1
|
Casagrande S, Loveland JL, Oefele M, Boner W, Lupi S, Stier A, Hau M. Dietary nucleotides can prevent glucocorticoid-induced telomere attrition in a fast-growing wild vertebrate. Mol Ecol 2023; 32:5429-5447. [PMID: 37658759 DOI: 10.1111/mec.17114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/20/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
Telomeres are chromosome protectors that shorten during eukaryotic cell replication and in stressful conditions. Developing individuals are susceptible to telomere erosion when their growth is fast and resources are limited. This is critical because the rate of telomere attrition in early life is linked to health and life span of adults. The metabolic telomere attrition hypothesis (MeTA) suggests that telomere dynamics can respond to biochemical signals conveying information about the organism's energetic state. Among these signals are glucocorticoids, hormones that promote catabolic processes, potentially impairing costly telomere maintenance, and nucleotides, which activate anabolic pathways through the cellular enzyme target of rapamycin (TOR), thus preventing telomere attrition. During the energetically demanding growth phase, the regulation of telomeres in response to two contrasting signals - one promoting telomere maintenance and the other attrition - provides an ideal experimental setting to test the MeTA. We studied nestlings of a rapidly developing free-living passerine, the great tit (Parus major), that either received glucocorticoids (Cort-chicks), nucleotides (Nuc-chicks) or a combination of both (NucCort-chicks), comparing these with controls (Cnt-chicks). As expected, Cort-chicks showed telomere attrition, while NucCort- and Nuc-chicks did not. NucCort-chicks was the only group showing increased expression of a proxy for TOR activation (the gene TELO2), of mitochondrial enzymes linked to ATP production (cytochrome oxidase and ATP-synthase) and a higher efficiency in aerobically producing ATP. NucCort-chicks had also a higher expression of telomere maintenance genes (shelterin protein TERF2 and telomerase TERT) and of enzymatic antioxidant genes (glutathione peroxidase and superoxide dismutase). The findings show that nucleotide availability is crucial for preventing telomere erosion during fast growth in stressful environments.
Collapse
Affiliation(s)
- Stefania Casagrande
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Jasmine L Loveland
- Department of Cognitive and Behavioral Biology, University of Vienna, Vienna, Austria
| | - Marlene Oefele
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
| | - Winnie Boner
- Institute of Biodiversity Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Sara Lupi
- Konrad Lorenz Institute of Ethology, Vienna, Austria
| | - Antoine Stier
- Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien, UMR7178, Strasbourg, France
- Department of Biology, University of Turku, Turku, Finland
| | - Michaela Hau
- Max Planck Institute for Biological Intelligence, Evolutionary Physiology Group, Seewiesen, Germany
- Department of Biology, University of Konstanz, Constance, Germany
| |
Collapse
|
2
|
Uziel O, Dickstein H, Beery E, Lewis Y, Loewenthal R, Uziel E, Shochat Z, Weizman A, Stein D. Differences in Telomere Length between Adolescent Females with Anorexia Nervosa Restricting Type and Anorexia Nervosa Binge-Purge Type. Nutrients 2023; 15:2596. [PMID: 37299559 PMCID: PMC10255620 DOI: 10.3390/nu15112596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Physiological and psychological distress may accelerate cellular aging, manifested by shortening of telomere length (TL). The present study focused on TL shortening in anorexia nervosa (AN), an illness combining physiological and psychological distress. For that purpose, we measured TL in 44 female adolescents with AN at admission to inpatient treatment, in a subset of 18 patients also at discharge, and in 22 controls. No differences in TL were found between patients with AN and controls. At admission, patients with AN-binge/purge type (AN-B/P; n = 18) showed shorter TL compared with patients with AN-restricting type (AN-R; n = 26). No change in TL was found from admission to discharge, despite an improvement in body mass index standard deviation score (BMI-SDS) following inpatient treatment. Older age was the only parameter assessed to be correlated with greater TL shortening. Several methodological changes have to be undertaken to better understand the putative association of shorter TL with B/P behaviors, including increasing the sample size and the assessment of the relevant pathological eating disorder (ED) and non-ED psychological correlates in the two AN subtypes.
Collapse
Affiliation(s)
- Orit Uziel
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 69978, Israel; (O.U.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hadar Dickstein
- Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Einat Beery
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 69978, Israel; (O.U.)
| | - Yael Lewis
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Shalvatah Mental Health Center, Hod Hasahron 45100, Israel
| | - Ron Loewenthal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| | - Eran Uziel
- Research Unit, Geha Mental Health Center, Petah Tikva 49100, Israel
| | - Zipi Shochat
- Research Unit, Geha Mental Health Center, Petah Tikva 49100, Israel
| | - Abraham Weizman
- Felsenstein Medical Research Center, Sackler School of Medicine, Tel Aviv University, Petah Tikva 69978, Israel; (O.U.)
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Statistical Service, Rabin Medical Center, Petah Tikva 49100, Israel
| | - Daniel Stein
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- Safra Children’s Hospital, Sheba Medical Center, Ramat Gan 52621, Israel
| |
Collapse
|
3
|
D’Angiolo M, Yue JX, De Chiara M, Barré BP, Giraud Panis MJ, Gilson E, Liti G. Telomeres are shorter in wild Saccharomyces cerevisiae isolates than in domesticated ones. Genetics 2023; 223:iyac186. [PMID: 36563016 PMCID: PMC9991508 DOI: 10.1093/genetics/iyac186] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/02/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
Telomeres are ribonucleoproteins that cap chromosome-ends and their DNA length is controlled by counteracting elongation and shortening processes. The budding yeast Saccharomyces cerevisiae has been a leading model to study telomere DNA length control and dynamics. Its telomeric DNA is maintained at a length that slightly varies between laboratory strains, but little is known about its variation at the species level. The recent publication of the genomes of over 1,000 S. cerevisiae strains enabled us to explore telomere DNA length variation at an unprecedented scale. Here, we developed a bioinformatic pipeline (YeaISTY) to estimate telomere DNA length from whole-genome sequences and applied it to the sequenced S. cerevisiae collection. Our results revealed broad natural telomere DNA length variation among the isolates. Notably, telomere DNA length is shorter in those derived from wild rather than domesticated environments. Moreover, telomere DNA length variation is associated with mitochondrial metabolism, and this association is driven by wild strains. Overall, these findings reveal broad variation in budding yeast's telomere DNA length regulation, which might be shaped by its different ecological life-styles.
Collapse
Affiliation(s)
- Melania D’Angiolo
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Jia-Xing Yue
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center (SYSUCC), 651 Dongfeng Road East, China
| | - Matteo De Chiara
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Benjamin P Barré
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Marie-Josèphe Giraud Panis
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| | - Eric Gilson
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
- Department of Genetics, CHU, 06107 Nice, France
| | - Gianni Liti
- Institute for Research on Cancer and Aging (IRCAN), Université Côte d’Azur, 28 Avenue de Valombrose, 06107 Nice, France
| |
Collapse
|
4
|
Mirisola MG, Longo VD. Yeast Chronological Lifespan: Longevity Regulatory Genes and Mechanisms. Cells 2022; 11:cells11101714. [PMID: 35626750 PMCID: PMC9139625 DOI: 10.3390/cells11101714] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 02/04/2023] Open
Abstract
S. cerevisiae plays a pivotal role as a model system in understanding the biochemistry and molecular biology of mammals including humans. A considerable portion of our knowledge on the genes and pathways involved in cellular growth, resistance to toxic agents, and death has in fact been generated using this model organism. The yeast chronological lifespan (CLS) is a paradigm to study age-dependent damage and longevity. In combination with powerful genetic screening and high throughput technologies, the CLS has allowed the identification of longevity genes and pathways but has also introduced a unicellular “test tube” model system to identify and study macromolecular and cellular damage leading to diseases. In addition, it has played an important role in studying the nutrients and dietary regimens capable of affecting stress resistance and longevity and allowing the characterization of aging regulatory networks. The parallel description of the pro-aging roles of homologs of RAS, S6 kinase, adenylate cyclase, and Tor in yeast and in higher eukaryotes in S. cerevisiae chronological survival studies is valuable to understand human aging and disease. Here we review work on the S. cerevisiae chronological lifespan with a focus on the genes regulating age-dependent macromolecular damage and longevity extension.
Collapse
Affiliation(s)
- Mario G. Mirisola
- Department of Surgery, Oncology and Oral Sciences, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| | - Valter D. Longo
- Department of Biological Sciences, Longevity Institute, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
- IFOM, FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Correspondence: (M.G.M.); (V.D.L.)
| |
Collapse
|
5
|
Ohtsuka H, Shimasaki T, Aiba H. Response to leucine in Schizosaccharomyces pombe (fission yeast). FEMS Yeast Res 2022; 22:6553821. [PMID: 35325114 PMCID: PMC9041340 DOI: 10.1093/femsyr/foac020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Leucine (Leu) is a branched-chain, essential amino acid in animals, including humans. Fungi, including the fission yeast Schizosaccharomyces pombe, can biosynthesize Leu, but deletion of any of the genes in this biosynthesis leads to Leu auxotrophy. In this yeast, although a mutation in the Leu biosynthetic pathway, leu1-32, is clearly inconvenient for this species, it has increased its usefulness as a model organism in laboratories worldwide. Leu auxotrophy produces intracellular responses and phenotypes different from those of the prototrophic strains, depending on the growing environment, which necessitates a certain degree of caution in the analysis and interpretation of the experimental results. Under amino acid starvation, the amino acid-auxotrophic yeast induces cellular responses, which are conserved in higher organisms without the ability of synthesizing amino acids. This mini-review focuses on the roles of Leu in S. pombe and discusses biosynthetic pathways, contribution to experimental convenience using a plasmid specific for Leu auxotrophic yeast, signaling pathways, and phenotypes caused by Leu starvation. An accurate understanding of the intracellular responses brought about by Leu auxotrophy can contribute to research in various fields using this model organism and to the understanding of intracellular responses in higher organisms that cannot synthesize Leu.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
6
|
He S, Li J, Wang Z, Wang L, Liu L, Sun X, Shohaib SA, Koenig HG. Early-life exposure to famine and late-life depression: Does leukocyte telomere length mediate the association? J Affect Disord 2020; 274:223-228. [PMID: 32469808 DOI: 10.1016/j.jad.2020.05.082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/06/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND A positive association between early-life famine exposure and depression has been demonstrated. However, the mechanisms by which famine exposure in early life leads to late-life depression remains unclear. The present study examines the impact of leukocyte telomere length (LTL) and/or religiosity on the relationship between early-life famine exposure and late-life depression in a Chinese minority sample. METHODS A cross-sectional study of community-dwelling adults aged 55 or older was conducted in the Ningxia province of western China from 2013 to 2016. Multivariate ordinal logistic regression was used to examine the association between famine exposure and depression status, and a series mediation model was constructed to identify the mediation role of LTL and religiosity. RESULTS Compared with famine exposure during adulthood, fetal famine exposure was associated with a higher risk of late-life depression (adjusted odds ratio of 3.17, 95% CI: 1.36-7.38). A cumulative effect of fetal famine exposure on the risk of late-life depression was observed. Participants born in 1961 (the third year of the famine) had the strongest association with late-life depression. LTL played a mediating role in the association between famine exposure and depression which accounted for 21% of the total effect. LIMITATIONS The cross-sectional design prevents causal inferences regarding the relationships between famine and depression. CONCLUSIONS Fetal famine exposure was associated with an increased risk of late-life depression in a Chinese minority community-dwelling population. Telomere shortening partially mediated this association.
Collapse
Affiliation(s)
- Shulan He
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Zhizhong Wang
- Department of Epidemiology and Statistics, School of Public Health of Zunyi Medical University, Zunyi 56300, China.
| | - Liqun Wang
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Lan Liu
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Xian Sun
- Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
| | - Saad Al Shohaib
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Harold G Koenig
- Department of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Psychiatry, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
7
|
Abstract
Stress exposure can leave long-term footprints within the organism, like in telomeres (TLs), protective chromosome caps that shorten during cell replication and following exposure to stressors. Short TLs are considered to indicate lower fitness prospects, but why TLs shorten under stressful conditions is not understood. Glucocorticoid hormones (GCs) increase upon stress exposure and are thought to promote TL shortening by increasing oxidative damage. However, evidence that GCs are pro-oxidants and oxidative stress is causally linked to TL attrition is mixed . Based on new biochemical findings, we propose the metabolic telomere attrition hypothesis: during times of substantially increased energy demands, TLs are shortened as part of the transition into an organismal 'emergency state', which prioritizes immediate survival functions over processes with longer-term benefits. TL attrition during energy shortages could serve multiple roles including amplified signalling of cellular energy debt to re-direct critical resources to immediately important processes. This new view of TL shortening as a strategy to resolve major energetic trade-offs can improve our understanding of TL dynamics. We suggest that TLs are master regulators of cell homeostasis and propose future research avenues to understand the interactions between energy homeostasis, metabolic regulators and TL.
Collapse
Affiliation(s)
- Stefania Casagrande
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany
| | - Michaela Hau
- 1 Research Group Evolutionary Physiology, Max Planck Institute for Ornithology , 82319 Seewiesen , Germany.,2 Department of Biology, University of Konstanz , D-78457 Konstanz , Germany
| |
Collapse
|
8
|
Veech RL, Bradshaw PC, Clarke K, Curtis W, Pawlosky R, King MT. Ketone bodies mimic the life span extending properties of caloric restriction. IUBMB Life 2017; 69:305-314. [PMID: 28371201 DOI: 10.1002/iub.1627] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 03/10/2017] [Indexed: 12/27/2022]
Abstract
The extension of life span by caloric restriction has been studied across species from yeast and Caenorhabditis elegans to primates. No generally accepted theory has been proposed to explain these observations. Here, we propose that the life span extension produced by caloric restriction can be duplicated by the metabolic changes induced by ketosis. From nematodes to mice, extension of life span results from decreased signaling through the insulin/insulin-like growth factor receptor signaling (IIS) pathway. Decreased IIS diminishes phosphatidylinositol (3,4,5) triphosphate (PIP3 ) production, leading to reduced PI3K and AKT kinase activity and decreased forkhead box O transcription factor (FOXO) phosphorylation, allowing FOXO proteins to remain in the nucleus. In the nucleus, FOXO proteins increase the transcription of genes encoding antioxidant enzymes, including superoxide dismutase 2, catalase, glutathione peroxidase, and hundreds of other genes. An effective method for combating free radical damage occurs through the metabolism of ketone bodies, ketosis being the characteristic physiological change brought about by caloric restriction from fruit flies to primates. A dietary ketone ester also decreases circulating glucose and insulin leading to decreased IIS. The ketone body, d-β-hydroxybutyrate (d-βHB), is a natural inhibitor of class I and IIa histone deacetylases that repress transcription of the FOXO3a gene. Therefore, ketosis results in transcription of the enzymes of the antioxidant pathways. In addition, the metabolism of ketone bodies results in a more negative redox potential of the NADP antioxidant system, which is a terminal destructor of oxygen free radicals. Addition of d-βHB to cultures of C. elegans extends life span. We hypothesize that increasing the levels of ketone bodies will also extend the life span of humans and that calorie restriction extends life span at least in part through increasing the levels of ketone bodies. An exogenous ketone ester provides a new tool for mimicking the effects of caloric restriction that can be used in future research. The ability to power mitochondria in aged individuals that have limited ability to oxidize glucose metabolites due to pyruvate dehydrogenase inhibition suggests new lines of research for preventative measures and treatments for aging and aging-related disorders. © 2017 The Authors IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 69(5):305-314, 2017.
Collapse
Affiliation(s)
| | - Patrick C Bradshaw
- East Tennessee State University College of Medicine, Johnson City, TN, USA
| | | | | | | | - M Todd King
- Lab of Metabolic Control, NIH/NIAAA, Rockville, MD, USA
| |
Collapse
|
9
|
Türkel S, Sarica S. Effects of stress activated protein kinases on the expression of EST3 gene that encodes telomerase subunit in Saccharomyces cerevisiae. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Kobyliansky E, Torchinsky D, Kalichman L, Karasik D. Leukocyte telomere length pattern in a Chuvash population that experienced mass famine in 1922-1923: a retrospective cohort study. Am J Clin Nutr 2016; 104:1410-1415. [PMID: 27733399 DOI: 10.3945/ajcn.116.138040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 09/01/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND To our knowledge, there are no experimental studies that have addressed the effects of starvation on the maintenance of telomere length. Two epidemiologic studies that have addressed this topic gave controversial results. OBJECTIVE We characterized leukocyte telomere length (LTL) in a Chuvash population that was comprised of survivors of the mass famine of 1922-1923 and in these survivors' descendants. DESIGN The tested cohort consisted of native Chuvash men (n = 687) and women (n = 647) who were born between 1909 and 1980 and who resided in small villages in the Chuvash Republic of the Russian Federation. Data were gathered during 3 expeditions undertaken in 1994, 1999, and 2002. With the use of this method of gathering the study cohort, we were able to treat age and birth year as independent variables (i.e., after adjustment for age, we were able to analyze how LTL correlates with a birth year in the interval between 1909 and 1980). The DNA of peripheral blood leukocytes was used to measure the telomere length with a quantitative polymerase chain reaction technique. RESULTS The main observations were as follows: 1) there were shorter leukocyte telomeres in men born after 1923 (i.e., after the mass famine) than in men born before 1922 (i.e., before the mass famine); 2) there was a stable inheritance of shorter telomeres by men of ensuing generations; and 3) there was an absence of a correlation between LTL and birth year in women. CONCLUSIONS Our study does not provide direct evidence for leukocyte telomere shortening in famine survivors. However, the comparative analysis of LTL in the survivors and their descendants suggests that such an effect did take place. The study also implies that mass famine may be associated with telomere shortening in male descendants of famine survivors. This observation is in agreement with the "thrifty telomere hypothesis" predicting that longer telomeres are disadvantageous in nutritionally marginal environments.
Collapse
Affiliation(s)
- Eugene Kobyliansky
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine and
| | - Dmitry Torchinsky
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel
| | - Leonid Kalichman
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; and
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar Ilan University, Safed, Israel
| |
Collapse
|
11
|
fhl1 gene of the fission yeast regulates transcription of meiotic genes and nitrogen starvation response, downstream of the TORC1 pathway. Curr Genet 2016; 63:91-101. [PMID: 27165118 DOI: 10.1007/s00294-016-0607-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/19/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
Abstract
Environmental changes, such as nutrient limitation or starvation induce different signal transducing pathways, which require coordinated cooperation of several genes. Our previous data revealed that the fhl1 fork-head type transcription factor of the fission yeast could be involved in sporulation, which was typically induced under poor conditions. Since the exact role of Fhl1 in this process was not known, we wanted to identify its downstream targets and to investigate its possible cooperation with another known regulator of sporulation. Gene expression and Northern blot analysis of the fhl1∆ mutant strain revealed the target genes involved in mating and sporulation. Our results also showed that Fhl1 could regulate nutrient sensing, the transporter and permease genes. Since the majority of these genes belonged to the nitrogen starvation response, the possible cooperation of fhl1 and tor2 was also investigated. Comparison of their microarray data and the expression of fhl1 + from a strong promoter in the tor2-ts mutant cells suggested that one part of the target genes are commonly regulated by Fhl1 and Tor2. Since the expression of fhl1 + from a strong promoter could rescue rapamycin and temperature sensitivity and suppressed the hyper-sporulation defect of the tor2-ts mutant cells, we believe that Fhl1 acts in TOR signaling, downstream of Tor2. Thus, this work shed light on certain novel details of the regulation of the sexual processes and a new member of the TOR pathway, but further experiments are needed to confirm the involvement of Fhl1 in nutrient sensing.
Collapse
|
12
|
TORC1 Regulates Developmental Responses to Nitrogen Stress via Regulation of the GATA Transcription Factor Gaf1. mBio 2015; 6:e00959. [PMID: 26152587 PMCID: PMC4488950 DOI: 10.1128/mbio.00959-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The TOR (target of rapamycin [sirolimus]) is a universally conserved kinase that couples nutrient availability to cell growth. TOR complex 1 (TORC1) in Schizosaccharomyces pombe positively regulates growth in response to nitrogen availability while suppressing cellular responses to nitrogen stress. Here we report the identification of the GATA transcription factor Gaf1 as a positive regulator of the nitrogen stress-induced gene isp7+, via three canonical GATA motifs. We show that under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Gaf1 was recently shown to negatively regulate the transcription induction of ste11+, a major regulator of sexual development. Our findings support a model of a two-faceted role of Gaf1 during nitrogen stress. Gaf1 positively regulates genes that are induced early in the response to nitrogen stress, while inhibiting later responses, such as sexual development. Taking these results together, we identify Gaf1 as a novel target for TORC1 signaling and a step-like mechanism to modulate the nitrogen stress response. TOR complex 1 (TORC1) is an evolutionary conserved protein complex that positively regulates growth and proliferation, while inhibiting starvation responses. In fission yeast, the activity of TORC1 is downregulated in response to nitrogen starvation, and cells reprogram their transcriptional profile and prepare for sexual development. We identify Gaf1, a GATA-like transcription factor that regulates transcription and sexual development in response to starvation, as a downstream target for TORC1 signaling. Under nitrogen-rich conditions, TORC1 positively regulates the phosphorylation and cytoplasmic retention of Gaf1 via the PP2A-like phosphatase Ppe1. Under nitrogen stress conditions when TORC1 is inactivated, Gaf1 becomes dephosphorylated and enters the nucleus. Budding yeast TORC1 regulates GATA transcription factors via the phosphatase Sit4, a structural homologue of Ppe1. Thus, the TORC1-GATA transcription module appears to be conserved in evolution and may also be found in higher eukaryotes.
Collapse
|
13
|
Yucel EB, Eraslan S, Ulgen KO. The impact of medium acidity on the chronological life span ofSaccharomyces cerevisiae - lipids, signaling cascades, mitochondrial and vacuolar functions. FEBS J 2014; 281:1281-303. [DOI: 10.1111/febs.12705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/20/2013] [Accepted: 12/23/2013] [Indexed: 12/18/2022]
Affiliation(s)
- Esra B. Yucel
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering; Boğaziçi University; Istanbul Turkey
| |
Collapse
|
14
|
D’Alessandro A, Zolla L. Proteomics and metabolomics in cancer drug development. Expert Rev Proteomics 2014; 10:473-88. [DOI: 10.1586/14789450.2013.840440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|