1
|
Gao H, Zhang JY, Zhao LJ, Guo YY. Synthesis and clinical application of small-molecule inhibitors and PROTACs of anaplastic lymphoma kinase. Bioorg Chem 2023; 140:106807. [PMID: 37651895 DOI: 10.1016/j.bioorg.2023.106807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Pharmacological interventions that specifically target protein products of oncogenes in tumors have surfaced as a propitious therapeutic approach. Among infrequent genetic alterations, rearrangements of the anaplastic lymphoma kinase (ALK) gene, typically involving a chromosome 2 inversion that culminates in a fusion with the echinoderm microtubule-associated protein like 4 (EML4), lead to anomalous expression and activation of ALK. The inhibition of autophosphorylation and subsequent blockade of signal transduction by ALK tyrosine kinase inhibitors (TKIs) has been observed to elicit anti-tumor effects. Currently, four generations of ALK-positive targeted drugs have been investigated, providing a promising outlook for patients. The aim of this review is to furnish a comprehensive survey of the synthesis and clinical application of prototypical small-molecule ALK inhibitors in both preclinical and clinical phases, offering guidance for further development of ALK inhibitors for cancer therapy.
Collapse
Affiliation(s)
- Hua Gao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Jing-Yi Zhang
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States; College of Chemistry and Chemical Engineering, Zhengzhou Normal University 450044, China.
| | - Li-Jie Zhao
- The Rogel Cancer Center, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States.
| | - Yuan-Yuan Guo
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
2
|
Caban M, Koblmueller B, Groza D, Schueffl HH, Terenzi A, Tolios A, Mohr T, Mathuber M, Kryeziu K, Jaunecker C, Pirker C, Keppler BK, Berger W, Kowol CR, Heffeter P. A novel EGFR inhibitor acts as potent tool for hypoxia-activated prodrug systems and exerts strong synergistic activity with VEGFR inhibition in vitro and in vivo. Cancer Lett 2023; 565:216237. [PMID: 37211067 DOI: 10.1016/j.canlet.2023.216237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023]
Abstract
Small-molecule EGFR inhibitors have distinctly improved the overall survival especially in EGFR-mutated lung cancer. However, their use is often limited by severe adverse effects and rapid resistance development. To overcome these limitations, a hypoxia-activatable Co(III)-based prodrug (KP2334) was recently synthesized releasing the new EGFR inhibitor KP2187 in a highly tumor-specific manner only in hypoxic areas of the tumor. However, the chemical modifications in KP2187 necessary for cobalt chelation could potentially interfere with its EGFR-binding ability. Consequently, in this study, the biological activity and EGFR inhibition potential of KP2187 was compared to clinically approved EGFR inhibitors. In general, the activity as well as EGFR binding (shown in docking studies) was very similar to erlotinib and gefitinib (while other EGFR-inhibitory drugs behaved different) indicating no interference of the chelating moiety with the EGFR binding. Moreover, KP2187 significantly inhibited cancer cell proliferation as well as EGFR pathway activation in vitro and in vivo. Finally, KP2187 proved to be highly synergistic with VEGFR inhibitors such as sunitinib. This indicates that KP2187-releasing hypoxia-activated prodrug systems are promising candidates to overcome the clinically observed enhanced toxicity of EGFR-VEGFR inhibitor combination therapies.
Collapse
Affiliation(s)
- Monika Caban
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Bettina Koblmueller
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Diana Groza
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Hemma H Schueffl
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Alessio Terenzi
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Italy
| | - Alexander Tolios
- Department of Transfusion Medicine and Cellular Therapy, Institute of Vascular Biology, Medical University of Vienna, AT-1090, Vienna, Austria; Institute of Vascular Biology and Thrombosis Research, Center for Physiology and Pharmacology, Medical University of Vienna, Austria
| | - Thomas Mohr
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Marlene Mathuber
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Kushtrim Kryeziu
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Carola Jaunecker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Christine Pirker
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Walter Berger
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Christian R Kowol
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria
| | - Petra Heffeter
- Center for Cancer Research and Comprehensive Cancer Center, Medical University of Vienna, Austria; Research Cluster "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Austria.
| |
Collapse
|
3
|
Namulinda T, Bao LL, Kwetegyeka J, Gumula I, Yan YJ, Chen ZL. Antibacterial and anticancer activities of green-synthesized silver nanoparticles using Photinia glabra fruit extract. Nanomedicine (Lond) 2023; 18:987-1002. [PMID: 37584549 DOI: 10.2217/nnm-2023-0112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Aims: We prepared Photinia glabra (PG) aqueous fruit extract, utilized it to synthesize silver nanoparticles (PG-Ag NPs) and evaluated the antibacterial and anticancer activities of the nanoparticles (NPs). Materials & methods: Silver nitrate aqueous solution was reduced to PG-Ag NPs using aqueous PG fruit extract. NP shape, size, composition and functionalization were determined using transmission electron microscopy, x-ray photoelectron spectroscopy, Fourier transform infrared and x-ray diffraction. Results & conclusions: PG-Ag NPs were spherical, approximately 39-77 nm-sized, functionalized surfaces with notable antibacterial activity against both Escherichia coli and Staphylococcus aureus, with an MIC <30 ug/ml and cytotoxicity toward esophageal cancer cells, with IC50 values less than 20 ug/ml. PG-Ag@rt NPs have been shown to be a potent antibacterial and anticancer agent, and their enriched particle surfaces can be conjugated with other compounds for multibiomedical applications.
Collapse
Affiliation(s)
- Tabbisa Namulinda
- Department of Pharmaceutical Science & Technology, College of Biology & Medical Engineering, Donghua University, Shanghai, 201620, China
| | - Lei-Lei Bao
- Dongfang Hepatobiliary Surgery Hospital, Shanghai, 200433, China
| | - Justus Kwetegyeka
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Ivan Gumula
- Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda
| | - Yi-Jia Yan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
- Shanghai Xianhui Pharmaceutical Co., Ltd, Shanghai, 201620, China
| | - Zhi-Long Chen
- Department of Pharmaceutical Science & Technology, College of Biology & Medical Engineering, Donghua University, Shanghai, 201620, China
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China
| |
Collapse
|
4
|
Bolcaen J, Nair S, Driver CHS, Boshomane TMG, Ebenhan T, Vandevoorde C. Novel Receptor Tyrosine Kinase Pathway Inhibitors for Targeted Radionuclide Therapy of Glioblastoma. Pharmaceuticals (Basel) 2021; 14:626. [PMID: 34209513 PMCID: PMC8308832 DOI: 10.3390/ph14070626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Glioblastoma (GB) remains the most fatal brain tumor characterized by a high infiltration rate and treatment resistance. Overexpression and/or mutation of receptor tyrosine kinases is common in GB, which subsequently leads to the activation of many downstream pathways that have a critical impact on tumor progression and therapy resistance. Therefore, receptor tyrosine kinase inhibitors (RTKIs) have been investigated to improve the dismal prognosis of GB in an effort to evolve into a personalized targeted therapy strategy with a better treatment outcome. Numerous RTKIs have been approved in the clinic and several radiopharmaceuticals are part of (pre)clinical trials as a non-invasive method to identify patients who could benefit from RTKI. The latter opens up the scope for theranostic applications. In this review, the present status of RTKIs for the treatment, nuclear imaging and targeted radionuclide therapy of GB is presented. The focus will be on seven tyrosine kinase receptors, based on their central role in GB: EGFR, VEGFR, MET, PDGFR, FGFR, Eph receptor and IGF1R. Finally, by way of analyzing structural and physiological characteristics of the TKIs with promising clinical trial results, four small molecule RTKIs were selected based on their potential to become new therapeutic GB radiopharmaceuticals.
Collapse
Affiliation(s)
- Julie Bolcaen
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Shankari Nair
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| | - Cathryn H. S. Driver
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits 0240, South Africa;
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
| | - Tebatso M. G. Boshomane
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
| | - Thomas Ebenhan
- Pre-Clinical Imaging Facility, Nuclear Medicine Research Infrastructure, Pelindaba, Brits 0242, South Africa;
- Department of Nuclear Medicine, University of Pretoria Steve Biko Academic Hospital, Pretoria 0001, South Africa;
- Preclinical Drug Development Platform, Department of Science and Technology, North West University, Potchefstroom 2520, South Africa
| | - Charlot Vandevoorde
- Radiobiology, Radiation Biophysics Division, Nuclear Medicine Department, iThemba LABS, Cape Town 7131, South Africa;
| |
Collapse
|
5
|
Shu M, Gao F, Yu C, Zeng M, He G, Wu Y, Su Y, Hu N, Zhou Z, Yang Z, Xu L. Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. NANOTECHNOLOGY 2020; 31:335102. [PMID: 32303014 DOI: 10.1088/1361-6528/ab8a8a] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab resulted in enhanced antitumor activity, which overcomes the resistance to trastuzumab monotherapy. Herein, we have developed branched polyethylenimine-functionalized carbon dot (BP-CD) nanocarriers, which exhibited efficient green fluorescent protein gene delivery and expression. The positively charged BP-CDs allowed for effective nucleic acid binding and displayed a highly efficient small interfering RNA (siRNA)-mediated delivery targeting of cancer cells. The transfection of BP-CDs and HER3 siRNA complexes down-regulated HER3 protein expression and induced significant cell growth inhibition in BT-474 cells. BP-CDs/HER3 siRNA complexes induced cell death of BT-474 cells through G0/G1 cell cycle arrest and apoptosis. The combined treatment of BP-CDs/HER3 siRNA complexes and trastuzumab caused greater cell growth suppression in BT-474 cells when compared to either agent alone. The findings suggest that this dual-targeted therapy with the combination of BP-CDs/HER3 siRNA and trastuzumab represents a promising approach in breast cancer.
Collapse
Affiliation(s)
- Mengjun Shu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Lin Q, Zhang Y, Fu Z, Hu B, Si Z, Zhao Y, Shi H, Cheng D. Synthesis and evaluation of 18F labeled crizotinib derivative [18F]FPC as a novel PET probe for imaging c-MET-positive NSCLC tumor. Bioorg Med Chem 2020; 28:115577. [DOI: 10.1016/j.bmc.2020.115577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/05/2020] [Accepted: 05/27/2020] [Indexed: 12/29/2022]
|
7
|
Pirhadi S, Damghani T, Avestan MS, Sharifi S. Dual potent c-Met and ALK inhibitors: from common feature pharmacophore modeling to structure based virtual screening. J Recept Signal Transduct Res 2020; 40:357-364. [DOI: 10.1080/10799893.2020.1735418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Somayeh Pirhadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Tahereh Damghani
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Shahrzad Sharifi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
8
|
Shu M, He F, Li Z, Zhu X, Ma Y, Zhou Z, Yang Z, Gao F, Zeng M. Biosynthesis and Antibacterial Activity of Silver Nanoparticles Using Yeast Extract as Reducing and Capping Agents. NANOSCALE RESEARCH LETTERS 2020; 15:14. [PMID: 31950291 PMCID: PMC6965552 DOI: 10.1186/s11671-019-3244-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 12/27/2019] [Indexed: 05/05/2023]
Abstract
Biosynthesis for the preparation of antimicrobial silver nanoparticles (Ag NPs) is a green method without the use of cytotoxic reducing and surfactant agents. Herein, shape-controlled and well-dispersed Ag NPs were biosynthesized using yeast extract as reducing and capping agents. The synthesized Ag NPs exhibited a uniform spherical shape and fine size, with an average size of 13.8 nm. The biomolecules of reductive amino acids, alpha-linolenic acid, and carbohydrates in yeast extract have a significant role in the formation of Ag NPs, which was proved by the Fourier transform infrared spectroscopy analysis. In addition, amino acids on the surface of Ag NPs carry net negative charges which maximize the electrostatic repulsion interactions in alkaline solution, providing favorable stability for more than a year without precipitation. The Ag NPs in combination treatment with ampicillin reversed the resistance in ampicillin-resistant E. coli cells. These monodispersed Ag NPs could be a promising alternative for the disinfection of multidrug-resistant bacterial strains, and they showed negligible cytotoxicity and good biocompatibility toward Cos-7 cells.
Collapse
Affiliation(s)
| | | | - Zhaohui Li
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xingzhong Zhu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yujie Ma
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhihua Zhou
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Feng Gao
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
9
|
Cheng F, Guo D. MET in glioma: signaling pathways and targeted therapies. J Exp Clin Cancer Res 2019; 38:270. [PMID: 31221203 PMCID: PMC6585013 DOI: 10.1186/s13046-019-1269-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/04/2019] [Indexed: 12/14/2022] Open
Abstract
Gliomas represent the most common type of malignant brain tumor, among which, glioblastoma remains a clinical challenge with limited treatment options and dismal prognosis. It has been shown that the dysregulated receptor tyrosine kinase (RTK, including EGFR, MET, PDGFRα, ect.) signaling pathways have pivotal roles in the progression of gliomas, especially glioblastoma. Increasing evidence suggests that expression levels of the RTK MET and its specific stimulatory factors are significantly increased in glioblastomas compared to those in normal brain tissues, whereas some negative regulators are found to be downregulated. Mutations in MET, as well as the dysregulation of other regulators of cross-talk with MET signaling pathways, have also been identified. MET and its ligand hepatocyte growth factor (HGF) play a critical role in the proliferation, survival, migration, invasion, angiogenesis, stem cell characteristics, and therapeutic resistance and recurrence of glioblastomas. Therefore, combined targeted therapy for this pathway and associated molecules could be a novel and attractive strategy for the treatment of human glioblastoma. In this review, we highlight progress made in the understanding of MET signaling in glioma and advances in therapies targeting HGF/MET molecules for glioma patients in recent years, in addition to studies on the expression and mutation status of MET.
Collapse
Affiliation(s)
- Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
10
|
Zhang Q, Zhang Y, Chen Y, Qian J, Zhang X, Yu K. A Novel mTORC1/2 Inhibitor (MTI-31) Inhibits Tumor Growth, Epithelial-Mesenchymal Transition, Metastases, and Improves Antitumor Immunity in Preclinical Models of Lung Cancer. Clin Cancer Res 2019; 25:3630-3642. [PMID: 30796032 DOI: 10.1158/1078-0432.ccr-18-2548] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 12/21/2018] [Accepted: 02/15/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE We aimed to investigate efficacy and mechanism of MTI-31 (LXI-15029), a novel mTORC1/mTORC2 inhibitor currently in human trial (NCT03125746), in non-small cell lung cancer (NSCLC) models of multiple driver mutations and tyrosine kinase inhibitor (TKI)-resistance. EXPERIMENTAL DESIGN Gene depletion, inhibitor treatment, immunological, flow cytometry, cellular, and animal studies were performed to determine in vitro and in vivo efficacy in NSCLC models of driver mutations and elucidate roles by mTOR complexes in regulating migration, epithelial-mesenchymal transition (EMT), metastasis, intracranial tumor growth, and immune-escape. RESULTS MTI-31 potently inhibited cell proliferation (IC50 <1 μmol/L) and in vivo tumor growth in multiple NSCLC models of EGFR/T790M, EML4-ALK, c-Met, or KRAS (MED <10 mg/kg). In EGFR-mutant and/or EML4-ALK-driven NSCLC, MTI-31 or disruption of mTORC2 reduced cell migration, hematogenous metastasis to the lung, and abrogated morphological and functional traits of EMT. Disruption of mTORC2 inhibited EGFR/T790M-positive tumor growth in mouse brain and prolonged animal survival correlating a diminished tumor angiogenesis and recruitment of IBA1+ microglia/macrophages in tumor microenvironment. MTI-31 also suppressed programmed death ligand 1 (PD-L1) in EGFR- and ALK-driven NSCLC, mediated in part by mTORC2/AKT/GSK3β-dependent proteasomal degradation. Depletion of mTOR protein or disruption of mTOR complexes profoundly downregulated PD-L1 and alleviated apoptosis in Jurkat T and primary human T cells in a tumor-T cell coculture system. CONCLUSIONS Our results highlight mTOR as a multifaceted regulator of tumor growth, metastasis, and immune-escape in EGFR/ALK-mutant and TKI-resistant NSCLC cells. The newly characterized mechanisms mediated by the rapamycin-resistant mTORC2 warrant clinical investigation of mTORC1/mTORC2 inhibitors in patients with lung cancer.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yan Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Yaqing Chen
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Jianchang Qian
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Xuesai Zhang
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China
| | - Ker Yu
- Department of Pharmacology, Fudan University School of Pharmacy, Shanghai, China.
| |
Collapse
|
11
|
Sionov RV, Vlahopoulos SA, Granot Z. Regulation of Bim in Health and Disease. Oncotarget 2015; 6:23058-134. [PMID: 26405162 PMCID: PMC4695108 DOI: 10.18632/oncotarget.5492] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 11/25/2022] Open
Abstract
The BH3-only Bim protein is a major determinant for initiating the intrinsic apoptotic pathway under both physiological and pathophysiological conditions. Tight regulation of its expression and activity at the transcriptional, translational and post-translational levels together with the induction of alternatively spliced isoforms with different pro-apoptotic potential, ensure timely activation of Bim. Under physiological conditions, Bim is essential for shaping immune responses where its absence promotes autoimmunity, while too early Bim induction eliminates cytotoxic T cells prematurely, resulting in chronic inflammation and tumor progression. Enhanced Bim induction in neurons causes neurodegenerative disorders including Alzheimer's, Parkinson's and Huntington's diseases. Moreover, type I diabetes is promoted by genetically predisposed elevation of Bim in β-cells. On the contrary, cancer cells have developed mechanisms that suppress Bim expression necessary for tumor progression and metastasis. This review focuses on the intricate network regulating Bim activity and its involvement in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Ronit Vogt Sionov
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| | - Spiros A. Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Thivon and Levadias, Goudi, Athens, Greece
| | - Zvi Granot
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel Canada, Hebrew University, Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
12
|
Kim JE, He Q, Chen Y, Shi C, Yu K. mTOR-targeted therapy: differential perturbation to mitochondrial membrane potential and permeability transition pore plays a role in therapeutic response. Biochem Biophys Res Commun 2014; 447:184-91. [PMID: 24704448 DOI: 10.1016/j.bbrc.2014.03.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/25/2014] [Indexed: 12/25/2022]
Abstract
While cancer cell mitochondria mediate actions of many successful chemotherapeutics, little is known about mitochondrial response in mTOR-targeted anticancer therapy. We have studied mitochondrial dynamics in relation to growth suppression employing an allosteric inhibitor rapalog, a highly selective mTOR kinase inhibitor (mTOR-KI) and mTOR-ShRNA. Global targeting of mTOR increased mitochondrial membrane potential (mΔψ) and inhibited mitochondrial permeability transition pore (mPTP). Importantly, these mTOR-KI-provoked anti-survival and pro-survival effects were differentially manifested in diverse cancer cells according to intrinsic susceptibility to mTOR-targeting. The most-sensitive cells including those possessing hyperactive PI3K/AKT/mTOR and/or growth factor-dependence (LNCap, MDA361 and MG63) all displayed a dramatic increase in mΔψ, whereas the mΔψ increase was not evident in majority of resistant cancer cells. Upon mTOR-KI treatment, the resistant cells including those harboring K-Ras- or B-Raf mutation (MDA231, HT29 and HCT116) all displayed a markedly reduced mPTP opening, which paralleled a sustained AKT-hexokinase 2 (HK2) survival signaling and persistent phosphorylation (inactivation) of GSK3β. Further studies demonstrated that the mTOR-KI-provoked mPTP closure in resistant cells was mediated through an enhanced binding of HK2 to the mitochondrial voltage-dependent anion channel (VDAC), a molecular mechanism known to promote mPTP closure and cell survival. Detaching HK2 from VDAC by an HK2-displacing peptide or methyl jasmonate specifically blocked the mTOR-KI-provoked mPTP closure and potentiated growth suppression in resistant cells. Thus, mTOR-inhibition can exert complex and differential perturbation to mitochondrial dynamics in cancer cells, which likely influence therapeutic outcome of mTOR-targeted therapy.
Collapse
Affiliation(s)
- Jae Eun Kim
- Oncology Research, Pfizer Pharmaceuticals, Pearl River, NY 10965, USA
| | - Qun He
- Department of Pharmacology, Fudan University, School of Pharmacy, Shanghai 201203, China
| | - Yaqing Chen
- Department of Pharmacology, Fudan University, School of Pharmacy, Shanghai 201203, China
| | - Celine Shi
- Oncology Research, Pfizer Pharmaceuticals, Pearl River, NY 10965, USA
| | - Ker Yu
- Department of Pharmacology, Fudan University, School of Pharmacy, Shanghai 201203, China; Oncology Research, Pfizer Pharmaceuticals, Pearl River, NY 10965, USA.
| |
Collapse
|
13
|
Abstract
Here we discuss the latest progress in development of some kinase inhibitors such as inhibitors of c-MET, LIM and Bcr-Abl kinases. Importantly, many oncogenic kinases signal via the mTOR pathway, suggesting a common target for drug combinations.
Collapse
|
14
|
Abstract
Receptor tyrosine kinases play important roles in the biology of many tumor cell types. In approximately 10% of non-small cell lung cancer (NSCLC) patients mutational activation of the epidermal growth factor receptor (EGFR) results in tumor cells that are exquisitely addicted to signaling by this receptor.1 Thus expression of mutant active EGFR but in general not wild-type EGFR predisposes NSCLC cells to inhibitors of EGFR/ErbB2. Use of EGFR inhibitory agents such as gefitinib for this subset of NSCLC patients causes tumor regression and disease stabilization for 12–18 mo, after which tumor cells become resistant to the drug.2 Initial studies identified a second mutation within the EGFR, which results in the resistance of the tyrosine kinase to gefitinib, as a major cause of reduced tumor control.3 This has resulted in the development of newer EGFR inhibitors, e.g., afatinib, which inhibited double mutant EGFR.4 In a subset of these patients, however, resistance to gefitinib was not associated with EGFR mutations.5 Clearly, other mechanisms of gefitinib resistance must be at play.
Collapse
Affiliation(s)
- Paul Dent
- Department of Biochemistry; Massey Cancer Center; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|