1
|
Pungsrinont T, Kallenbach J, Baniahmad A. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer. Int J Mol Sci 2021; 22:11088. [PMID: 34681745 PMCID: PMC8538152 DOI: 10.3390/ijms222011088] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Androgen deprivation therapy (ADT) and androgen receptor (AR)-targeted therapy are the gold standard options for treating prostate cancer (PCa). These are initially effective, as localized and the early stage of metastatic disease are androgen- and castration-sensitive. The tumor strongly relies on systemic/circulating androgens for activating AR signaling to stimulate growth and progression. However, after a certain point, the tumor will eventually develop a resistant stage, where ADT and AR antagonists are no longer effective. Mechanistically, it seems that the tumor becomes more aggressive through adaptive responses, relies more on alternative activated pathways, and is less dependent on AR signaling. This includes hyperactivation of PI3K-AKT-mTOR pathway, which is a central signal that regulates cell pro-survival/anti-apoptotic pathways, thus, compensating the blockade of AR signaling. The PI3K-AKT-mTOR pathway is well-documented for its crosstalk between genomic and non-genomic AR signaling, as well as other signaling cascades. Such a reciprocal feedback loop makes it more complicated to target individual factor/signaling for treating PCa. Here, we highlight the role of PI3K-AKT-mTOR signaling as a resistance mechanism for PCa therapy and illustrate the transition of prostate tumor from AR signaling-dependent to PI3K-AKT-mTOR pathway-dependent. Moreover, therapeutic strategies with inhibitors targeting the PI3K-AKT-mTOR signal used in clinic and ongoing clinical trials are discussed.
Collapse
Affiliation(s)
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, 07747 Jena, Germany; (T.P.); (J.K.)
| |
Collapse
|
2
|
Gong B, Zhang J, Hua Z, Liu Z, Thiele CJ, Li Z. Downregulation of ATXN3 Enhances the Sensitivity to AKT Inhibitors (Perifosine or MK-2206), but Decreases the Sensitivity to Chemotherapeutic Drugs (Etoposide or Cisplatin) in Neuroblastoma Cells. Front Oncol 2021; 11:686898. [PMID: 34322387 PMCID: PMC8311598 DOI: 10.3389/fonc.2021.686898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/23/2021] [Indexed: 12/14/2022] Open
Abstract
Background Chemotherapy resistance is the major cause of failure in neuroblastoma (NB) treatment. ATXN3 has been linked to various types of cancer and neurodegenerative diseases; however, its roles in NB have not been established. The aim of our study was to explore the role of ATXN3 in the cell death induced by AKT inhibitor (perifosine or MK-2206) or chemotherapy drugs (etoposide or cisplatin) in NB cells. Methods The expressions of ATXN3 and BCL-2 family members were detected by Western blot. Cell survival was evaluated by CCK8, cell confluence was measured by IncuCyte, and apoptosis was detected by flow cytometry. AS and BE2 were treated with AKT inhibitors or chemotherapeutics, respectively. Results Downregulation of ATXN3 did not block, but significantly increased the perifosine/MK-2206-induced cell death. Among the BCL-2 family members, the expression of pro-apoptotic protein BIM and anti-proapoptotic protein Bcl-xl expression increased significantly when ATXN3 was down-regulated. Downregulation of BIM protected NB cells from the combination of perifosine/MK-2206 and ATXN3 downregulation. Downregulation of ATXN3 did not increase, but decrease the sensitivity of NB cells to etoposide/cisplatin, and knockdown of Bcl-xl attenuated this decrease in sensitivity. Conclusion Downregulation of ATXN3 enhanced AKT inhibitors (perifosine or MK-2206) induced cell death by BIM, but decreased the cell death induced by chemotherapeutic drugs (etoposide or cisplatin) via Bcl-xl. The expression of ATXN3 may be an indicator in selecting different treatment regimen.
Collapse
Affiliation(s)
- Baocheng Gong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinhua Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongyan Hua
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhihui Liu
- Cellular and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Carol J Thiele
- Cellular and Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zhijie Li
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China.,Medical Research Center, Liaoning Key Laboratory of Research and Application of Animal Models for Environment and Metabolic Diseases, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118731. [PMID: 32360668 DOI: 10.1016/j.bbamcr.2020.118731] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/13/2023]
Abstract
Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy. Here we provide a summary of the biological functions of the major players of this cascade and their deregulation in prostate cancer, summarizing the results of preclinical and clinical studies with PI3K signaling inhibitors and the reasons of failure independent from genomic changes.
Collapse
|
4
|
Le Grand M, Kimpton K, Gana CC, Valli E, Fletcher JI, Kavallaris M. Targeting Functional Activity of AKT Has Efficacy against Aggressive Neuroblastoma. ACS Pharmacol Transl Sci 2020; 3:148-160. [PMID: 32259094 DOI: 10.1021/acsptsci.9b00085] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Indexed: 12/23/2022]
Abstract
MYCN-amplified neuroblastoma is one of the deadliest forms of childhood cancer and remains a significant clinical challenge. Direct pharmacological inhibition of MYCN is not currently achievable. One strategy could be to target the AKT/GSK3β pathway, which directly regulates the stability of the MYCN protein. Numerous potent and isoform-specific small-molecule AKT inhibitors have been developed. However, the selection of the right drug combinations in the relevant indication will have a significant impact on AKT inhibitor clinical success. To maximally exploit the potential of AKT inhibitors, a better understanding of AKT isoform functions in cancer is crucial. Here using RNAi to downregulate specific AKT isoforms, we demonstrated that loss of total AKT activity rather than isoform-specific expression was necessary to decrease MYCN expression and cause a significant decrease in neuroblastoma cell proliferation. Consistent with these observations, isoform-specific pharmacological inhibition of AKT was substantially less effective than pan-AKT inhibition in combination with cytotoxic drugs in MYCN-amplified neuroblastoma. The allosteric pan-AKT inhibitor perifosine had promising in vitro and in vivo activity in combination with conventional cytotoxic drugs in MYCN-amplified neuroblastoma cells. Our results demonstrated that perifosine drug combination was able to induce apoptosis and downregulate ABC transporter expression. Collectively, this study shows that selecting pan-AKT inhibitors rather than isoform-specific drugs to synergize with first-line chemotherapy treatment should be considered for clinical trials for aggressive neuroblastoma and, potentially, other MYCN -driven cancers.
Collapse
Affiliation(s)
- Marion Le Grand
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Kathleen Kimpton
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Christine C Gana
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Emanuele Valli
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, New South Wales 2052, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW, Sydney, New South Wales 2052, Australia.,ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW, Sydney, New South Wales 2052, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW, Sydney, New South Wales 2052, Australia
| |
Collapse
|
5
|
Kaleağasıoğlu F, Zaharieva MM, Konstantinov SM, Berger MR. Alkylphospholipids are Signal Transduction Modulators with Potential for Anticancer Therapy. Anticancer Agents Med Chem 2019; 19:66-91. [PMID: 30318001 DOI: 10.2174/1871520618666181012093056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND Alkylphospholipids (APLs) are synthetically derived from cell membrane components, which they target and thus modify cellular signalling and cause diverse effects. This study reviews the mechanism of action of anticancer, antiprotozoal, antibacterial and antiviral activities of ALPs, as well as their clinical use. METHODS A literature search was used as the basis of this review. RESULTS ALPs target lipid rafts and alter phospholipase D and C signalling cascades, which in turn will modulate the PI3K/Akt/mTOR and RAS/RAF/MEK/ERK pathways. By feedback coupling, the SAPK/JNK signalling chain is also affected. These changes lead to a G2/M phase cell cycle arrest and subsequently induce programmed cell death. The available knowledge on inhibition of AKT phosphorylation, mTOR phosphorylation and Raf down-regulation renders ALPs as attractive candidates for modern medical treatment, which is based on individualized diagnosis and therapy. Corresponding to their unusual profile of activities, their side effects result from cholinomimetic activity mainly and focus on the gastrointestinal tract. These aspects together with their bone marrow sparing features render APCs well suited for modern combination therapy. Although the clinical success has been limited in cancer diseases so far, the use of miltefosine against leishmaniosis is leading the way to better understanding their optimized use. CONCLUSION Recent synthetic programs generate congeners with the increased therapeutic ratio, liposomal formulations, as well as diapeutic (or theranostic) derivatives with optimized properties. It is anticipated that these innovative modifications will pave the way for the further successful development of ALPs.
Collapse
Affiliation(s)
- Ferda Kaleağasıoğlu
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Faculty of Medicine, Near East University, Mersin 10, Turkey
| | - Maya M Zaharieva
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Infectious Microbiology, The "Stephan Angeloff" Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Spiro M Konstantinov
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University Sofia, Sofia, Bulgaria
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Barati Bagherabad M, Afzaljavan F, ShahidSales S, Hassanian SM, Avan A. Targeted therapies in pancreatic cancer: Promises and failures. J Cell Biochem 2018; 120:2726-2741. [PMID: 28703890 DOI: 10.1002/jcb.26284] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/11/2018] [Indexed: 12/14/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an incidence rate nearly equal to its mortality rate. The poor prognosis of the disease can be explained by the absence of effective biomarkers for screening and early detection, together with the aggressive behavior and resistance to the currently available chemotherapy. The therapeutic failure can also be attributed to the inter-/intratumor genetic heterogeneity and the abundance of tumor stroma that occupies the majority of the tumor mass. Gemcitabine is used in the treatment of PDAC; however, the response rate is less than 12%. A recent phase III trial revealed that the combination of oxaliplatin, irinotecan, fluorouracil, and leucovorin could be an option for the treatment of metastatic PDAC patients with good performance status, although these approaches can result in high toxicity level. Further investigations are required to develop innovative anticancer agents that either improve gemcitabine activity, within novel combinatorial approaches or acts with a better efficacy than gemcitabine. The aim of the current review is to give an overview of preclinical and clinical studies targeting key dysregulated signaling pathways in PDAC.
Collapse
Affiliation(s)
- Matineh Barati Bagherabad
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Afzaljavan
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soodabeh ShahidSales
- Cancer Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic syndrome Research center, Mashhad University of Medical Sciences, Mashhad, Iran.,Molecular Medicine group, Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Bumbaca B, Li W. Taxane resistance in castration-resistant prostate cancer: mechanisms and therapeutic strategies. Acta Pharm Sin B 2018; 8:518-529. [PMID: 30109177 PMCID: PMC6089846 DOI: 10.1016/j.apsb.2018.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/06/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Despite its good initial response and significant survival benefit in patients with castration-resistant prostate cancer (CRPC), taxane therapy inevitably encounters drug resistance in all patients. Deep understandings of taxane resistant mechanisms can significantly facilitate the development of new therapeutic strategies to overcome taxane resistance and improve CRPC patient survival. Multiple pathways of resistance have been identified as potentially crucial areas of intervention. First, taxane resistant tumor cells typically have mutated microtubule binding sites, varying tubulin isotype expression, and upregulation of efflux transporters. These mechanisms contribute to reducing binding affinity and availability of taxanes. Second, taxane resistant tumors have increased stem cell like characteristics, indicating higher potential for further mutation in response to therapy. Third, the androgen receptor pathway is instrumental in the proliferation of CRPC and multiple hypotheses leading to this pathway reactivation have been reported. The connection of this pathway to the AKT pathway has received significant attention due to the upregulation of phosphorylated AKT in CRPC. This review highlights recent advances in elucidating taxane resistant mechanisms and summarizes potential therapeutic strategies for improved treatment of CRPC.
Collapse
|
8
|
Patient-derived Hormone-naive Prostate Cancer Xenograft Models Reveal Growth Factor Receptor Bound Protein 10 as an Androgen Receptor-repressed Gene Driving the Development of Castration-resistant Prostate Cancer. Eur Urol 2018; 73:949-960. [DOI: 10.1016/j.eururo.2018.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 02/20/2018] [Indexed: 11/22/2022]
|
9
|
Abstract
Akt/protein kinase B (PKB) is a serine/threonine kinase which is implicated in mediating a variety of biological responses including cell growth, proliferation and survival. Akt is activated by phosphorylation on two critical residues, namely threonine 308 (Thr308) and serine 473 (Ser473). Several studies have found Akt2 to be amplified or overexpressed at the mRNA level in various tumor cell lines and in a number of human malignancies such as colon, pancreatic and breast cancers. Nevertheless, activation of Akt isoforms by phosphorylation appears to be more clinically significant than Akt2 amplification or overexpression. Many studies in the past 4–5 years have revealed a prognostic and/or predictive role of Akt phosphorylation in breast, prostate and non-small cell lung cancer. Several publications suggest a role of phosphorylated Akt also in endometrial, pancreatic, gastric, tongue and renal cancer. However, different types of assays were used in these studies. Before assessment of P-Akt can be incorporated into routine clinical practice, all aspects of the assay methodology will have to be standardized.
Collapse
Affiliation(s)
- J. Cicenas
- Evolutionary Biology, Zoological Institute, University of Basel, Basel - Switzerland
| |
Collapse
|
10
|
Abstract
PI3K/AKT signalling is commonly disrupted in human cancers, with AKT being a central component of the pathway, influencing multiple processes that are directly involved in tumourigenesis. Targeting AKT is therefore a highly attractive anti-cancer strategy with multiple AKT inhibitors now in various stages of clinical development. In this review, we summarise the role and regulation of AKT signalling in normal cellular physiology. We highlight the mechanisms by which AKT signalling can be hyperactivated in cancers and discuss the past, present and future clinical strategies for AKT inhibition in oncology.
Collapse
Affiliation(s)
| | - Udai Banerji
- Royal Marsden NHS Foundation Trust, London SM2 5PT, UK; The Institute of Cancer Research, London SM2 5NG, UK.
| |
Collapse
|
11
|
Akt targeting as a strategy to boost chemotherapy efficacy in non-small cell lung cancer through metabolism suppression. Sci Rep 2017; 7:45136. [PMID: 28332584 PMCID: PMC5362809 DOI: 10.1038/srep45136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/15/2017] [Indexed: 01/13/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer development, mediated by genetic and epigenetic alterations that may be pharmacologically targeted. Among oncogenes, the kinase Akt is commonly overexpressed in tumors and favors glycolysis, providing a rationale for using Akt inhibitors. Here, we addressed the question of whether and how inhibiting Akt activity could improve therapy of non-small cell lung cancer (NSCLC) that represents more than 80% of all lung cancer cases. First, we demonstrated that Akt inhibitors interacted synergistically with Microtubule-Targeting Agents (MTAs) and specifically in cancer cell lines, including those resistant to chemotherapy agents and anti-EGFR targeted therapies. In vivo, we further revealed that the chronic administration of low-doses of paclitaxel - i.e. metronomic scheduling - and the anti-Akt perifosine was the most efficient and the best tolerated treatment against NSCLC. Regarding drug mechanism of action, perifosine potentiated the pro-apoptotic effects of paclitaxel, independently of cell cycle arrest, and combining paclitaxel/perifosine resulted in a sustained suppression of glycolytic and mitochondrial metabolism. This study points out that targeting cancer cell bioenergetics may represent a novel therapeutic avenue in NSCLC, and provides a strong foundation for future clinical trials of metronomic MTAs combined with Akt inhibitors.
Collapse
|
12
|
Ríos-Marco P, Marco C, Gálvez X, Jiménez-López JM, Carrasco MP. Alkylphospholipids: An update on molecular mechanisms and clinical relevance. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1657-1667. [PMID: 28238819 DOI: 10.1016/j.bbamem.2017.02.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 11/16/2022]
Abstract
Alkylphospholipids (APLs) represent a new class of drugs which do not interact directly with DNA but act on the cell membrane where they accumulate and interfere with lipid metabolism and signalling pathways. This review summarizes the mode of action at the molecular level of these compounds. In this sense, a diversity of mechanisms has been suggested to explain the actions of clinically-relevant APLs, in particular, in cancer treatment. One consistently reported finding is that APLs reduce the biosynthesis of phosphatidylcholine (PC) by inhibiting the rate-limiting enzyme CTP:phosphocholine cytidylyltransferase (CT). APLs also alter intracellular cholesterol traffic and metabolism in human tumour-cell lines, leading to an accumulation of cholesterol inside the cell. An increase in cholesterol biosynthesis associated with a decrease in the synthesis of choline-containing phospholipids and cholesterol esterification leads to a change in the free-cholesterol:PC ratio in cells exposed to APLs. Akt phosphorylation status after APL exposure shows that this critical regulator for cell survival is modulated by changes in cholesterol levels induced in the plasma membrane by these lipid analogues. Furthermore, APLs produce cell ultrastructural alterations with an abundant autophagic vesicles and autolysosomes in treated cells, indicating an interference of autophagy process after APL exposure. Thus, antitumoural APLs interfere with the proliferation of tumour cells via a complex mechanism involving phospholipid and cholesterol metabolism, interfere with lipid-dependent survival-signalling pathways and autophagy. Although APLs also exert antiparasitic, antibacterial, and antifungal effects, in this review we provide a summary of the antileishmanial activity of these lipid analogues. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Carmen Marco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - Xiomara Gálvez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain
| | - José M Jiménez-López
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| | - María P Carrasco
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Av. Fuentenueva s/n, Granada 18001, Spain.
| |
Collapse
|
13
|
Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy. Pharmacol Ther 2016; 165:114-31. [DOI: 10.1016/j.pharmthera.2016.06.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022]
|
14
|
Toren P, Kim S, Johnson F, Zoubeidi A. Combined AKT and MEK Pathway Blockade in Pre-Clinical Models of Enzalutamide-Resistant Prostate Cancer. PLoS One 2016; 11:e0152861. [PMID: 27046225 PMCID: PMC4821639 DOI: 10.1371/journal.pone.0152861] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/20/2016] [Indexed: 11/25/2022] Open
Abstract
Despite recent improvements in patient outcomes using newer androgen receptor (AR) pathway inhibitors, treatment resistance in castrate resistant prostate cancer (CRPC) continues to remain a clinical problem. Co-targeting alternate resistance pathways are of significant interest to treat CRPC and delay the onset of resistance. Both the AKT and MEK signaling pathways become activated as prostate cancer develops resistance to AR-targeted therapies. This pre-clinical study explores co-targeting these pathways in AR-positive prostate cancer models. Using various in vitro models of prostate cancer disease states including androgen dependent (LNCaP), CRPC (V16D and 22RV1) and ENZ-resistant prostate cancer (MR49C and MR49F), we evaluate the relevance of targeting both AKT and MEK pathways. Our data reveal that AKT inhibition induces apoptosis and inhibits cell growth in PTEN null cell lines independently of their sensitivity to hormone therapy; however, AKT inhibition had no effect on the PTEN positive 22RV1 cell line. Interestingly, we found that MEK inhibition had greater effect on 22RV1 cells compared to LNCaP, V16D or ENZ-resistant cells MR49C and MR49F cells. In vitro, combination AKT and MEK blockade had evidence of synergy observed in some cell lines and assays, but this was not consistent across all results. In vivo, the combination of AKT and MEK inhibition resulted in more consistent tumor growth inhibition of MR49F xenografts and longer disease specific survival compared to AKT inhibitor monotherapy. As in our in vitro study, 22RV1 xenografts were more resistant to AKT inhibition while they were more sensitive to MEK inhibition. Our results suggest that targeting AKT and MEK in combination may be a valuable strategy in prostate cancer when both pathways are activated and further support the importance of characterizing the dominant oncogenic pathway in each patient's tumor in order to select optimal therapy.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Soojin Kim
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Fraser Johnson
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
15
|
Chang L, Graham PH, Ni J, Hao J, Bucci J, Cozzi PJ, Li Y. Targeting PI3K/Akt/mTOR signaling pathway in the treatment of prostate cancer radioresistance. Crit Rev Oncol Hematol 2015; 96:507-17. [PMID: 26253360 DOI: 10.1016/j.critrevonc.2015.07.005] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 05/20/2015] [Accepted: 07/08/2015] [Indexed: 12/19/2022] Open
Abstract
The phosphatidylinositol-3-kinase/Akt and the mammalian target of rapamycin (PI3K/Akt/mTOR) pathway is one of the most frequently activated signaling pathways in prostate cancer (CaP) and other cancers, and responsible for the survival, metastasis and therapeutic resistance. Recent advances in radiation therapy indicate that activation of this pathway is closely associated with cancer radioresistance, which is a major challenge for the current CaP radiation treatment. Therefore, targeting this pathway by inhibitors to enhance radiosensitivity has great potential for clinical benefits of CaP patients. In this review, we summarize the recent findings in the PI3K/Akt/mTOR pathway in CaP radiotherapy research and discuss the potential use of the PI3K/Akt/mTOR pathway inhibitors as radiosensitizers in the treatment of CaP radioresistance in preclinical studies to explore novel approaches for future clinical trials.
Collapse
Affiliation(s)
- Lei Chang
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Peter H Graham
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jie Ni
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Jingli Hao
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Joseph Bucci
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia
| | - Paul J Cozzi
- St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia; Department of Surgery, St. George Hospital, Sydney, NSW, Australia
| | - Yong Li
- Cancer Care Centre and Prostate Cancer Institute, St. George Hospital, Sydney, NSW, Australia; St George and Sutherland Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW, Australia.
| |
Collapse
|
16
|
Kim MN, Ro SW, Kim DY, Kim DY, Cho KJ, Park JH, Lim HY, Han KH. Efficacy of perifosine alone and in combination with sorafenib in an HrasG12V plus shp53 transgenic mouse model of hepatocellular carcinoma. Cancer Chemother Pharmacol 2015; 76:257-67. [PMID: 26037205 DOI: 10.1007/s00280-015-2787-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE Perifosine has shown antitumor activity via inhibition of Akt phosphorylation in many advanced solid tumors. This study investigated the efficacy of perifosine alone and in combination with sorafenib in a transgenic mouse model of HCC. METHODS The mouse model of HCC was generated by hydrodynamic injection of transposons encoding HrasG12V and short-hairpin RNA downregulating p53. The transgenic mice were treated with perifosine alone and in combination with sorafenib to evaluate efficacy of drugs on tumor growth and survival. RESULTS Treatment with perifosine for 5 weeks, alone and in combination with sorafenib, strongly inhibited tumor growth and increased survival. Perifosine inhibited HCC cell proliferation, induced apoptosis, and decreased tumor angiogenesis. Furthermore, its combination with sorafenib enhanced these effects. In addition, Akt phosphorylation was decreased by perifosine and further decreased by combination treatment. Although perifosine alone did not appear to activate the caspase pathway, combination treatment increased the cleavage of caspase-3, caspase-9, and poly (ADP-ribose) polymerase. CONCLUSIONS The preclinical effect that current study showed represents a strong rationale for clinical trials using perifosine alone and in combination with sorafenib in the treatment of HCC patients.
Collapse
Affiliation(s)
- Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul, 120-752, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Murray M, Hraiki A, Bebawy M, Pazderka C, Rawling T. Anti-tumor activities of lipids and lipid analogues and their development as potential anticancer drugs. Pharmacol Ther 2015; 150:109-28. [PMID: 25603423 DOI: 10.1016/j.pharmthera.2015.01.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 12/28/2022]
Abstract
Lipids have the potential for development as anticancer agents. Endogenous membrane lipids, such as ceramides and certain saturated fatty acids, have been found to modulate the viability of tumor cells. In addition, many tumors over-express cyclooxygenase, lipoxygenase or cytochrome P450 enzymes that mediate the biotransformation of ω-6 polyunsaturated fatty acids (PUFAs) to potent eicosanoid regulators of tumor cell proliferation and cell death. In contrast, several analogous products from the biotransformation of ω-3 PUFAs impair particular tumorigenic pathways. For example, the ω-3 17,18-epoxide of eicosapentaenoic acid activates anti-proliferative and proapoptotic signaling cascades in tumor cells and the lipoxygenase-derived resolvins are effective inhibitors of inflammatory pathways that may drive tumor expansion. However, the development of potential anti-cancer drugs based on these molecules is complex, with in vivo stability a major issue. Nevertheless, recent successes with the antitumor alkyl phospholipids, which are synthetic analogues of naturally-occurring membrane phospholipid esters, have provided the impetus for development of further molecules. The alkyl phospholipids have been tested against a range of cancers and show considerable activity against skin cancers and certain leukemias. Very recently, it has been shown that combination strategies, in which alkyl phospholipids are used in conjunction with established anticancer agents, are promising new therapeutic approaches. In future, the evaluation of new lipid-based molecules in single-agent and combination treatments may also be assessed. This could provide a range of important treatment options in the management of advanced and metastatic cancer.
Collapse
Affiliation(s)
- Michael Murray
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia.
| | - Adam Hraiki
- Pharmacogenomics and Drug Development Group, Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, University of Sydney, NSW 2006, Australia
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Curtis Pazderka
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| | - Tristan Rawling
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Ultimo, NSW 2007, Australia
| |
Collapse
|
18
|
Edlind MP, Hsieh AC. PI3K-AKT-mTOR signaling in prostate cancer progression and androgen deprivation therapy resistance. Asian J Androl 2014; 16:378-86. [PMID: 24759575 PMCID: PMC4023363 DOI: 10.4103/1008-682x.122876] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Prostate cancer (PCa) is the second most common malignancy among men in the world. Castration-resistant prostate cancer (CRPC) is the lethal form of the disease, which develops upon resistance to first line androgen deprivation therapy (ADT). Emerging evidence demonstrates a key role for the PI3K-AKT-mTOR signaling axis in the development and maintenance of CRPC. This pathway, which is deregulated in the majority of advanced PCas, serves as a critical nexus for the integration of growth signals with downstream cellular processes such as protein synthesis, proliferation, survival, metabolism and differentiation, thus providing mechanisms for cancer cells to overcome the stress associated with androgen deprivation. Furthermore, preclinical studies have elucidated a direct connection between the PI3K-AKT-mTOR and androgen receptor (AR) signaling axes, revealing a dynamic interplay between these pathways during the development of ADT resistance. Thus, there is a clear rationale for the continued clinical development of a number of novel inhibitors of the PI3K pathway, which offer the potential of blocking CRPC growth and survival. In this review, we will explore the relevance of the PI3K-AKT-mTOR pathway in PCa progression and castration resistance in order to inform the clinical development of specific pathway inhibitors in advanced PCa. In addition, we will highlight current deficiencies in our clinical knowledge, most notably the need for biomarkers that can accurately predict for response to PI3K pathway inhibitors.
Collapse
Affiliation(s)
| | - Andrew C Hsieh
- Division of Hematology/Oncology and Department of Internal Medicine, University of California, San Francisco, CA, USA
| |
Collapse
|
19
|
Figg WD, Monga M, Headlee D, Shah A, Chau CH, Peer C, Messman R, Elsayed YA, Murgo AJ, Melillo G, Ryan QC, Kalnitskiy M, Senderowicz AM, Hollingshead M, Arbuck SG, Sausville EA. A phase I and pharmacokinetic study of oral perifosine with different loading schedules in patients with refractory neoplasms. Cancer Chemother Pharmacol 2014; 74:955-67. [PMID: 25183650 PMCID: PMC6361129 DOI: 10.1007/s00280-014-2569-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 08/11/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE To determine the maximum tolerated dose (MTD) of perifosine (NSC 639966), an alkylphospholipid modulator of signal transduction, using different oral loading and maintenance regimens in an effort to avoid gastrointestinal toxicity while seeking maximal sustained plasma concentrations. METHODS Thirty-one patients with advanced neoplasms were treated with monthly cycles of perifosine loading doses of 300, 600, 900, 1,200 and 1,500 mg (dose levels 1 through 5, respectively) on days 1-2 depending on the actual dose of the initial cycle. For subsequent cycles, perifosine loading doses were reduced to 100, 200, 300, 400 and 1,000 mg at the respective corresponding dose levels. Daily perifosine "maintenance" doses of 50, 100, 150, 200 and 250 mg for levels 1 through 5, respectively, commenced on days 2 or 3 and continued for a total of 21 days. No treatment was given for days 22-27. The pharmacokinetics of perifosine with these schedules was characterized. RESULTS Dose-limiting diarrhea developed at or above dose level 4. The MTD and recommended phase II dose was dose level 3B, with a loading dose of 900 mg on day 1 divided into two doses of 450 mg administered 6 h apart and a maintenance dose of 150 mg on day 2 through 21. On subsequent cycles, the loading dose was reduced to 300 mg. Non-gastrointestinal toxicities included three episodes of gout or gout-like syndromes observed at doses above the MTD. The median peak plasma concentration of perifosine achieved at the MTD was approximately 8.3 µg/mL. Four patients had stable disease ranging from 167 to 735 days. CONCLUSIONS Perifosine given according to a loading and maintenance schedule can safely sustain concentrations of drug, approaching concentrations achieved in preclinical models with evidence of anti-tumor effect.
Collapse
Affiliation(s)
- William D. Figg
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA,
| | - Manish Monga
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Donna Headlee
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Avni Shah
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Cindy H. Chau
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Cody Peer
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Richard Messman
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA
| | - Yusri A. Elsayed
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Anthony J. Murgo
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | | | - Qin C. Ryan
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Mikhail Kalnitskiy
- Medical Oncology Branch, National Cancer Institute, Bldg 10/Room 5A01, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | | | - Melinda Hollingshead
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA
| | - Susan G. Arbuck
- Cancer Therapy Evaluation Program, National Cancer Institute, Bethesda, MD, USA
| | - Edward A. Sausville
- Developmental Therapeutics Program, National Cancer Institute, Bethesda, MD, USA,
| |
Collapse
|
20
|
Guidetti A, Carlo-Stella C, Locatelli SL, Malorni W, Mortarini R, Viviani S, Russo D, Marchianò A, Sorasio R, Dodero A, Farina L, Giordano L, Di Nicola M, Anichini A, Corradini P, Gianni AM. Phase II study of perifosine and sorafenib dual-targeted therapy in patients with relapsed or refractory lymphoproliferative diseases. Clin Cancer Res 2014; 20:5641-51. [PMID: 25239609 DOI: 10.1158/1078-0432.ccr-14-0770] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate safety and activity of perifosine and sorafenib combination therapy in patients with lymphoproliferative diseases. EXPERIMENTAL DESIGN Patients with relapsed and refractory lymphoproliferative diseases received perifosine (50 mg twice daily) for 1 month. Patients achieving less than partial response (PR) after perifosine alone were administered the combination therapy [perifosine plus sorafenib (400 mg twice daily)] until progressive disease (PD) or unacceptable toxicity occurred. The pERK and pAKT in peripheral blood lymphocytes as well as serum cytokine levels were investigated as predictive biomarkers of response. RESULTS Forty patients enrolled in this study. After 1 month of perifosine alone, 36 who achieved less than PR went on to combination therapy, whereas four patients with chronic lymphocytic leukemia (CLL) who achieved PR continued with perifosine alone for a median of 10 months (range, 4-21). The most common drug-related toxicities were grade 1-2 anemia (17%), thrombocytopenia (9%), diarrhea (25%), joint pain (22%), and hand-foot skin reaction (25%). Three patients experienced grade 3 pneumonitis. Eight patients (22%) achieved PR, 15 (42%) achieved stable disease, and 13 (36%) experienced PD. A 28% PR rate was recorded for 25 patients with Hodgkin lymphoma. Among all patients, median overall survival and progression-free survival were 16 and 5 months, respectively. Early reductions in pERK and pAKT significantly correlated with the probability of clinical response. CONCLUSIONS Perifosine and sorafenib combination therapy is feasible with manageable toxicity and demonstrates promising activity in patients with Hodgkin lymphoma. The predictive value of pERK and pAKT should be confirmed in a larger patient cohort.
Collapse
Affiliation(s)
- Anna Guidetti
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy. Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| | - Carmelo Carlo-Stella
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy. Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy.
| | - Silvia L Locatelli
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy. Department of Medical Biotechnology and Translational Medicine, University of Milano, Milano, Italy
| | - Walter Malorni
- Istituto Superiore di Sanità, Roma, Italy. San Raffaele Institute, Sulmona, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Simonetta Viviani
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Domenico Russo
- Hematology and BMT Unit, University of Brescia, Brescia, Italy
| | - Alfonso Marchianò
- Radiology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Roberto Sorasio
- Division of Hematology, S. Croce & Carle Hospital, Cuneo, Italy
| | - Anna Dodero
- Hematology and BMT Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Lucia Farina
- Hematology and BMT Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Laura Giordano
- Biostatistic Unit, Humanitas Cancer Center, Humanitas Clinical and Research Center, Rozzano, Italy
| | - Massimo Di Nicola
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy
| | - Paolo Corradini
- Hematology and BMT Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy. Hematology, University of Milano, Milano, Italy
| | - Alessandro M Gianni
- Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milano, Italy. Department of Pathophysiology and Transplantation, University of Milano, Milano, Italy
| |
Collapse
|
21
|
Wozney JL, Antonarakis ES. Growth factor and signaling pathways and their relevance to prostate cancer therapeutics. Cancer Metastasis Rev 2014; 33:581-94. [PMID: 24402967 PMCID: PMC4090293 DOI: 10.1007/s10555-013-9475-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Treatments that target the androgen axis represent an effective strategy for patients with advanced prostate cancer, but the disease remains incurable and new therapeutic approaches are necessary. Significant advances have recently occurred in our understanding of the growth factor and signaling pathways that are active in prostate cancer. In conjunction with this, many new targeted therapies with sound preclinical rationale have entered clinical development and are being tested in men with castration-resistant prostate cancer. Some of the most relevant pathways currently being exploited for therapeutic gain are HGF/c-Met signaling, the PI3K/AKT/mTOR pathway, Hedgehog signaling, the endothelin axis, Src kinase signaling, the IGF pathway, and angiogenesis. Here, we summarize the biological basis for the use of selected targeted agents and the results from available clinical trials of these drugs in men with prostate cancer.
Collapse
Affiliation(s)
- Jocelyn L. Wozney
- Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Emmanuel S. Antonarakis
- Prostate Cancer Research Program, Johns Hopkins Sidney Kimmel Comprehensive Cancer Center, CRB1-1 M45, 1650 Orleans St., Baltimore, MD 21231, USA
| |
Collapse
|
22
|
Toren P, Zoubeidi A. Targeting the PI3K/Akt pathway in prostate cancer: challenges and opportunities (review). Int J Oncol 2014; 45:1793-801. [PMID: 25120209 DOI: 10.3892/ijo.2014.2601] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/04/2014] [Indexed: 11/06/2022] Open
Abstract
The PI3K/Akt pathway is an actively pursued therapeutic target in oncology. In prostate cancer, the activation of this pathway appears to be characteristic of many aggressive prostate cancers. Further, activation of the PI3K/Akt pathway is more frequently observed as prostate cancer progresses toward a resistant, metastatic disease. Signalling from this pathway activates numerous survival, growth, metabolic and metastatic functions characteristic of aggressive cancer. Biomarkers of this pathway have correlated activation of this pathway to high grade disease and higher risk of disease progression. Therefore there is significant interest in developing effective strategies to target this pathway in prostate cancer. In this review, we discuss the pre-clinical and clinical data relevant to targeting of the PI3K/Akt pathway in prostate cancer. In particular, we review the rationale and relevance of co-targeting approaches against the PI3K/Akt pathway. It is anticipated that through an improved understanding of the biology of the PI3K/Akt pathway in prostate cancer, relevant biomarkers and rationale combination therapies will optimize targeting of this pathway to improve outcomes among patients with aggressive prostate cancer.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| | - Amina Zoubeidi
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia V6H 3Z6, Canada
| |
Collapse
|
23
|
PIP5K1α inhibition as a therapeutic strategy for prostate cancer. Proc Natl Acad Sci U S A 2014; 111:12578-9. [PMID: 25118275 DOI: 10.1073/pnas.1413363111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
24
|
Toren P, Zoubeidi A. Rational cotargeting of Pim-1 and Akt in prostate cancer. Expert Rev Anticancer Ther 2014; 13:937-9. [PMID: 23984895 DOI: 10.1586/14737140.2013.816461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evaluation of: Cen B, Mahajan S, Wang W, Kraft AS. Elevation of receptor tyrosine kinases by small molecule AKT inhibitors in prostate cancer is mediated by Pim-1. Cancer Res. 73(11), 3402-3411 (2013). The PI3K/Akt pathway is a key pathway in many advanced and aggressive cancers. Targeted inhibition of this pathway is currently an actively pursued therapeutic strategy. However, blockade of this pathway with inhibitors has been challenging, with up-regulation of reciprocal feedback pathways contributing to treatment failures. The article evaluated presents mechanistic data on how Pim is a critical mediator of the receptor tyrosine elevation induced by Akt inhibition. Pim-1 kinases are overexpressed in resistant and aggressive cancers. Following Akt inhibition, Pim- regulates receptor tyrosine kinases up-regulation, at least in part, through a cap-independent translation. This research leads the way for further evaluation of co-targeting strategies using Pim-1 inhibitors in combination with PI3K/Akt pathway inhibitors.
Collapse
Affiliation(s)
- Paul Toren
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | | |
Collapse
|
25
|
Thomas C, Lamoureux F, Crafter C, Davies BR, Beraldi E, Fazli L, Kim S, Thaper D, Gleave ME, Zoubeidi A. Synergistic targeting of PI3K/AKT pathway and androgen receptor axis significantly delays castration-resistant prostate cancer progression in vivo. Mol Cancer Ther 2013; 12:2342-55. [PMID: 23966621 DOI: 10.1158/1535-7163.mct-13-0032] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The progression to castration-resistant prostate cancer (CRPC) correlates with gain-of-function of the androgen receptor (AR) and activation of AKT. However, as single agents, AR or AKT inhibitors result in a reciprocal feedback loop. Therefore, we hypothesized that combination of an AKT inhibitor with an antiandrogen might result in a more profound, long-lasting remission of CRPC. Here, we report that the AKT inhibitor AZD5363 potently inhibits proliferation and induces apoptosis in prostate cancer cell lines expressing the AR and has anticancer activity in vivo in androgen-sensitive and castration-resistant phases of the LNCaP xenograft model. However, we found that the effect of castration-resistant tumor growth inhibition and prostate-specific antigen (PSA) stabilization is transient and resistance occurs with increasing PSA after approximately 30 days of treatment. Mechanistically, we found that single agent AZD5363 induces increase of AR binding to androgen response element, AR transcriptional activity, and AR-dependent genes such as PSA and NKX3.1 expression. These effects were overcome by the combination of AZD5363 with the antiandrogen bicalutamide, resulting in synergistic inhibition of cell proliferation and induction of apoptosis in vitro, and prolongation of tumor growth inhibition and PSA stabilization in CRPC in vivo. This study provides a preclinical proof-of-concept that combination of an AKT inhibitor with antiandrogen results in prolonged disease stabilization in a model of CRPC.
Collapse
Affiliation(s)
- Christian Thomas
- Corresponding Author: Amina Zoubeidi, The Vancouver Prostate Centre, 2660 Oak Street, Vancouver, BC, V6H 3Z6, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ríos-Marco P, Martín-Fernández M, Soria-Bretones I, Ríos A, Carrasco MP, Marco C. Alkylphospholipids deregulate cholesterol metabolism and induce cell-cycle arrest and autophagy in U-87 MG glioblastoma cells. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1322-34. [PMID: 23707264 DOI: 10.1016/j.bbalip.2013.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 05/08/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
Glioblastoma is the most common malignant primary brain tumour in adults and one of the most lethal of all cancers. Growing evidence suggests that human tumours undergo abnormal lipid metabolism, characterised by an alteration in the mechanisms that regulate cholesterol homeostasis. We have investigated the effect that different antitumoural alkylphospholipids (APLs) exert upon cholesterol metabolism in the U-87 MG glioblastoma cell line. APLs altered cholesterol homeostasis by interfering with its transport from the plasma membrane to the endoplasmic reticulum (ER), thus hindering its esterification. At the same time they stimulated the synthesis of cholesterol from radiolabelled acetate and its internalisation from low-density lipoproteins (LDLs), inducing both 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) and LDL receptor (LDLR) genes. Fluorescent microscopy revealed that these effects promoted the accumulation of intracellular cholesterol. Filipin staining demonstrated that this accumulation was not confined to the late endosome/lysosome (LE/LY) compartment since it did not colocalise with LAMP2 lysosomal marker. Furthermore, APLs inhibited cell growth, producing arrest at the G2/M phase. We also used transmission electron microscopy (TEM) to investigate ultrastructural alterations induced by APLs and found an abundant presence of autophagic vesicles and autolysosomes in treated cells, indicating the induction of autophagy. Thus our findings clearly demonstrate that antitumoural APLs interfere with the proliferation of the glioblastoma cell line via a complex mechanism involving cholesterol metabolism, cell-cycle arrest or autophagy. Knowledge of the interrelationship between these processes is fundamental to our understanding of tumoural response and may facilitate the development of novel therapeutics to improve treatment of glioblastoma and other types of cancer.
Collapse
Affiliation(s)
- Pablo Ríos-Marco
- Department of Biochemistry and Molecular Biology I, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway is a key signaling pathway that has been linked to both tumorigenesis and resistance to therapy in prostate cancer and other solid tumors. Given the significance of the PI3K/Akt/mTOR pathway in integrating cell survival signals and the high prevalence of activating PI3K/Akt/mTOR pathway alterations in prostate cancer, inhibitors of this pathway have great potential for clinical benefit. Here, we review the role of the PI3K/Akt/mTOR pathway in prostate cancer and discuss the potential use of pathway inhibitors as single agents or in combination in the evolving treatment landscape of castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Rhonda L Bitting
- Division of Medical Oncology, Duke Cancer Institute, Duke University, DUMC Box 102002, Durham, North Carolina 27710, USA
| | | |
Collapse
|
28
|
Giacomini A, Righi M, Cleris L, Locatelli SL, Mitola S, Daidone MG, Gianni AM, Carlo-Stella C. Induction of death receptor 5 expression in tumor vasculature by perifosine restores the vascular disruption activity of TRAIL-expressing CD34(+) cells. Angiogenesis 2013; 16:707-22. [PMID: 23605004 DOI: 10.1007/s10456-013-9348-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 04/15/2013] [Indexed: 01/31/2023]
Abstract
The proapoptotic death receptor 5 (DR5) expressed by tumor associated endothelial cells (TECs) mediates vascular disrupting effects of human CD34(+) cells engineered to express membrane-bound tumor necrosis factor-related apoptosis-inducing ligand (CD34-TRAIL (+) cells) in mice. Indeed, lack of DR5 on TECs causes resistance to CD34-TRAIL (+) cells. By xenografting in nonobese diabetic/severe combined immunodeficient mice the TRAIL-resistant lymphoma cell line SU-DHL-4V, which generates tumors lacking endothelial DR5 expression, here we demonstrate for the first time that the Akt inhibitor perifosine induces in vivo DR5 expression on TECs, thereby overcoming tumor resistance to the vascular disruption activity of CD34-TRAIL (+) cells. In fact, CD34-TRAIL (+) cells combined with perifosine, but not CD34-TRAIL (+) cells alone, exerted marked antivascular effects and caused a threefold increase of hemorrhagic necrosis in SU-DHL-4V tumors. Consistent with lack of DR5 expression, CD34-TRAIL (+) cells failed to affect the growth of SU-DHL-4V tumors, but CD34-TRAIL (+) cells plus perifosine reduced tumor volumes by 60 % compared with controls. In view of future clinical studies using membrane-bound TRAIL, our results highlight a strategy to rescue patients with primary or acquired resistance due to the lack of DR5 expression in tumor vasculature.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Oncology and Hematology, Humanitas Cancer Center, Humanitas Clinical and Research Center, Via Manzoni, 56, 20089 Rozzano, Milan, Italy
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mediwala SN, Sun H, Szafran AT, Hartig SM, Sonpavde G, Hayes TG, Thiagarajan P, Mancini MA, Marcelli M. The activity of the androgen receptor variant AR-V7 is regulated by FOXO1 in a PTEN-PI3K-AKT-dependent way. Prostate 2013; 73:267-77. [PMID: 22821817 PMCID: PMC3961010 DOI: 10.1002/pros.22566] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2012] [Accepted: 06/27/2012] [Indexed: 11/07/2022]
Abstract
BACKGROUND The androgen receptor (AR) AR-V7 splice isoform is a constitutively active outlaw transcription factor. Transition of prostate cancer (PC) to the castration-resistant phenotype correlates with AR-V7 accumulation, suggesting that PC progression in patients refractory to conventional therapy is due to the activity of this AR isoform. The mechanism of AR-V7 constitutive activation is not known. METHODS We analyzed potential signaling pathways associated with AR-V7 constitutive activation in PTEN (-) PC-3 and LNCaP cells. We used transient and stable transfection, reporter gene assay, RNAi technology together with a number of kinase inhibitors to determine if AR-V7 activation is linked to a kinase-dependent signaling pathway. RESULTS In these cell lines, AR-V7 transcriptional activity was inhibited by LY294002, Wortmanin, and AKT inhibitor II. Analysis of the contributing mechanisms demonstrated the involvement of the Phosphatidylinositol 3-kinase (PI3K)-AKT-FOXO1 signaling pathway, and a significant reduction of AR-V7 constitutive activity under conditions of PTEN reactivation. CONCLUSIONS Our study identifies a pathway regulating AR-V7 constitutive activity and potential therapeutic targets for the treatment of castration-resistant PC.
Collapse
Affiliation(s)
- Sanjay N. Mediwala
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Huiying Sun
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Adam T. Szafran
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Sean M. Hartig
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Guru Sonpavde
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Teresa G. Hayes
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Perumal Thiagarajan
- Departments of Medicine, Pathology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Michael A. Mancini
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
| | - Marco Marcelli
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Departments of Medicine, Molecular and Cellular Biology, Baylor College of Medicine, Houston TX 77030 (USA)
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston TX 77030 (USA)
| |
Collapse
|
30
|
Hahne JC, Honig A, Meyer SR, Gambaryan S, Walter U, Wischhusen J, Häussler SFM, Segerer SE, Fujita N, Dietl J, Engel JB. Downregulation of AKT reverses platinum resistance of human ovarian cancers in vitro. Oncol Rep 2012; 28:2023-8. [PMID: 22992944 DOI: 10.3892/or.2012.2041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 05/24/2012] [Indexed: 11/06/2022] Open
Abstract
Platinum resistance is the most crucial problem for treatment of ovarian cancer. Increasing evidence points towards AKT overexpression as a mechanistic reason for this clinical condition. The present study evaluates the effect of overexpression and downregulation of AKT on the sensitivity to cisplatin in a platinum-resistant human ovarian cancer cell line and the corresponding platinum-sensitive parental cell line. A2780 and A2780cis ovarian cancer cell lines were stably transfected with an AKT-sense and AKT-antisense plasmid. Successful transfection was evaluated by western blot analysis. Cytotoxic effects of cisplatin were evaluated by metabolic (MTT) and clonogenicity assays as well as by FACS analysis. AKT overexpression (confirmed by western blotting) converted platinum-sensitive A2780 into platinum-resistant cells as shown by MTT assay. Importantly, platinum resistance of A2780cis cells could be reversed by downregulation of AKT, as demonstrated by MTT and clonogenicity assays and FACS analysis. Our data provide strong evidence that cisplatin resistance in ovarian cancer is mediated by AKT overexpression and can be overcome by AKT downregulation, thus, providing a rationale for clinical phase II/III studies combining AKT inhibitors with cisplatin.
Collapse
Affiliation(s)
- J C Hahne
- Department of Gynecology, University of Würzburg, D-97080 Würzburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Parray A, Siddique HR, Nanda S, Konety BR, Saleem M. Castration-resistant prostate cancer: potential targets and therapies. Biologics 2012; 6:267-76. [PMID: 22956858 PMCID: PMC3430091 DOI: 10.2147/btt.s23954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The treatment landscape for patients with castration-resistant prostate cancer (CRPC) is undergoing significant changes with the advent of new therapies and multidisciplinary efforts by scientists and clinicians. As activation of multiple molecular pathways in the neoplastic prostate makes it impossible for single-target drugs to be completely effective in treating CRPC, this has led to combination therapy strategy, where several molecules involved in tumor growth and disease progression are targeted by a therapeutic regimen. In the present review, we provide an update on the molecular pathways that play an important role in the pathogenesis of CRPC and discuss the current wave of new treatments to combat this lethal disease.
Collapse
Affiliation(s)
- Aijaz Parray
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Hifzur R Siddique
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
| | - Sanjeev Nanda
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Internal Medicine, Mayo Clinic Health Systems, Austin, TX
| | | | - Mohammad Saleem
- Molecular Chemoprevention and Therapeutics, The Hormel Institute, University of Minnesota, Austin, TX
- Department of Urology, University of Minnesota, Minneapolis
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
32
|
Fu S, Hennessy BT, Ng CS, Ju Z, Coombes KR, Wolf JK, Sood AK, Levenback CF, Coleman RL, Kavanagh JJ, Gershenson DM, Markman M, Dice K, Howard A, Li J, Li Y, Stemke-Hale K, Dyer M, Atkinson E, Jackson E, Kundra V, Kurzrock R, Bast RC, Mills GB. Perifosine plus docetaxel in patients with platinum and taxane resistant or refractory high-grade epithelial ovarian cancer. Gynecol Oncol 2012; 126:47-53. [PMID: 22487539 DOI: 10.1016/j.ygyno.2012.04.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 04/01/2012] [Accepted: 04/04/2012] [Indexed: 10/28/2022]
Abstract
OBJECTIVES On the basis of reversal of taxane resistance with AKT inhibition, we initiated a phase I trial of the AKT inhibitor perifosine with docetaxel in taxane and platinum-resistant or refractory epithelial ovarian cancer. METHODS Patients with pathologically confirmed high-grade epithelial ovarian cancer (taxane resistant, n=10; taxane refractory, n=11) were enrolled. Peripheral blood samples and tumor biopsies were obtained and (18)F-FDG-PET and DCE-MRI scans were performed for pharmacodynamic and imaging studies. RESULTS Patients received a total of 42 treatment cycles. No dose-limiting toxicity was observed. The median progression-free survival and overall survival were 1.9 months and 4.5 months, respectively. One patient with a PTEN mutation achieved a partial remission (PR) for 7.5 months, and another patient with a PIK3CA mutation had stable disease (SD) for 4 months. Two other patients without apparent PI3K pathway aberrations achieved SD. Two patients with KRAS mutations demonstrated rapid progression. Decreased phosphorylated S6 correlated with (18)F-FDG-PET responses. CONCLUSIONS Patients tolerated perifosine 150 mg PO daily plus docetaxel at 75 mg/m(2) every 4 weeks. Further clinical evaluation of effects of perifosine with docetaxel on biological markers and efficacy in patients with ovarian cancer with defined PI3K pathway mutational status is warranted.
Collapse
Affiliation(s)
- Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Phosphoinositide 3-kinases (PI3Ks) control cell growth, proliferation, cell survival, metabolic activity, vesicular trafficking, degranulation, and migration. Through these processes, PI3Ks modulate vital physiology. When over-activated in disease, PI3K promotes tumor growth, angiogenesis, metastasis or excessive immune cell activation in inflammation, allergy and autoimmunity. This chapter will introduce molecular activation and signaling of PI3Ks, and connections to target of rapamycin (TOR) and PI3K-related protein kinases (PIKKs). The focus will be on class I PI3Ks, and extend into current developments to exploit mechanistic knowledge for therapy.
Collapse
Affiliation(s)
- Matthias Wymann
- Institute Biochemistry & Genetics, Department Biomedicine, University of Basel, Mattenstrasse 28, 4058, Basel, Switzerland,
| |
Collapse
|
34
|
Breast cancer stem cells: a moving target for cancer nanomedicine. EUROPEAN JOURNAL OF NANOMEDICINE 2012. [DOI: 10.1515/ejnm-2012-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
35
|
Antonarakis ES, Carducci MA. Future directions in castrate-resistant prostate cancer therapy. Clin Genitourin Cancer 2011; 8:37-46. [PMID: 21208854 DOI: 10.3816/cgc.2010.n.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although several new therapies have recently become available for the treatment of castrate-resistant prostate cancer (CRPC), the disease remains universally incurable and demands novel therapeutic approaches. To this end, great strides have been made in our understanding of the biologic and molecular mechanisms driving prostate cancer growth and progression in the past few years, resulting in widespread clinical investigation of numerous new targeted therapies. This review will highlight some of the key therapeutic agents that (in the opinion of the authors) may have the largest effect on the future management of CRPC, with a focus on both molecular targets and clinical trial design. These agents include angiogenesis inhibitors, mTOR pathway inhibitors, apoptosis-inducing drugs, IGF pathway inhibitors, Src family inhibitors, Hedgehog pathway antagonists, epigenetic therapies, PARP inhibitors, and prodrug approaches. The future of CRPC therapy appears brighter than ever before.
Collapse
|
36
|
Jathal MK, Chen L, Mudryj M, Ghosh PM. Targeting ErbB3: the New RTK(id) on the Prostate Cancer Block. ACTA ACUST UNITED AC 2011; 11:131-149. [PMID: 21603064 DOI: 10.2174/187152211795495643] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Most prostate cancers (PCa) are critically reliant on functional androgen receptor (AR) signaling. At its onset, PCa is androgen-dependent and although temporarily halted by surgically or pharmacologically blocking the AR (androgen ablation), the disease ultimately recurs as an aggressive, fatal castration resistant prostate cancer (CRPC). FDA-approved treatments like docetaxel, a chemotherapeutic agent, and Provenge, a cancer vaccine, extend survival by a scant 3 and 4 months, respectively. It is clear that more effective drugs targeting CRPC are urgently needed. The ErbB family (EGFR/ErbB1, ErbB2/HER2/neu, ErbB3/HER3 and ErbB4/HER4) of receptor tyrosine kinases (RTKs) have long been implicated in PCa initiation and progression, but inhibitors of ErbB1 and ErbB2 (prototypic family members) fared poorly in PCa clinical trials. Recent research suggests that another family member ErbB3 abets emergence of the castration-resistant phenotype. Considerable efforts are being directed towards understanding ErbB3-mediated molecular mechanisms of castration resistance and searching for novel ways of inhibiting ErbB3 activity via rational drug design. Antibody-based therapy that prevents ligand binding to ErbB3 appears promising and fully-humanized antibodies that inhibit ligand-induced phosphorylation of ErbB3 are currently in early development. Small molecule tyrosine kinase inhibitors are also being vigorously pursued, as are siRNA-based approaches and combination treatment strategies- the simultaneous suppression of ErbB3 and its signaling partners or downstream effectors - with the primary purpose of undermining the resiliency of ErbB3-mediated signal transduction. This review summarizes the existing literature and reinforces the importance of ErbB3 as a therapeutic target in the clinical management of prostate cancer.
Collapse
|
37
|
Bagley RG, Kurtzberg L, Rouleau C, Yao M, Teicher BA. Erufosine, an alkylphosphocholine, with differential toxicity to human cancer cells and bone marrow cells. Cancer Chemother Pharmacol 2011; 68:1537-46. [PMID: 21526352 DOI: 10.1007/s00280-011-1658-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 04/14/2011] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the activity and myeloprotective properties of erufosine, a novel alkylphosphocholine (APC), on human malignant cells and normal bone marrow cells. METHODS Human or mouse bone marrow cells were exposed to erufosine, miltefosine, perifosine, or edelfosine in CFU-GM assays. Human MDA-MB-231 breast carcinoma, Panc-1 pancreatic carcinoma, and RPMI8226 multiple myeloma cells were exposed to erufosine in colony formation assays. Colony formation of Panc-1 tumor cells and mouse bone marrow cells ex vivo were quantified following intravenous administration of erufosine to tumor-bearing mice. Western blotting methods were applied to human U87 glioblastoma cells exposed to erufosine to investigate Akt inhibition. RESULTS Erufosine was less toxic to human and mouse bone marrow cells than perifosine, miltefosine, and edelfosine and was equally toxic to human and mouse CFU-GM. The human cancer cells MDA-MB-231 breast, Panc-1 pancreatic, and RPMI8226 MM cells were more sensitive to erufosine in a colony formation assay than were human bone marrow cells generating an approximately tenfold differential in IC(90) values. Erufosine injected intravenously significantly reduced Panc-1 tumor cell colony formation ex vivo but not mouse bone marrow CFU-GM. Erufosine inhibited Akt phosphorylation in human U87 glioblastoma cells. CONCLUSIONS Erufosine offers potential as a novel therapeutic for cancer with a reduced toxicity profile to bone marrow cells compared with other agents in this class. Human cancer cells were more sensitive to erufosine than human or mouse bone marrow cells indicating a favorable therapeutic window for erufosine.
Collapse
Affiliation(s)
- Rebecca G Bagley
- Genzyme Corporation, 49 New York Ave, Framingham, MA 01701-9322, USA.
| | | | | | | | | |
Collapse
|
38
|
Gao Y, Ishiyama H, Sun M, Brinkman KL, Wang X, Zhu J, Mai W, Huang Y, Floryk D, Ittmann M, Thompson TC, Butler EB, Xu B, Teh BS. The alkylphospholipid, perifosine, radiosensitizes prostate cancer cells both in vitro and in vivo. Radiat Oncol 2011; 6:39. [PMID: 21496273 PMCID: PMC3096921 DOI: 10.1186/1748-717x-6-39] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 04/15/2011] [Indexed: 01/13/2023] Open
Abstract
Background Perifosine is a membrane-targeted alkylphospholipid developed to inhibit the PI3K/Akt pathway and has been suggested as a favorable candidate for combined use with radiotherapy. In this study, we investigated the effect of the combined treatment of perifosine and radiation (CTPR) on prostate cancer cells in vitro and on prostate cancer xenografts in vivo. Methods Human prostate cancer cell line, CWR22RV1, was treated with perifosine, radiation, or CTPR. Clonogenic survival assays, sulforhodamine B cytotoxity assays and cell density assays were used to assess the effectiveness of each therapy in vitro. Measurements of apoptosis, cell cycle analysis by flow cytometry and Western blots were used to evaluate mechanisms of action in vitro. Tumor growth delay assays were used to evaluate radiation induced tumor responses in vivo. Results In vitro, CTPR had greater inhibitory effects on prostate cancer cell viability and clonogenic survival than either perifosine or radiation treatment alone. A marked increase in prostate cancer cell apoptosis was noted in CTPR. Phosphorylation of AKT-T308 AKT and S473 were decreased when using perifosine treatment or CTPR. Cleaved caspase 3 was significantly increased in the CTPR group. In vivo, CTPR had greater inhibitory effects on the growth of xenografts when compared with perifosine or radiation treatment alone groups. Conclusions Perifosine enhances prostate cancer radiosensitivity in vitro and in vivo. These data provide strong support for further development of this combination therapy in clinical studies.
Collapse
Affiliation(s)
- Yuanhong Gao
- Department of Radiation Oncology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ha S, Ruoff R, Kahoud N, Franke TF, Logan SK. Androgen receptor levels are upregulated by Akt in prostate cancer. Endocr Relat Cancer 2011; 18:245-55. [PMID: 21317204 PMCID: PMC3674416 DOI: 10.1530/erc-10-0204] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Multiple lines of evidence suggest a functional link between the androgen receptor (AR) and the serine/threonine kinase Akt in the development and progression of prostate cancer. To investigate the impact of Akt activity on AR homeostasis, we treated androgen-dependent LNCaP and LAPC-4 prostate cancer cells with Akt inhibitor. Akt inhibition decreased AR expression, suggesting that Akt activity was required for regulation of AR protein levels. However, while androgen-independent LNCaP-abl cells also showed diminished AR protein levels in response to Akt inhibition, treatment of androgen-independent LNCaP-AI cells failed to alter AR protein levels upon similar treatment, suggesting that AR protein levels in these androgen-independent prostate cells were regulated by mechanisms independent of Akt activation. Regulation of AR, downstream of activated Akt, also was observed in vivo when examining transgenic mice that overexpress constitutively active mutant myristoylated (myr)-Akt1 in the prostate. Transgenic mice expressing activated myr-Akt1 exhibited higher levels of AR mRNA and protein. Expression of activated myr-Akt1 did not alter prostate cell growth and no significant size differences between prostate tissues derived from transgenic animals were observed when comparing transgenic mice with wild-type mice. Still, transgenic mice overexpressing Akt exhibited higher levels of γH2AX and phosphorylated Chk2 in prostate tissue. These changes in markers associated with oncogene-induced senescence confirmed significant altered signaling in the transgenic mouse model. Overall, results presented here suggest that AR levels are regulated by the Akt pathway.
Collapse
Affiliation(s)
- Susan Ha
- Department of Pharmacology, New York University School of Medicine, 550 First Avenue, MSB424, New York, New York 10016, USA.
| | | | | | | | | |
Collapse
|
40
|
Yang DQ, Halaby MJ, Li Y, Hibma JC, Burn P. Cytoplasmic ATM protein kinase: an emerging therapeutic target for diabetes, cancer and neuronal degeneration. Drug Discov Today 2011; 16:332-8. [PMID: 21315178 DOI: 10.1016/j.drudis.2011.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 12/20/2010] [Accepted: 02/02/2011] [Indexed: 10/18/2022]
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive disorder characterized by cerebellar ataxia and oculocutaneous telangiectasias. The gene mutated in this disease, Atm (A-T mutated), encodes a serine/threonine protein kinase that has been traditionally considered to be a nuclear protein controlling cell-cycle progression. However, many of the growth abnormalities observed in patients with A-T, including neuronal degeneration and insulin resistance, remain difficult to explain with nuclear localization of ATM. Here, recent advances in elucidating the cytoplasmic localization and function of ATM are reviewed. Particular attention is given to the role of ATM in insulin signaling and Akt activation. The potential for cytoplasmic ATM protein kinase to be an emerging therapeutic target for treating diabetes, cancer and neuronal degeneration is discussed.
Collapse
Affiliation(s)
- Da-Qing Yang
- The Sanford Project, Sanford Research/USD, Sanford Health, and The Department of Pediatrics, Sanford School of Medicine of The University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104, USA.
| | | | | | | | | |
Collapse
|
41
|
Li Z, Tan F, Liewehr DJ, Steinberg SM, Thiele CJ. In vitro and in vivo inhibition of neuroblastoma tumor cell growth by AKT inhibitor perifosine. J Natl Cancer Inst 2010; 102:758-70. [PMID: 20463309 PMCID: PMC2879416 DOI: 10.1093/jnci/djq125] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Revised: 03/01/2010] [Accepted: 03/24/2010] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Activated AKT is a marker of decreased event-free or overall survival in neuroblastoma (NB) patients. The aim of this study was to investigate the effect of perifosine, a nontoxic AKT inhibitor, as a single agent on NB cell growth in vitro and in vivo. METHODS Four human NB cell lines (AS, NGP, BE2, and KCNR) were treated with increasing concentrations of perifosine, and a quantitative analysis of cell death (apoptosis) was performed by using MTS and caspase-3/7 activity assays. Survival of mice carrying xenograft NB tumors that were treated with perifosine (n = 6-7 mice per group) was compared with that of untreated mice (n = 7 mice per group) using Kaplan-Meier analysis. Tumor volumes were calculated to determine the effect of perifosine on NB tumor growth. Phosphorylation of AKT and expression of cleaved caspase-3 were measured in proteins from the tumors. All statistical tests were two-sided. RESULTS Perifosine, at 30 muM concentration, decreased AKT phosphorylation and increased apoptosis in all four NB cell lines in vitro. Perifosine-treated mice bearing xenograft NB tumors had longer survival than untreated mice (untreated vs treated, median survival: AS, 13 days, 95% confidence interval [CI] = 11 to 16 days vs not reached, P = .003; NGP, 22 days, 95% CI = 20 to 26 days vs not reached, P = .013; BE2, 24 days, 95% CI = 21 to 27 days vs not reached, P < .001; and KCNR, 18 days, 95% CI = 18 to 21 days vs not reached, P < .001). Perifosine treatment induced regression in AS tumors, growth inhibition in BE2 tumors, and slower growth in NGP and KCNR tumors. Inhibition of AKT phosphorylation and induction of caspase-dependent apoptosis were noted in tumors of perifosine-treated mice in all four in vivo NB tumor models. CONCLUSIONS Perifosine inhibited the activation of AKT and was an effective cytotoxic agent in NB cells in vitro and in vivo. Our study supports the future clinical evaluation of perifosine for the treatment of NB tumors.
Collapse
Affiliation(s)
- Zhijie Li
- Cell and Molecular Biology Section, Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 10 Center Drive MSC-1928, Bldg 10/CRC 1-3940, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
42
|
Engel JB, Schönhals T, Häusler S, Krockenberger M, Schmidt M, Horn E, Köster F, Dietl J, Wischhusen J, Honig A. Induction of programmed cell death by inhibition of AKT with the alkylphosphocholine perifosine in in vitro models of platinum sensitive and resistant ovarian cancers. Arch Gynecol Obstet 2010; 283:603-10. [PMID: 20405296 DOI: 10.1007/s00404-010-1457-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 03/25/2010] [Indexed: 12/20/2022]
Abstract
PURPOSE We analyzed the anti-tumor effect and the mechanism of action of perifosine, an orally active alkylphospholipid AKT inhibitor using in vitro models of human ovarian cancer. METHODS Ovarian cancer cells OAW42, PA-1, SKOV3, and A2780 as well as platinum resistant A2780cis cells were incubated with increasing concentrations of perifosine, with and without multi-caspase inhibitor zVAD-FMK. The effect of a combined treatment with cisplatin and perifosine was investigated in OAW42, SKOV3, A2780 and A2780cis cells. Cytotoxic effects of perifosine were analyzed using crystal violet staining, FACS analysis of DNA content as well as Annexin V/propidium iodide-double staining. The effect of perifosine on AKT phosphorylation was determined by Western blotting. RESULTS Perifosine displayed anti-tumor activity in all five cell lines, which increased time-dependently. While IC(50) values at 24 h were >40 μM, IC(50) values after 72 h decreased to 10 μM in OAW42 and 25 μM in PA-1 and 30 μm in SKOV3 cells. In platinum resistant A2780cis cells perifosine showed good antiproliferative activity (IC(50) = 3 μm). At adequate doses, perifosine increased cytotoxic effects of cisplatin in OAW42, A2780 and A2780cis cell. Anti-tumor activity of perifosine was not confined to a specific phase of the cell cycle and could not be decreased by the pan-caspase inhibitor zVAD-FMK. AnnexinV/propidium iodide-double staining after treatment with perifosine was not indicative of classical apoptosis. AKT phosphorylation was dose-dependently inhibited by perifosine. CONCLUSIONS Perifosine showed substantial cytotoxic effects in various in vitro models of ovarian cancer. Since anti-tumor effects were not confined to platinum-sensitive cells perifosine seems to be a good candidate for clinical studies in patients especially with platinum resistant ovarian cancer.
Collapse
Affiliation(s)
- Jörg B Engel
- Universitätsfrauenklinik Würzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Li Y, Yang DQ. The ATM inhibitor KU-55933 suppresses cell proliferation and induces apoptosis by blocking Akt in cancer cells with overactivated Akt. Mol Cancer Ther 2010; 9:113-25. [PMID: 20053781 DOI: 10.1158/1535-7163.mct-08-1189] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aberrant activation of Akt plays a pivotal role in cancer development. ATM, a protein deficient in patients with ataxia-telangiectasia disease, is traditionally considered as a nuclear protein kinase that functions as a signal transducer in response to DNA damage. It has recently been shown that ATM is also a cytoplasmic protein that mediates the full activation of Akt in response to insulin. Our study shows that a specific ATM inhibitor, KU-55933, blocks the phosphorylation of Akt induced by insulin and insulin-like growth factor I in cancer cells that exhibit abnormal Akt activity. Moreover, KU-55933 inhibits cancer cell proliferation by inducing G(1) cell cycle arrest. It does so through the downregulation of the synthesis of cyclin D1, a protein known to be elevated in a variety of tumors. In addition, KU-55933 treatment during serum starvation triggers apoptosis in these cancer cells. Our results suggest that KU-55933 may be a novel chemotherapeutic agent targeting cancer resistant to traditional chemotherapy or immunotherapy due to aberrant activation of Akt. Furthermore, KU-55933 completely abrogates rapamycin-induced feedback activation of Akt. Combination of KU-55933 and rapamycin not only induces apoptosis, which is not seen in cancer cells treated only with rapamycin, but also shows better efficacy in inhibiting cancer cell proliferation than each drug alone. Therefore, combining KU-55933 with rapamycin may provide a highly effective approach for improving mammalian target of rapamycin-targeted anticancer therapy that is currently hindered by rapamycin-induced feedback activation of Akt.
Collapse
Affiliation(s)
- Yan Li
- Sanford Project and Cancer Biology Research Center, Sanford Research/University of South Dakota, Sioux Falls, South Dakota 57104, USA
| | | |
Collapse
|
44
|
Estrada AC, Syrovets T, Pitterle K, Lunov O, Büchele B, Schimana-Pfeifer J, Schmidt T, Morad SAF, Simmet T. Tirucallic acids are novel pleckstrin homology domain-dependent Akt inhibitors inducing apoptosis in prostate cancer cells. Mol Pharmacol 2009; 77:378-87. [PMID: 20018812 DOI: 10.1124/mol.109.060475] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Activation of the serine/threonine kinase Akt is associated with aggressive clinical behavior of prostate cancer. We found that the human prostate cancer cell lines LNCaP and PC-3 express predominantly Akt1 and Akt2. Selective down-regulation of Akt1, but not Akt2, by short-hairpin RNA reduced the viability of prostate cancer cells. In addition, structurally different Akt inhibitors were cytotoxic for the prostate cancer cells, confirming that the Akt pathway is indispensable for their viability. We have purified the tetracyclic triterpenoids 3-oxo-tirucallic acid, 3-alpha-acetoxy-tirucallic acid, and 3-beta-acetoxy-tirucallic acid from the oleogum resin of Boswellia carterii to chemical homogeneity. The acetoxy-derivatives in particular potently inhibited the activities of human recombinant Akt1 and Akt2 and of constitutively active Akt immunoprecipitated from PC-3 cells, whereas inhibitor of nuclear factor-kappaB kinases remained unaffected. Docking data indicated that these tetracyclic triterpenoids form hydrogen bonds within the phosphatidylinositol binding pocket of the Akt pleckstrin homology domain. Accordingly, 3-beta-acetoxy-tirucallic acid did not inhibit the activity of Akt1 lacking the pleckstrin homology domain. In the prostate cancer cell lines investigated, these compounds inhibited the phosphorylation of cellular Akt and the Akt signaling pathways, including glycogen synthase kinase-3beta and BAD phosphorylation, nuclear accumulation of p65, the androgen receptor, beta-catenin, and c-Myc. These events culminated in the induction of apoptosis in prostate cancer, but not in nontumorigenic cells. The tirucallic acid derivatives inhibited proliferation and induced apoptosis in tumors xenografted onto chick chorioallantoic membranes and decreased the growth of pre-established prostate tumors in nude mice without overt systemic toxicity. Thus, tirucallic acid derivatives represent a new class of Akt inhibitors with antitumor properties.
Collapse
Affiliation(s)
- Aydee C Estrada
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstrasse 20, D-89081 Ulm, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Phosphatidylinositol 3-kinase (PI3K) and phosphatase and tensin homolog deleted on chromosome 10 (PTEN) signaling pathway play an important role in multiple cellular functions such as cell metabolism, proliferation, cell-cycle progression, and survival. PI3K is activated by growth factors and angiogenesis inducers such as vascular endothelial growth factor (VEGF) and angiopoietins. The amplification and mutations of PI3K and the loss of the tumor suppressor PTEN are common in various kinds of human solid tumors. The genetic alterations of upstream and downstream of PI3K signaling molecules such as receptor tyrosine kinases and AKT, respectively, are also frequently altered in human cancer. PI3K signaling regulates tumor growth and angiogenesis by activating AKT and other targets, and by inducing HIF-1 and VEGF expression. Angiogenesis is required for tumor growth and metastasis. In this review, we highlight the recent studies on the roles and mechanisms of PI3K and PTEN in regulating tumorigenesis and angiogenesis, and the roles of the downstream targets of PI3K for transmitting the signals. We also discuss the crosstalk of these signaling molecules and cellular events during tumor growth, metastasis, and tumor angiogenesis. Finally, we summarize the potential applications of PI3K, AKT, and mTOR inhibitors and their outcome in clinical trials for cancer treatment.
Collapse
|
46
|
Dieterle A, Orth R, Daubrawa M, Grotemeier A, Alers S, Ullrich S, Lammers R, Wesselborg S, Stork B. The Akt inhibitor triciribine sensitizes prostate carcinoma cells to TRAIL-induced apoptosis. Int J Cancer 2009; 125:932-41. [PMID: 19422047 DOI: 10.1002/ijc.24374] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Aberrant PI3K/Akt signaling has been implicated in many human cancers, including prostate carcinomas. Currently different therapeutic strategies target the inhibition of this survival pathway. The nucleoside analog triciribine (TCN), which was initially described as a DNA synthesis inhibitor, has recently been shown to function as an inhibitor of Akt. Here, we demonstrate that TCN inhibits Akt phosphorylation at Thr308 and Ser473 and Akt activity in the human prostate cancer cell line PC-3. In addition, TCN sensitized PC-3 cells to TRAIL- and anti-CD95-induced apoptosis, whereas the cells remained resistant to DNA damaging chemotherapeutics. The observed sensitization essentially depended on the phosphorylation status of Akt. Thus, prostate cancer cell lines displaying constitutively active Akt, e.g. PC-3 or LNCaP, were sensitized to death receptor-induced apoptosis. Most importantly with respect to therapeutic application, derivatives of both TCN and TRAIL are already tested in current clinical trials. Therefore, this combinatorial treatment might open a promising therapeutic approach for the elimination of hormone-refractory prostate cancers, which are largely resistant to conventional DNA damaging anticancer drugs or irradiation.
Collapse
Affiliation(s)
- Alexandra Dieterle
- Department of Internal Medicine I, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Morgan TM, Koreckij TD, Corey E. Targeted therapy for advanced prostate cancer: inhibition of the PI3K/Akt/mTOR pathway. Curr Cancer Drug Targets 2009; 9:237-49. [PMID: 19275762 DOI: 10.2174/156800909787580999] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A large number of novel therapeutics is currently undergoing clinical evaluation for the treatment of prostate cancer, and small molecule signal transduction inhibitors are a promising class of agents. These inhibitors have recently become a standard therapy in renal cell carcinoma and offer significant promise in prostate cancer. Through an understanding of the key pathways involved in prostate cancer progression, a rational drug design can be aimed at the molecules critical to cellular signaling. This may enable administration of selective therapies based on the expression of molecular targets, more appropriately individualizing treatment for prostate cancer patients. One pathway with a prominent role in prostate cancer is the PI3K/Akt/mTOR pathway. Current estimates suggest that PI3K/Akt/mTOR signaling is upregulated in 30-50% of prostate cancers, often through loss of PTEN. Molecular changes in the PI3K/Akt/mTOR signaling pathway have been demonstrated to differentiate benign from malignant prostatic epithelium and are associated with increasing tumor stage, grade, and risk of biochemical recurrence. Multiple inhibitors of this pathway have been developed and are being assessed in the laboratory and in clinical trials, with much attention focusing on mTOR inhibition. Current clinical trials in prostate cancer are assessing efficacy of mTOR inhibitors in combination with multiple targeted or traditional chemotherapies, including bevacizumab, gefitinib, and docetaxel. Completion of these trials will provide substantial information regarding the importance of this pathway in prostate cancer and the clinical implications of its targeted inhibition. In this article we review the data surrounding PI3K/Akt/mTOR inhibition in prostate cancer and their clinical implications.
Collapse
Affiliation(s)
- Todd M Morgan
- Department of Urology, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | |
Collapse
|
48
|
Abstract
The PI3K/Akt/mTOR pathway is aberrantly active in most human cancers and contributes to cell growth, proliferation, and survival. Akt is a nodal regulator of cellular survival pathways and an attractive target in cancer therapy. Many inhibitors of Akt are being developed. Perifosine is an oral Akt inhibitor currently being tested in phase 2 clinical trials. Unlike most kinase inhibitors, which target the adenosine triphosphate-binding region, perifosine targets the pleckstrin homology domain of Akt, thereby preventing its translocation to the plasma membrane. Single-agent activity with perifosine has been observed in sarcoma and Waldenström macroglobulinemia patients. However, the disappointing response rates of common solid tumors to perifosine as a single agent have diminished expectations and prompted further investigation into its mechanism of action. Perifosine exerts Akt-dependent and Akt-independent effects, and although many preclinical studies have documented Akt inhibition by perifosine, clinical validation of these findings is lacking. In this article, we review the clinical history of perifosine and discuss its many biologic activities.
Collapse
Affiliation(s)
- Joell J Gills
- Medical Oncology Branch, National Cancer Institute, NNMC Building 8, Room 5101, 8901 Wisconsin Avenue, Bethesda, MD 20889, USA
| | | |
Collapse
|
49
|
Cseh Á, Szebeni B, Szalay B, Vásárhelyi B. Akt enzyme: new therapeutic target in cancer and diabetes? Orv Hetil 2009; 150:373-8. [DOI: 10.1556/oh.2009.28551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A megváltozott sejthalál (apoptózis) számos betegség kialakulásában és progressziójában központi szerepet játszik. Az apoptózist reguláló fehérjék lehetséges terápiás célpontok, ezek egyik tagja az Akt enzim. Az Akt enzim a legtöbb sejtben jelen van. Növekedési faktorok és inzulin, valamint környezeti hatások, így oxigéntenzió-változás és magas hőmérséklet hatására aktiválódik. Az Akt a sejtek metabolizmusában és túlélésében játszik szerepet. Egyes betegségcsoportokban az Akt megváltozott működése figyelhető meg. Számos rosszindulatú daganatban, így prosztata-, emlő-, vastagbél- és hasnyálmirigyrákban, valamint rosszindulatú hematológiai betegségekben az Akt túlműködését igazolták. Diabéteszben egyrészt a béta-sejt-pusztulásban játszik szerepet, másrészt a sejtek inzulinszenzitivitását is befolyásolja. Több kutatási eredmény azt is bebizonyította, hogy a már forgalmazott gyógyszerek egy részének, így a statinoknak, tiazolidindionoknak és az ACE-gátlóknak egyaránt van Akt-moduláló hatása. Jelenleg kutatások folynak olyan Akt-gátlók kifejlesztésére, amelyek a kemoterápia hatékonyságát segíthetik. A perifozin és a triciribin két olyan, fázis I–II. stádiumban lévő Akt-gátló, amely kombinációban adva növelheti emlőrákban, petefészekrákban, gastrointestinalis stromatumorokban, szarkómákban, karcinómákban és hematológiai daganatokban a túlélési idő hosszát.
Collapse
Affiliation(s)
- Áron Cseh
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar I. Gyermekgyógyászati Klinika Budapest Bókay u. 54. 1083
| | - Beáta Szebeni
- 2 Magyar Tudományos Akadémia – Semmelweis Egyetem Gyermekgyógyászati és Nefrológiai Kutatócsoport Budapest
| | - Balázs Szalay
- 1 Semmelweis Egyetem, Általános Orvostudományi Kar I. Gyermekgyógyászati Klinika Budapest Bókay u. 54. 1083
| | - Barna Vásárhelyi
- 2 Magyar Tudományos Akadémia – Semmelweis Egyetem Gyermekgyógyászati és Nefrológiai Kutatócsoport Budapest
| |
Collapse
|
50
|
Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene 2008; 27:5511-26. [PMID: 18794885 DOI: 10.1038/onc.2008.246] [Citation(s) in RCA: 355] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The abnormal activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway has been validated by epidemiological and experimental studies as an essential step toward the initiation and maintenance of human tumors. Notable in this regard are the prevalent somatic genetic alterations leading to the inactivation of the tumor suppressor gene PTEN and gain-of-function mutations targeting PIK3CA--the gene encoding the catalytic phosphosinositide-3 kinase subunit p110 alpha. A number of the intracellular components of this pathway have been targeted as anticancer drug discovery activities leading to the current panoply of clinical trials of inhibitors of PI3K, Akt and HSP90 in man. This review summarizes current preclinical knowledge of modulators of the PI3K/Akt pathway in which drug discovery and development activities have been advanced focusing on both the relevant clinical stage inhibitors and other disclosed tool compounds targeting PI3K, PDK1, Akt and HSP90.
Collapse
Affiliation(s)
- C Garcia-Echeverria
- Oncology Drug Discovery, Novartis Institutes for Biomedical Research, Basel, Switzerland.
| | | |
Collapse
|