1
|
Cecerska-Heryć E, Wiśniewska Z, Serwin N, Polikowska A, Goszka M, Engwert W, Michałów J, Pękała M, Budkowska M, Michalczyk A, Dołęgowska B. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin-A Comprehensive Review. Int J Mol Sci 2024; 25:4505. [PMID: 38674092 PMCID: PMC11050349 DOI: 10.3390/ijms25084505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Malignant tumors are the second most common cause of death worldwide. More attention is being paid to the link between the body's impaired oxidoreductive balance and cancer incidence. Much attention is being paid to polyphenols derived from plants, as one of their properties is an antioxidant character: the ability to eliminate reactive oxygen and nitrogen species, chelate specific metal ions, modulate signaling pathways affecting inflammation, and raise the level and activity of antioxidant enzymes while lowering those with oxidative effects. The following three compounds, resveratrol, quercetin, and curcumin, are polyphenols modulating multiple molecular targets, or increasing pro-apoptotic protein expression levels and decreasing anti-apoptotic protein expression levels. Experiments conducted in vitro and in vivo on animals and humans suggest using them as chemopreventive agents based on antioxidant properties. The advantage of these natural polyphenols is low toxicity and weak adverse effects at higher doses. However, the compounds discussed are characterized by low bioavailability and solubility, which may make achieving the blood concentrations needed for the desired effect challenging. The solution may lie in derivatives of naturally occurring polyphenols subjected to structural modifications that enhance their beneficial effects or work on implementing new ways of delivering antioxidants that improve their solubility and bioavailability.
Collapse
Affiliation(s)
- Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Zofia Wiśniewska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Natalia Serwin
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Aleksandra Polikowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Małgorzata Goszka
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Weronika Engwert
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Jaśmina Michałów
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Maja Pękała
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| | - Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Anna Michalczyk
- Department of Psychiatry, Pomeranian Medical University of Szczecin, Broniewskiego 26, 71-460 Szczecin, Poland;
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University of Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland; (Z.W.); (N.S.); (A.P.); (M.G.); (W.E.); (J.M.); (M.P.); (B.D.)
| |
Collapse
|
2
|
Paskas S, Stockmann P, Mijatović S, Kuhnert L, Honscha W, Hey-Hawkins E, Maksimović-Ivanić D. Carborane-Based ABCG2-Inhibitors Sensitize ABC-(Over)Expressing Cancer Cell Lines for Doxorubicin and Cisplatin. Pharmaceuticals (Basel) 2023; 16:1582. [PMID: 38004447 PMCID: PMC10674596 DOI: 10.3390/ph16111582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The ABCG2 transporter protein, as part of several known mechanisms involved in multidrug resistance, has the ability to transport a broad spectrum of substrates out of the cell and is, therefore, considered as a potential target to improve cancer therapies or as an approach to combat drug resistance in cancer. We have previously reported carborane-functionalized quinazoline derivatives as potent inhibitors of human ABCG2 which effectively reversed breast cancer resistance protein (BCRP)-mediated mitoxantrone resistance. In this work, we present the evaluation of our most promising carboranyl BCRP inhibitors regarding their toxicity towards ABCG2-expressing cancer cell lines (MCF-7, doxorubicin-resistant MCF-7 or MCF-7 Doxo, HT29, and SW480) and, consequently, with the co-administration of an inhibitor and therapeutic agent, their ability to increase the efficacy of therapeutics with the successful inhibition of ABCG2. The results obtained revealed synergistic effects of several inhibitors in combination with doxorubicin or cisplatin. Compounds DMQCa, DMQCc, and DMQCd showed a decrease in IC50 value in ABCB1- and ABCG2-expressing SW480 cells, suggesting a possible targeting of both transporters. In an HT29 cell line, with the highest expression of ABCG2 among the tested cell lines, using co-treatment of doxorubicin and DMQCd, the effective inhibitory concentration of the antineoplastic agent could be reduced by half. Interestingly, co-treatment of compound QCe with cisplatin, which is not an ABCG2 substrate, showed synergistic effects in MCF-7 Doxo and HT29 cells (IC50 values halved or reduced by 20%, respectively). However, a literature-known upregulation of cisplatin-effluxing ABC transporters and their effective inhibition by the carborane derivatives emerges as a possible reason.
Collapse
Affiliation(s)
- Svetlana Paskas
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (S.M.)
| | - Philipp Stockmann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (S.M.)
| | - Lydia Kuhnert
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany; (L.K.); (W.H.)
| | - Walther Honscha
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Universität Leipzig, An den Tierkliniken 15, 04103 Leipzig, Germany; (L.K.); (W.H.)
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, Belgrade University, 11060 Belgrade, Serbia; (S.P.); (S.M.)
| |
Collapse
|
3
|
Kim JW, Choi J, Park MN, Kim B. Apoptotic Effect of Gallic Acid via Regulation of p-p38 and ER Stress in PANC-1 and MIA PaCa-2 Cells Pancreatic Cancer Cells. Int J Mol Sci 2023; 24:15236. [PMID: 37894916 PMCID: PMC10607041 DOI: 10.3390/ijms242015236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic cancer (PC) is currently recognized as the seventh most prevalent cause of cancer-related mortality among individuals of both genders. It is projected that a significant number of individuals will succumb to this disease in the forthcoming years. Extensive research and validation have been conducted on both gemcitabine and 5-fluorouracil as viable therapeutic options for PC. Nevertheless, despite concerted attempts to enhance treatment outcomes, PC continues to pose significant challenges in terms of achieving effective treatment alone through chemotherapy. Gallic acid, an endogenous chemical present in various botanical preparations, has attracted considerable attention due to its potential as an anticancer agent. The results of the study demonstrated that gallic acid exerted a decline in cell viability that was dependent on its concentration. Furthermore, it efficiently suppressed cell proliferation in PC cells. This study observed a positive correlation between gallic acid and the production of reactive oxygen species (ROS). Additionally, it confirmed the upregulation of proteins associated with the protein kinase-like endoplasmic reticulum kinase (PERK) pathway, which is one of the pathways involved in endoplasmic reticulum (ER) stress. Moreover, the administration of gallic acid resulted in verified alterations in the transmission of mitogen-activated protein kinase (MAPK) signals. Notably, an elevation in the levels of p-p38, which represents the phosphorylated state of p38 MAPK was detected. The scavenger of reactive oxygen species (ROS), N-Acetyl-L-cysteine (NAC), has shown inhibitory effects on phosphorylated p38 (p-p38), whereas the p38 inhibitor SB203580 inhibited C/EBP homologous protein (CHOP). In both instances, the levels of PARP have been successfully reinstated. In other words, the study discovered a correlation between endoplasmic reticulum stress and the p38 signaling pathway. Consequently, gallic acid induces the activation of both the p38 pathway and the ER stress pathway through the generation of ROS, ultimately resulting in apoptosis. The outcomes of this study provide compelling evidence to support the notion that gallic acid possesses considerable promise as a viable therapeutic intervention for pancreatic cancer.
Collapse
Affiliation(s)
- Jeong Woo Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Jinwon Choi
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea; (J.W.K.); (J.C.); (M.N.P.)
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemungu, Seoul 05253, Republic of Korea
| |
Collapse
|
4
|
The Double-Faced Role of Nitric Oxide and Reactive Oxygen Species in Solid Tumors. Antioxidants (Basel) 2020; 9:antiox9050374. [PMID: 32365852 PMCID: PMC7278755 DOI: 10.3390/antiox9050374] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/08/2023] Open
Abstract
Disturbed redox homeostasis represents a hallmark of cancer phenotypes, affecting cellular metabolism and redox signaling. Since reactive oxygen and nitrogen species (ROS/RNS) are involved in regulation of proliferation and apoptosis, they may play a double-faced role in cancer, entailing protumorigenic and tumor-suppressing effects in early and later stages, respectively. In addition, ROS and RNS impact the activity and communication of all tumor constituents, mediating their reprogramming from anti- to protumorigenic phenotypes, and vice versa. An important role in this dichotomic action is played by the variable amounts of O2 in the tumor microenvironment, which dictates the ultimate outcome of the influence of ROS/RNS on carcinogenesis. Moreover, ROS/RNS levels remarkably influence the cancer response to therapy. The relevance of ROS/RNS signaling in solid tumors is witnessed by the emergence of novel targeted treatments of solid tumors with compounds that target ROS/RNS action and production, such as tyrosine kinase inhibitors and monoclonal antibodies, which might contribute to the complexity of redox regulation in cancer. Prospectively, the dual role of ROS/RNS in the different stages of tumorigenesis through different impact on oxidation and nitrosylation may also allow development of tailored diagnostic and therapeutic approaches.
Collapse
|
5
|
Paskaš S, Krajnović T, Basile MS, Dunđerović D, Cavalli E, Mangano K, Mammana S, Al-Abed Y, Nicoletti F, Mijatović S, Maksimović-Ivanić D. Senescence as a main mechanism of Ritonavir and Ritonavir-NO action against melanoma. Mol Carcinog 2019; 58:1362-1375. [PMID: 30997718 DOI: 10.1002/mc.23020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/19/2022]
Abstract
The main focus of this study is exploring the effect and mechanism of two HIV-protease inhibitors: Ritonavir and Ritonavir-nitric oxide (Ritonavir-NO) on in vitro growth of melanoma cell lines. NO modification significantly improved the antitumor potential of Ritonavir, as the IC50 values of Ritonavir-NO were approximately two times lower than IC50 values of the parental compound. Our results showed for the first time, that both compounds induced senescence in primary and metastatic melanoma cell lines. This transformation was manifested as a change in cell morphology, enlargement of nuclei, increased cellular granulation, upregulation of β-galactosidase activity, lipofuscin granules appearance, higher production of reactive oxygen species and persistent inhibition of proliferation. The expression of p53, as one of the key regulators of senescence, was upregulated after 48 hours of Ritonavir-NO treatment only in metastatic B16F10 cells, ranking it as a late-response event. The development of senescent phenotype was consistent with the alteration of the cytoskeleton-as we observed diminished expression of vinculin, α-actin, and β-tubulin. Permanent inhibition of S6 protein by Ritonavir-NO, but not Ritonavir, could be responsible for a stronger antiproliferative potential of the NO-modified compound. Taken together, induction of senescent phenotype may provide an excellent platform for developing therapeutic approaches based on selective killing of senescent cells.
Collapse
Affiliation(s)
- Svetlana Paskaš
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Tamara Krajnović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Maria S Basile
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Duško Dunđerović
- Institute of Pathology, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Cavalli
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santa Mammana
- Department of Experimental Neurology, IRCCS Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, New York
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković", Belgrade University, Belgrade, Serbia
| |
Collapse
|
6
|
Lopinavir-NO, a nitric oxide-releasing HIV protease inhibitor, suppresses the growth of melanoma cells in vitro and in vivo. Invest New Drugs 2019; 37:1014-1028. [PMID: 30706336 DOI: 10.1007/s10637-019-00733-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
We generated a nitric oxide (NO)-releasing derivative of the anti-HIV protease inhibitor lopinavir by linking the NO moiety to the parental drug. We investigated the effects of lopinavir and its derivative lopinavir-NO on melanoma cell lines in vitro and in vivo. Lopinavir-NO exhibited a twofold stronger anticancer action than lopinavir in vitro. These results were successfully translated into syngeneic models of melanoma in vivo, where a significant reduction in tumour volume was observed only in animals treated with lopinavir-NO. Both lopinavir and lopinavir-NO inhibited cell proliferation and induced the trans-differentiation of melanoma cells to Schwann-like cells. In melanoma cancer cell lines, both lopinavir and lopinavir-NO induced morphological changes, minor apoptosis and reactive oxygen species (ROS) production. However, caspase activation and autophagy were detected only in B16 cells, indicating a cell line-specific treatment response. Lopinavir-NO released NO intracellularly, and NO neutralization restored cell viability. Treatment with lopinavir-NO induced only a transient activation of Akt and inhibition of P70S6 kinase. The results of this study identify lopinavir-NO as a promising candidate for further clinical trials in melanoma and possibly other solid tumours.
Collapse
|
7
|
Anticancer and Differentiation Properties of the Nitric Oxide Derivative of Lopinavir in Human Glioblastoma Cells. Molecules 2018; 23:molecules23102463. [PMID: 30261624 PMCID: PMC6222694 DOI: 10.3390/molecules23102463] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 01/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent and deadly form of primary malignant brain tumor among adults. A promising emerging approach for GBM treatment may be offered from HIV protease inhibitors (HIV-PIs). In fact, in addition to their primary pharmacological activity in the treatment of HIV infection, they possess important anti-neoplastic effects. According to previous studies, the addition of a nitric oxide (NO) donating group to parental compounds can reduce their toxicity and enhance the anticancer action of various compounds, including HIV-PIs. In this study we compared the effects of the HIV-PI Lopinavir (Lopi) and of its NO-derivative Lopinavir-NO (Lopi-NO) on the in vitro growth of LN-229 and U-251 human GBM cell lines. Lopi-NO reduced the viability of LN-229 and U-251 cells at significantly lower concentrations than the parental drug. In particular, Lopi-NO inhibited tumor cell proliferation and induced the differentiation of U-251 cells toward an astrocyte-like phenotype without triggering significant cell death in both cell types. The anticancer effect of Lopi-NO was persistent even upon drug removal. Furthermore, Lopi-NO induced strong autophagy that did not appear to be related to its chemotherapeutic action. Overall, our results suggest that Lopi-NO could be a potential effective anticancer drug for GBM treatment.
Collapse
|
8
|
Maksimovic-Ivanic D, Fagone P, McCubrey J, Bendtzen K, Mijatovic S, Nicoletti F. HIV-protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives? Int J Cancer 2017; 140:1713-1726. [PMID: 27870005 DOI: 10.1002/ijc.30529] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 12/24/2022]
Abstract
The possible use of HIV protease inhibitors (HIV-PI) as new therapeutic option for the treatment of cancer primarily originated from their success in treating HIV-related Kaposi's sarcoma (KS). While these findings were initially attributed to immune reconstitution and better control of oncogenic viral infections, the number of reports on solid tumors, KS, lymphoma, fibrosarcoma, multiple myeloma and prostate cancer suggest other mechanisms for the anti-neoplastic activity of PIs. However, a major drawback for the possible adoption of HIV-PIs in the therapy of cancer relies on their relatively weak anticancer potency and important side effects. This has propelled several groups to generate derivatives of HIV-PIs for anticancer use, through modifications such as attachment of different moieties, ligands and transporters, including saquinavir-loaded folic acid conjugated nanoparticles and nitric oxide (NO) derivatives of HIV-PIs. In this article, we discuss the current preclinical and clinical evidences for the potential use of HIV-PIs, and of novel derivatives, such as saquinavir-NO in the treatment of cancer.
Collapse
Affiliation(s)
- Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic," Belgrade University, Serbia
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC
| | - Klaus Bendtzen
- Institute for Inflammation Research (IIR), Rigshospitalet University Hospital, Copenhagen, Denmark
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic," Belgrade University, Serbia
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| |
Collapse
|
9
|
Maksimovic-Ivanic D, Mojic M, Bulatovic M, Radojkovic M, Kuzmanovic M, Ristic S, Stosic-Grujicic S, Miljkovic D, Cavalli E, Libra M, Fagone P, McCubrey J, Nicoletti F, Mijatovic S. The NO-modified HIV protease inhibitor as a valuable drug for hematological malignancies: Role of p70S6K. Leuk Res 2015. [PMID: 26220866 DOI: 10.1016/j.leukres.2015.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Covalent attachment of NO to the first approved HIV protease inhibitor Saquinavir (Saq-NO) expands the therapeutic potential of the original drug. Apart from retained antiviral activity, the modified drug exerts strong antitumor effects and lower toxicity. In the present study, we have evaluated the sensitivity of different hematological malignancies to Saq-NO. Saq-NO efficiently diminished the viability of Jurkat, Raji, HL-60 and K562 cells. While Jurkat and Raji cells (established from pediatric patients) displayed abrogated proliferative potential, HL-60 and K652 cells (originated from adults) exposed to Saq-NO treatment underwent caspase dependent apoptosis. In addition, similar sensitivity to Saq-NO was observed in mononuclear blood cells obtained from pediatric patients with acute lymphoblastic leukemia (ALL) and adult patients with acute myeloid leukemia (AML). Western blot analysis indicated p70S6 kinase as a possible intracellular target of Saq-NO action. Moreover, the addition of a NO moiety to Lopinavir resulted in improved antitumor potential as compared to the parental compound, suggesting that NO-derived HIV protease inhibitors are a potential new source of anticancer drugs with unique mode of action.
Collapse
Affiliation(s)
- Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Marija Mojic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Mirna Bulatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Milica Radojkovic
- Clinical Center "Dr Dragisa Misovic", Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Milos Kuzmanovic
- Institute for Health Care of Mother and Child of Serbia "Dr Vukan Cupic", Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Slobodan Ristic
- Clinical Center "Dr Dragisa Misovic", Medical Faculty, University of Belgrade, Belgrade, Serbia
| | - Stanislava Stosic-Grujicic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Djordje Miljkovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | - Eugenio Cavalli
- Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Massimo Libra
- Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - Paolo Fagone
- Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy
| | - James McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, Greenville, NC 27858, USA
| | - Ferdinando Nicoletti
- Department of Biomedical Sciences and Biotechnology, University of Catania, Catania, Italy.
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| |
Collapse
|
10
|
Fagone P, Mangano K, Quattrocchi C, Cavalli E, Mammana S, Lombardo GAG, Pennisi V, Zocca MB, He M, Al-Abed Y, Nicoletti F. Effects of NO-Hybridization on the Immunomodulatory Properties of the HIV Protease Inhibitors Lopinavir and Ritonavir. Basic Clin Pharmacol Toxicol 2015; 117:306-15. [PMID: 25903922 DOI: 10.1111/bcpt.12414] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/19/2015] [Indexed: 01/28/2023]
Abstract
HIV protease inhibitors (PIs) are antiretroviral agents, which have been found to also affect several cellular processes, such as inflammation and cell progression. In studies on non-steroidal, anti-inflammatory drugs, the addition of a nitric oxide (NO) moiety has been shown to both reduce their toxicity and enhance their pharmacological efficacy. Along this line of research, several derivatives of PIs have been synthesized by covalent attachment of NO moiety to the parental molecules. Previous work has indicated that NO-hybridization of the prototypical PI, Saquinavir leads to a derivative named Saquinavir-NO that while retaining the antiretroviral effect, acquires antitumoural and immunomodulatory properties along with reduced toxicity in vitro and in vivo. These data prompted us to evaluate the effects of NO-hybridization on two other PIs, Lopinavir and Ritonavir. The two NO-derivatives were compared head to head with their parental compounds on human primary peripheral blood mononuclear cells as well as on human primary macrophages. Lopinavir-NO and Lopinavir were also screened in an in vivo model of autoimmune hepatitis. Our results prove that Lopinavir-NO exerts markedly superior effects as compared to the parental compound both in vitro and in vivo. On the contrary, Ritonavir-NO effects overlapped those of Ritonavir. These data demonstrate that NO-hybridization of Lopinavir generates a derivative with significantly stronger immunomodulatory effects that are apparently related to an action of the compound on T-cell secretory capacity. Lopinavir-NO deserves additional studies for its possible use in T-cell-mediated autoimmune diseases including, but not limited to autoimmune hepatitis.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Katia Mangano
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Cinzia Quattrocchi
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Eugenio Cavalli
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | - Santa Mammana
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | | | - Vincenzo Pennisi
- Department of Biomedical Sciences, University of Catania, Catania, Italy
| | | | - Mingzhu He
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | |
Collapse
|
11
|
Saquinavir-NO inhibits S6 kinase activity, impairs secretion of the encephalytogenic cytokines interleukin-17 and interferon-gamma and ameliorates experimental autoimmune encephalomyelitis. J Neuroimmunol 2013; 259:55-65. [PMID: 23602714 DOI: 10.1016/j.jneuroim.2013.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/21/2013] [Accepted: 03/22/2013] [Indexed: 12/22/2022]
Abstract
NO-hybridization of the HIV protease inhibitor Saquinavir generates a new chemical entity named Saq-NO, that retains the anti-viral activity and exerts lower toxicity. We show that Saq-NO inhibited the generation of various cytokines in ConA-stimulated unfractionated murine spleen cells and rat lymph nodes stimulated with ConA as well as in purified CD4(+) T cells in vitro and reduced the circulating levels of cytokines in mice challenged with anti-CD3 antibody. Furthermore, Saq-NO reduced IL-17 and IFN-γ production in myelin basic protein (MBP)-specific cells isolated from rats immunized with MBP. These findings translated well into the in vivo setting as Saq-NO ameliorated the course of the disease in two preclinical models of multiple sclerosis. Our results demonstrate that Saq-NO exerts immunomodulatory effects that warrant studies on its application in autoimmune diseases.
Collapse
|
12
|
McCubrey JA, Steelman LS, Chappell WH, Sun L, Davis NM, Abrams SL, Franklin RA, Cocco L, Evangelisti C, Chiarini F, Martelli AM, Libra M, Candido S, Ligresti G, Malaponte G, Mazzarino MC, Fagone P, Donia M, Nicoletti F, Polesel J, Talamini R, Bäsecke J, Mijatovic S, Maksimovic-Ivanic D, Michele M, Tafuri A, Dulińska-Litewka J, Laidler P, D'Assoro AB, Drobot L, Umezawa D, Montalto G, Cervello M, Demidenko ZN. Advances in targeting signal transduction pathways. Oncotarget 2012; 3:1505-21. [PMID: 23455493 PMCID: PMC3681490 DOI: 10.18632/oncotarget.802] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 12/28/2012] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies.
Collapse
Affiliation(s)
- James A McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine at East Carolina University, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mojic M, Mijatovic S, Maksimovic-Ivanic D, Miljkovic D, Stosic-Grujicic S, Stankovic M, Mangano K, Travali S, Donia M, Fagone P, Zocca MB, Al-Abed Y, McCubrey JA, Nicoletti F. Therapeutic potential of nitric oxide-modified drugs in colon cancer cells. Mol Pharmacol 2012; 82:700-10. [PMID: 22798453 DOI: 10.1124/mol.112.077842] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We have examined the influence of the nitric oxide (NO)-modified anti-inflammatory drug (S,R)-3-phenyl-4,5-dihydro-5-isoxasole acetic acid (VGX-1027) named GIT-27NO or the NO-modified antiviral drug saquinavir (Saq) named Saq-NO on two colon cancer cell lines, mouse CT26CL25 and human HCT116. The effects of the drugs on cell viability, apoptosis, proliferation, and metastatic potential were analyzed. The release of NO and oxygen and nitrogen species was also determined. The efficacy of the drugs was evaluated in vivo in BALB/c mice injected with CT26CL25 cells. Both agents suppressed the growth of colon cancer cells in vitro and reduced tumor volume in syngeneic BALB/c mice. However, their mechanisms of action were different because GIT-27NO released larger amounts of nitrite than Saq-NO in cell cultures and its antitumor action depended on the intracellular NO release inside the cells. On the contrary, Saq-NO released barely detectable amounts of NO and its antitumor action was NO-independent. In fact, cotreatment with an NO-peroxynitrite scavenger revealed that GIT-27NO but not Saq-NO acts through peroxynitrite-mediated cell destruction. At the cellular level, GIT-27NO prevalently induced proapoptotic signals followed by caspase-dependent apoptosis. In contrast, Saq-NO blocked cell proliferation, changed the adhesive, migratory, and invasive properties of the cells, and decreased metastatic potential in vivo. In conclusion, differences in NO release and oxidative stress generation between GIT-27NO and Saq-NO resulted in different mechanisms that caused cell death.
Collapse
Affiliation(s)
- Marija Mojic
- Department of Immunology, Institute for Biological Research "Sinisa Stankovic", Belgrade University, Belgrade, Serbia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|