esophageal malignancy.
Collapse
Affiliation(s)
- Joshua C Grimm
- Division of Thoracic Surgery, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| | - Vicente Valero
- Division of Thoracic Surgery, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| | - Daniela Molena
- Division of Thoracic Surgery, The Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287, USA
| |
Collapse
|
35
|
Serum levels of resistin, adiponectin, and apelin in gastroesophageal cancer patients. DISEASE MARKERS 2014; 2014:619649. [PMID: 25049439 PMCID: PMC4094727 DOI: 10.1155/2014/619649] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/30/2014] [Indexed: 12/23/2022]
Abstract
The aim of the study was the investigation of relationship between cachexia syndrome and serum resistin, adiponectin, and apelin in patients with gastroesophageal cancer (GEC). Material and Methods. Adipocytokines concentrations were measured in sera of 85 GEC patients and 60 healthy controls. They were also evaluated in tumor tissue and appropriate normal mucosa of 38 operated cancer patients. Results. Resistin and apelin concentrations were significantly higher in GEC patients than in the controls. The highest resistin levels were found in cachectic patients and in patients with distant metastasis. Serum adiponectin significantly decreased in GEC patients with regional and distant metastasis. Serum apelin was significantly higher in cachectic patients than in the controls. Apelin was positively correlated with hsCRP level. Resistin and apelin levels increased significantly in tumor tissues. Weak positive correlations between adipocytokines levels in serum and in tumor tissue were observed. Conclusions. Resistin is associated with cachexia and metastasis processes of GEC. Reduction of serum adiponectin reflects adipose tissue wasting in relation to GEC progression. Correlation of apelin with hsCRP can reflect a presumable role of apelin in systemic inflammatory response in esophageal and gastric cancer.
Collapse
|
36
|
Pérez-Hernández AI, Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G. Mechanisms linking excess adiposity and carcinogenesis promotion. Front Endocrinol (Lausanne) 2014; 5:65. [PMID: 24829560 PMCID: PMC4013474 DOI: 10.3389/fendo.2014.00065] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 04/15/2014] [Indexed: 12/17/2022] Open
Abstract
Obesity constitutes one of the most important metabolic diseases being associated to insulin resistance development and increased cardiovascular risk. Association between obesity and cancer has also been well established for several tumor types, such as breast cancer in post-menopausal women, colorectal, and prostate cancer. Cancer is the first death cause in developed countries and the second one in developing countries, with high incidence rates around the world. Furthermore, it has been estimated that 15-20% of all cancer deaths may be attributable to obesity. Tumor growth is regulated by interactions between tumor cells and their tissue microenvironment. In this sense, obesity may lead to cancer development through dysfunctional adipose tissue and altered signaling pathways. In this review, three main pathways relating obesity and cancer development are examined: (i) inflammatory changes leading to macrophage polarization and altered adipokine profile; (ii) insulin resistance development; and (iii) adipose tissue hypoxia. Since obesity and cancer present a high prevalence, the association between these conditions is of great public health significance and studies showing mechanisms by which obesity lead to cancer development and progression are needed to improve prevention and management of these diseases.
Collapse
Affiliation(s)
| | - Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
- *Correspondence: Gema Frühbeck, Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Avda. Pío XII 36, Pamplona 31008, Spain e-mail:
| |
Collapse
|
37
|
Characterization of a novel tumorigenic esophageal adenocarcinoma cell line: OANC1. Dig Dis Sci 2014; 59:78-88. [PMID: 24077944 DOI: 10.1007/s10620-013-2882-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/10/2013] [Indexed: 02/06/2023]
Abstract
BACKGROUND Esophageal adenocarcinoma (EAC) has a very high case fatality rate and is one of the fastest rising cancers worldwide. At the same time, research into EAC has been hampered by a relative lack of pre-clinical models, including representative cell lines. AIM The purpose of this study was to establish and characterize a new EAC cell line. METHODS Tumor cells were isolated from EAC tissue by enzymatic digestion. Origin of the cell line was confirmed by microsatellite based genotyping. A panel of cancer-related genes was screened for mutations by targeted deep sequencing, Sanger sequencing and high resolution melting.CDKN2A promoter methylation was assessed by methylation specific high resolution melting. HER2 amplification was assessed by fluorescent in situ hybridization. Immunohistochemistry was used to assess expression of markers in xenografts grown in SCID mice. RESULTS A novel EAC cell line, OANC1, was derived from a Barrett's-associated EAC. Microsatellite-based genotyping of OANC1 and patient DNA confirmed the origin of the cell line. Sequencing of OANC1 DNA identified homozygous TP53 missense (c.856G[A, p.E286K)and SMAD4 nonsense (c.1333C[T, p.R445X) mutations.OANC1 are tumorigenic when injected sub-cutaneously into SCID mice and xenografts were positive for columnar, glandular and intestinal epithelial markers commonly expressed in EAC. Xenografts exhibited strong p53 expression, consistent with a TP53 mutation. Some proteins, including p16, EGFR and b-catenin, had heterogeneous expression patterns across xenograft cross-sections, indicative of tumor heterogeneity. CONCLUSIONS OANC1 represents a valuable addition to the limited range of pre-clinical models for EAC. This new cell line will be a useful model system for researchers studying both basic and translational aspects of this disease.
Collapse
|