1
|
Abstract
The centrosome is a multifunctional organelle that is known primarily for its microtubule organising function. Centrosomal defects caused by changes in centrosomal structure or number have been associated with human diseases ranging from congenital defects to cancer. We are only beginning to appreciate how the non-microtubule organising roles of the centrosome are related to these clinical conditions. In this review, we will discuss the historical evidence that led to the proposal that the centrosome participates in cell cycle regulation. We then summarize the body of work that describes the involvement of the mammalian centrosome in triggering cell cycle progression and checkpoint signalling. Then we will highlight work from the fission yeast model organism, revealing the molecular details that explain how the spindle pole body (SPB, the yeast functional equivalent of the centrosome), participates in these cell cycle transitions. Importantly, we will discuss some of the emerging questions from recent discoveries related to the role of the centrosome as a cell cycle regulator.
Collapse
|
2
|
Ali H, Braga L, Giacca M. Cardiac regeneration and remodelling of the cardiomyocyte cytoarchitecture. FEBS J 2020; 287:417-438. [PMID: 31743572 DOI: 10.1111/febs.15146] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/27/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022]
Abstract
Adult mammals are unable to regenerate their hearts after cardiac injury, largely due to the incapacity of cardiomyocytes (CMs) to undergo cell division. However, mammalian embryonic and fetal CMs, similar to CMs from fish and amphibians during their entire life, exhibit robust replicative activity, which stops abruptly after birth and never significantly resumes. Converging evidence indicates that formation of the highly ordered and stable cytoarchitecture of mammalian mature CMs is coupled with loss of their proliferative potential. Here, we review the available information on the role of the cardiac cytoskeleton and sarcomere in the regulation of CM proliferation. The actin cytoskeleton, the intercalated disc, the microtubular network and the dystrophin-glycoprotein complex each sense mechanical cues from the surrounding environment. Furthermore, they participate in the regulation of CM proliferation by impinging on the yes-associated protein/transcriptional co-activator with PDZ-binding motif, β-catenin and myocardin-related transcription factor transcriptional co-activators. Mastering the molecular mechanisms regulating CM proliferation would permit the development of innovative strategies to stimulate cardiac regeneration in adult individuals, a hitherto unachieved yet fundamental therapeutic goal.
Collapse
Affiliation(s)
- Hashim Ali
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Luca Braga
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Mauro Giacca
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King's College London, UK.,Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.,Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| |
Collapse
|
3
|
Leone M, Musa G, Engel FB. Cardiomyocyte binucleation is associated with aberrant mitotic microtubule distribution, mislocalization of RhoA and IQGAP3, as well as defective actomyosin ring anchorage and cleavage furrow ingression. Cardiovasc Res 2019. [PMID: 29522098 DOI: 10.1093/cvr/cvy056] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims After birth mammalian cardiomyocytes initiate a last cell cycle which results in binucleation due to cytokinesis failure. Despite its importance for cardiac regenerative therapies, this process is poorly understood. Here, we aimed at a better understanding of the difference between cardiomyocyte proliferation and binucleation and providing a new tool to distinguish these two processes. Methods and results Monitoring of cell division by time-lapse imaging revealed that rat cardiomyocyte binucleation stems from a failure to properly ingress the cleavage furrow. Astral microtubule required for actomyosin ring anchorage and thus furrow ingression were not symmetrically distributed at the periphery of the equatorial region during anaphase in binucleating cardiomyocytes. Consequently, RhoA, the master regulator of actomyosin ring formation and constriction, non-muscle myosin IIB, a central component of the actomyosin ring, as well as IQGAP3 were abnormally localized during cytokinesis. In agreement with improper furrow ingression, binucleation in vitro and in vivo was associated with a failure of RhoA and IQGAP3 to localize to the stembody of the midbody. Conclusion Taken together, these results indicate that naturally occurring cytokinesis failure in primary cardiomyocytes is due to an aberrant mitotic microtubule apparatus resulting in inefficient anchorage of the actomyosin ring to the plasma cell membrane. Thus, cardiomyocyte binucleation and division can be discriminated by the analysis of RhoA as well as IQGAP3 localization.
Collapse
Affiliation(s)
- Marina Leone
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Gentian Musa
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany
| | - Felix Benedikt Engel
- Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, Parkstrasse 1, 61231 Bad Nauheim, Germany.,Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 12, 91054 Erlangen, Germany.,Muscle Research Center Erlangen
| |
Collapse
|
4
|
Quantitative Systems Biology to decipher design principles of a dynamic cell cycle network: the "Maximum Allowable mammalian Trade-Off-Weight" (MAmTOW). NPJ Syst Biol Appl 2017; 3:26. [PMID: 28944079 PMCID: PMC5605530 DOI: 10.1038/s41540-017-0028-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/18/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022] Open
Abstract
Network complexity is required to lend cellular processes flexibility to respond timely to a variety of dynamic signals, while simultaneously warranting robustness to protect cellular integrity against perturbations. The cell cycle serves as a paradigm for such processes; it maintains its frequency and temporal structure (although these may differ among cell types) under the former, but accelerates under the latter. Cell cycle molecules act together in time and in different cellular compartments to execute cell type-specific programs. Strikingly, the timing at which molecular switches occur is controlled by abundance and stoichiometry of multiple proteins within complexes. However, traditional methods that investigate one effector at a time are insufficient to understand how modulation of protein complex dynamics at cell cycle transitions shapes responsiveness, yet preserving robustness. To overcome this shortcoming, we propose a multidisciplinary approach to gain a systems-level understanding of quantitative cell cycle dynamics in mammalian cells from a new perspective. By suggesting advanced experimental technologies and dedicated modeling approaches, we present innovative strategies (i) to measure absolute protein concentration in vivo, and (ii) to determine how protein dosage, e.g., altered protein abundance, and spatial (de)regulation may affect timing and robustness of phase transitions. We describe a method that we name “Maximum Allowable mammalian Trade–Off–Weight” (MAmTOW), which may be realized to determine the upper limit of gene copy numbers in mammalian cells. These aspects, not covered by current systems biology approaches, are essential requirements to generate precise computational models and identify (sub)network-centered nodes underlying a plethora of pathological conditions.
Collapse
|
5
|
Zebrowski DC, Vergarajauregui S, Wu CC, Piatkowski T, Becker R, Leone M, Hirth S, Ricciardi F, Falk N, Giessl A, Just S, Braun T, Weidinger G, Engel FB. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife 2015; 4. [PMID: 26247711 PMCID: PMC4541494 DOI: 10.7554/elife.05563] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 07/30/2015] [Indexed: 12/23/2022] Open
Abstract
Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI:http://dx.doi.org/10.7554/eLife.05563.001 Muscle cells in the heart contract in regular rhythms to pump blood around the body. In humans, rats and other mammals, the vast majority of heart muscle cells lose the ability to divide shortly after birth. Therefore, the heart is unable to replace cells that are lost over the life of the individual, for example, during a heart attack. If too many of these cells are lost, the heart will be unable to pump effectively, which can lead to heart failure. Currently, the only treatment option in humans with heart failure is to perform a heart transplant. Some animals, such as newts and zebrafish, are able to replace lost heart muscle cells throughout their lifetimes. Thus, these species are able to fully regenerate their hearts even after 20% has been removed. This suggests that it might be possible to manipulate human heart muscle cells to make them divide and regenerate the heart. Recent research has suggested that structures called centrosomes, known to be required to separate copies of the DNA during cell division, are used as a hub to integrate the initial signals that determine whether a cell should divide or not. Here, Zebrowski et al. studied the centrosomes of heart muscle cells in rats, newts and zebrafish. The experiments show that the centrosomes in rat heart muscle cells are dissembled shortly after birth. Centrosomes are made of several proteins and, in the rat cells, these proteins moved to the membrane that surrounded the nucleus. On the other hand, the centrosomes in the heart muscle cells of the adult newts and zebrafish remained intact. Further experiments found that that breaking apart the centrosomes of heart muscle cells taken from newborn rats stops these cells from dividing. Zebrowski et al.'s findings suggest that the loss of centrosomes after birth is a possible reason why the hearts of adult humans and other mammals are unable to regenerate after injury. In the future, these findings may aid the development of methods to regenerate human heart muscle and new treatments that may limit division of cancer cells. DOI:http://dx.doi.org/10.7554/eLife.05563.002
Collapse
Affiliation(s)
- David C Zebrowski
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Silvia Vergarajauregui
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chi-Chung Wu
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Tanja Piatkowski
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Robert Becker
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marina Leone
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sofia Hirth
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Filomena Ricciardi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Nathalie Falk
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Giessl
- Department of Biology, Animal Physiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Steffen Just
- Department of Medicine II, University of Ulm, Ulm, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, University of Ulm, Ulm, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Alves-Cruzeiro JMDC, Nogales-Cadenas R, Pascual-Montano AD. CentrosomeDB: a new generation of the centrosomal proteins database for Human and Drosophila melanogaster. Nucleic Acids Res 2014; 42:D430-6. [PMID: 24270791 PMCID: PMC3964966 DOI: 10.1093/nar/gkt1126] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/22/2013] [Accepted: 10/24/2013] [Indexed: 01/01/2023] Open
Abstract
We present the second generation of centrosomeDB, available online at http://centrosome.cnb.csic.es, with a significant expansion of 1357 human and drosophila centrosomal genes and their corresponding information. The centrosome of animal cells takes part in important biological processes such as the organization of the interphase microtubule cytoskeleton and the assembly of the mitotic spindle. The active research done during the past decades has produced lots of data related to centrosomal proteins. Unfortunately, the accumulated data are dispersed among diverse and heterogeneous sources of information. We believe that the availability of a repository collecting curated evidences of centrosomal proteins would constitute a key resource for the scientific community. This was our first motivation to introduce CentrosomeDB in NAR database issue in 2009, collecting a set of human centrosomal proteins that were reported in the literature and other sources. The intensive use of this resource during these years has encouraged us to present this new expanded version. Using our database, the researcher is offered the possibility to study the evolution, function and structure of the centrosome. We have compiled information from many sources, including Gene Ontology, disease-association, single nucleotide polymorphisms and associated gene expression experiments. Special interest has been paid to protein-protein interaction.
Collapse
Affiliation(s)
| | - Rubén Nogales-Cadenas
- Functional Bioinformatics Group, National Center for Biotechnology-CSIC, Madrid 28049, Spain
| | | |
Collapse
|
7
|
Caldon CE, Sergio CM, Burgess A, Deans AJ, Sutherland RL, Musgrove EA. Cyclin E2 induces genomic instability by mechanisms distinct from cyclin E1. Cell Cycle 2013; 12:606-17. [PMID: 23324395 DOI: 10.4161/cc.23512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cyclins E1 drives the initiation of DNA replication, and deregulation of its periodic expression leads to mitotic delay associated with genomic instability. Since it is not known whether the closely related protein cyclin E2 shares these properties, we overexpressed cyclin E2 in breast cancer cells. This did not affect the duration of mitosis, nor did it cause an increase in p107 association with CDK2. In contrast, cyclin E1 overexpression led to inhibition of the APC complex, prolonged metaphase and increased p107 association with CDK2. Despite these different effects on the cell cycle, elevated levels of either cyclin E1 or E2 led to hallmarks of genomic instability, i.e., an increased proportion of abnormal mitoses, micronuclei and chromosomal aberrations. Cyclin E2 induction of genomic instability by a mechanism distinct from cyclin E1 indicates that these two proteins have unique functions in a cancer setting.
Collapse
Affiliation(s)
- C Elizabeth Caldon
- The Kinghorn Cancer Centre and Cancer Research Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Zhu QC, Qin HL. Progress in understanding the role of epithelial-mesenchymal transition in the pathogenesis of colorectal tumors. Shijie Huaren Xiaohua Zazhi 2012; 20:1949-1956. [DOI: 10.11569/wcjd.v20.i21.1949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition is a well established biological event that plays an important role not only in the normal development of tissues and organs but also in the pathogenesis of many diseases. Increasing evidence has established its presence in the human colon during colorectal carcinogenesis and cancer invasion, chronic inflammation-related fibrosis, and mucosal healing. A large body of evidence supports the role of transforming growth factor-β and its downstream Smad signaling, the phosphatidylinositol 3'-kinase/Akt/mTOR axis, the Ras-mitogen-activated protein kinase/Snail/Slug and FOXC2 pathway, and Hedgehog signaling and microRNAs in epithelial-mesenchymal transition in the development of colorectal cancers. Here we discuss the role of these pathways in the initiation and development of the transition events. A better understanding of their induction and regulation may lead to the identification of pathways and factors that could be potent therapeutic targets.
Collapse
|
9
|
Siu KT, Rosner MR, Minella AC. An integrated view of cyclin E function and regulation. Cell Cycle 2012; 11:57-64. [PMID: 22186781 DOI: 10.4161/cc.11.1.18775] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cancers of diverse cell lineages express high levels of cyclin E, and in various studies, cyclin E overexpression correlates with increased tumor aggression. One way that normal control of cyclin E expression is disabled in cancer cells is via loss-of-function mutations sustained by FBXW7. This gene encodes the Fbw7 tumor suppressor protein that provides substrate specificity for a ubiquitin ligase complex that targets multiple oncoproteins for degradation. Numerous other mechanisms besides Fbw7 mutations can deregulate cyclin E expression and activity in cancer cells. Recent reports demonstrate that inappropriate cyclin E expression may have far-reaching biological consequences for cell physiology, including altering gene expression programs governing proliferation, differentiation, survival and senescence. In this review, we discuss the function of mammalian cyclin E in the context of these new data as well as the complex network that connects cyclin E functions to the cellular controls regulating its expression and activity.
Collapse
Affiliation(s)
- Ka Tat Siu
- Department of Medicine, Hematology/Oncology Division, Integrated Graduate Program in the Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | |
Collapse
|
10
|
Bhaduri S, Pryciak PM. Cyclin-specific docking motifs promote phosphorylation of yeast signaling proteins by G1/S Cdk complexes. Curr Biol 2011; 21:1615-23. [PMID: 21945277 DOI: 10.1016/j.cub.2011.08.033] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 07/29/2011] [Accepted: 08/15/2011] [Indexed: 01/15/2023]
Abstract
BACKGROUND The eukaryotic cell cycle begins with a burst of cyclin-dependent kinase (Cdk) phosphorylation. In budding yeast, several Cdk substrates are preferentially phosphorylated at the G1/S transition rather than later in the cell cycle when Cdk activity levels are high. These early Cdk substrates include signaling proteins in the pheromone response pathway. Two such proteins, Ste5 and Ste20, are phosphorylated only when Cdk is associated with the G1/S cyclins Cln1 and Cln2 and not G1, S, or M cyclins. The basis of this cyclin specificity is unknown. RESULTS Here we show that Ste5 and Ste20 have recognition sequences, or "docking" sites, for the G1/S cyclins. These docking sites, which are distinct from Clb5/cyclin A-binding "RXL" motifs, bind preferentially to Cln2. They strongly enhance Cln2-driven phosphorylation of each substrate in vivo and function largely independent of position and distance to the Cdk sites. We exploited this functional independence to rewire a Cdk regulatory circuit in a way that changes the target of Cdk inhibition in the pheromone response pathway. Furthermore, we uncover functionally active Cln2 docking motifs in several other Cdk substrates. The docking motifs drive cyclin-specific phosphorylation, and the cyclin preference can be switched by using a distinct motif. CONCLUSIONS Our findings indicate that some Cdk substrates are intrinsically capable of being phosphorylated by several different cyclin-Cdk forms, but they are inefficiently phosphorylated in vivo without a cyclin-specific docking site. Docking interactions may play a prevalent but previously unappreciated role in driving phosphorylation of select Cdk substrates preferentially at the G1/S transition.
Collapse
Affiliation(s)
- Samyabrata Bhaduri
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|