1
|
Ziegler DV, Parashar K, Leal-Esteban L, López-Alcalá J, Castro W, Zanou N, Martinez-Carreres L, Huber K, Berney XP, Malagón MM, Roger C, Berger MA, Gouriou Y, Paone G, Gallart-Ayala H, Sflomos G, Ronchi C, Ivanisevic J, Brisken C, Rieusset J, Irving M, Fajas L. CDK4 inactivation inhibits apoptosis via mitochondria-ER contact remodeling in triple-negative breast cancer. Nat Commun 2025; 16:541. [PMID: 39788939 PMCID: PMC11718081 DOI: 10.1038/s41467-024-55605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The energetic demands of proliferating cells during tumorigenesis require close coordination between the cell cycle and metabolism. While CDK4 is known for its role in cell proliferation, its metabolic function in cancer, particularly in triple-negative breast cancer (TNBC), remains unclear. Our study, using genetic and pharmacological approaches, reveals that CDK4 inactivation only modestly impacts TNBC cell proliferation and tumor formation. Notably, CDK4 depletion or long-term CDK4/6 inhibition confers resistance to apoptosis in TNBC cells. Mechanistically, CDK4 enhances mitochondria-endoplasmic reticulum contact (MERCs) formation, promoting mitochondrial fission and ER-mitochondrial calcium signaling, which are crucial for TNBC metabolic flexibility. Phosphoproteomic analysis identified CDK4's role in regulating PKA activity at MERCs. In this work, we highlight CDK4's role in mitochondrial apoptosis inhibition and suggest that targeting MERCs-associated metabolic shifts could enhance TNBC therapy.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucia Leal-Esteban
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Jaime López-Alcalá
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
| | - Wilson Castro
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Laia Martinez-Carreres
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Xavier Pascal Berney
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - María M Malagón
- Department of Cell Biology, Physiology and Immunology, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/University of Córdoba/Reina Sofía University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Catherine Roger
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Marie-Agnès Berger
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Yves Gouriou
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Giulia Paone
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - George Sflomos
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carlos Ronchi
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, University of Lausanne, Faculty of Biology and Medicine, Rue du Bugnon 19, 1005, Lausanne, Switzerland
| | - Cathrin Brisken
- ISREC-Swiss Institute for Experimental Cancer Research, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- The Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, UK
| | - Jennifer Rieusset
- Laboratoire CarMeN, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310, Pierre-Bénite, France
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Faculty of Biology and Medicine, Lausanne, Switzerland.
- Inserm, Occitanie Méditerranée, Montpellier, France.
| |
Collapse
|
2
|
Yang L, Meng B, Gong X, Jiang Y, Shentu X, Xue Z. Investigation of the synergistic effect mechanism underlying sequential use of palbociclib and cisplatin through integral proteomic and glycoproteomic analysis. Anticancer Drugs 2024; 35:806-816. [PMID: 39011652 PMCID: PMC11392100 DOI: 10.1097/cad.0000000000001633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Chemoresistance largely hampers the clinical use of chemodrugs for cancer patients, combination or sequential drug treatment regimens have been designed to minimize chemotoxicity and resensitize chemoresistance. In this work, the cytotoxic effect of cisplatin was found to be enhanced by palbociclib pretreatment in HeLa cells. With the integration of liquid chromatography-mass spectrometry-based proteomic and N-glycoproteomic workflow, we found that palbociclib alone mainly enhanced the N-glycosylation alterations in HeLa cells, while cisplatin majorly increased the different expression proteins related to apoptosis pathways. As a result, the sequential use of two drugs induced a higher expression level of apoptosis proteins BAX and BAK. Those altered N-glycoproteins induced by palbociclib were implicated in pathways that were closely associated with cell membrane modification and drug sensitivity. Specifically, the top four frequently glycosylated proteins FOLR1, L1CAM, CD63, and LAMP1 were all associated with drug resistance or drug sensitivity. It is suspected that palbociclib-induced N-glycosylation on the membrane protein allowed the HeLa cell to become more vulnerable to cisplatin treatment. Our study provides new insights into the mechanisms underlying the sequential use of target drugs and chemotherapy drugs, meanwhile suggesting a high-efficiency approach that involves proteomic and N-glycoproteomic to facilitate drug discovery.
Collapse
Affiliation(s)
- Lulu Yang
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Bo Meng
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaoyun Gong
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - You Jiang
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xuping Shentu
- Faculty of Life Sciences, China Jiliang University, Hangzhou
| | - Zhichao Xue
- Technology Innovation Center of Mass Spectrometry for State Market Regulation, Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| |
Collapse
|
3
|
Lin Y, Li L, Huang H, Wen X, Zhang Y, Zhang R, Huang W. Vitexin Inhibits TNBC Progression and Metastasis by Modulating Macrophage Polarization Through EGFR Signaling. J Immunother 2024; 47:303-312. [PMID: 38847148 DOI: 10.1097/cji.0000000000000519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/07/2024] [Indexed: 09/05/2024]
Abstract
Triple-negative breast cancer (TNBC) lacks sensitivity to endocrine and targeted therapies, exhibiting high recurrence and poor prognosis postchemotherapy. Tumor-associated macrophages (TAMs) play a crucial role in cancer progression. Vitexin, a compound with diverse pharmacological effects including anti-cancer activity, remains unexplored in its impact on TAMs during TNBC development. This study aimed to investigate vitexin's effect on TNBC, its regulation of macrophage polarization (M1 vs. M2), and the underlying EGFR/PI3K/AKT/mTOR pathway. Our results demonstrated that vitexin suppressed the proliferation and invasion of TNBC cells (MDA-MB-231 and BT549) while inducing macrophage mediators that further inhibited cancer cell migration. Vitexin also promoted M1 polarization and suppressed M2 polarization, affecting EGFR phosphorylation and downstream signaling. In vivo, vitexin inhibited tumor growth, favoring M1 polarization and suppressing M2 polarization, with synergistic effects when combined with doxorubicin (Dox). These findings offer novel insights into vitexin's potential in TNBC treatment.
Collapse
Affiliation(s)
- Yufeng Lin
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Lin Li
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Huakang Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Xiaohong Wen
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Yongcheng Zhang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Rongxin Zhang
- Guangdong Provincial Key Laboratory for Biotechnology Drug Candidates, Institute of Basic Medical Sciences and Department of Biotechnology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| | - Wenbin Huang
- Department of Breast Care Surgery, The First Affiliated Hospital, Guangdong Pharmaceutical University, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
4
|
Perez AM, Haberland NI, Miteva M, Wikramanayake TC. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr Oncol 2024; 31:5709-5721. [PMID: 39330051 PMCID: PMC11431623 DOI: 10.3390/curroncol31090423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients' quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic.
Collapse
Affiliation(s)
- Aleymi M. Perez
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Nicole I. Haberland
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
| | - Tongyu C. Wikramanayake
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL 33136, USA; (A.M.P.); (N.I.H.); (M.M.)
- Cancer Control Program, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
5
|
Macy ME, Mody R, Reid JM, Piao J, Saguilig L, Alonzo TA, Berg SL, Fox E, Weigel BJ, Hawkins DS, Mooney MM, Williams PM, Patton DR, Coffey BD, Roy-Chowdhuri S, Takebe N, Tricoli JV, Janeway KA, Seibel NL, Parsons DW. Palbociclib in Solid Tumor Patients With Genomic Alterations in the cyclinD-cdk4/6-INK4a-Rb Pathway: Results From National Cancer Institute-Children's Oncology Group Pediatric Molecular Analysis for Therapy Choice Trial Arm I (APEC1621I). JCO Precis Oncol 2024; 8:e2400418. [PMID: 39298716 PMCID: PMC11488755 DOI: 10.1200/po-24-00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024] Open
Abstract
PURPOSE The National Cancer Institute-Children's Oncology Group Pediatric Molecular Analysis for Therapy Choice trial assigned patients age 1-21 years with relapsed or refractory solid tumors, lymphomas, and histiocytic disorders to phase II treatment arms of molecularly targeted therapies on the basis of genetic alterations detected in their tumor. Patients with tumors that harbored prespecified genomic alterations in the cyclinD-CDK4/6-INK4a-Rb pathway with intact Rb expression were assigned and treated with the cdk4/6 inhibitor palbociclib. METHODS Patients received palbociclib orally once daily for 21 days of 28-day cycles until disease progression, intolerable toxicity, or up to 2 years. The primary end point was objective response rate; secondary end points included safety/tolerability and progression-free survival. RESULTS Twenty-three patients (median age, 15 years; range, 8-21) were enrolled; 20 received protocol therapy and were evaluable for toxicity and response. Of the evaluable patients, the most common diagnoses were osteosarcoma (n = 9) and rhabdomyosarcoma (n = 6). A single actionable gene amplification was found in 19 tumors (CDK4, n = 11, CDK6, n = 2, CCND3, n = 6), with one tumor harboring two amplifications (CDK4 and CCND2). Hematologic toxicities were the most common treatment-related events. No objective responses were seen. Two patients with tumors harboring CDK4 amplifications (neuroblastoma and sarcoma) had best response of stable disease for six and three cycles. Six-month progression was 10% (95% CI, 1.7 to 27.2). CONCLUSION The CDK4/6 inhibitor palbociclib at 75 mg/m2 orally daily was tolerable in this heavily pretreated cohort. No objective responses were observed in this histology-agnostic biomarker-selected population with treatment-refractory solid tumors, demonstrating that pathway alteration alone is insufficient in pediatric cancers to generate a response to palbociclib monotherapy.
Collapse
Affiliation(s)
- Margaret E. Macy
- Department of Pediatrics, University of Colorado and Children’s Hospital Colorado, Aurora CO
| | - Rajen Mody
- CS Mott Children’s Hospital and University of Michigan, Ann Arbor MI
| | | | - Jin Piao
- University of Southern California, Los Angeles CA
| | | | | | - Stacey L. Berg
- Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| | | | | | | | - Margaret M. Mooney
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - David R. Patton
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Brent D. Coffey
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James V. Tricoli
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD
| | | | - Nita L. Seibel
- Division of Cancer Treatment and Diagnosis, Cancer Therapy Evaluation Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - D. Williams Parsons
- Texas Children’s Cancer and Hematology Center, Baylor College of Medicine, Houston, TX
| |
Collapse
|
6
|
Ziegler DV, Parashar K, Fajas L. Beyond cell cycle regulation: The pleiotropic function of CDK4 in cancer. Semin Cancer Biol 2024; 98:51-63. [PMID: 38135020 DOI: 10.1016/j.semcancer.2023.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/02/2023] [Accepted: 12/17/2023] [Indexed: 12/24/2023]
Abstract
CDK4, along with its regulatory subunit, cyclin D, drives the transition from G1 to S phase, during which DNA replication and metabolic activation occur. In this canonical pathway, CDK4 is essentially a transcriptional regulator that acts through phosphorylation of retinoblastoma protein (RB) and subsequent activation of the transcription factor E2F, ultimately triggering the expression of genes involved in DNA synthesis and cell cycle progression to S phase. In this review, we focus on the newly reported functions of CDK4, which go beyond direct regulation of the cell cycle. In particular, we describe the extranuclear roles of CDK4, including its roles in the regulation of metabolism, cell fate, cell dynamics and the tumor microenvironment. We describe direct phosphorylation targets of CDK4 and decipher how CDK4 influences these physiological processes in the context of cancer.
Collapse
Affiliation(s)
- Dorian V Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Kanishka Parashar
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland; INSERM, Montpellier, France.
| |
Collapse
|
7
|
Chen G, Sun L, Gu X, Ai L, Yang J, Zhang Z, Hou P, Wang Y, Ou X, Jiang X, Qiao X, Ma Q, Niu N, Xue J, Zhang H, Yang Y, Liu C. FSIP1 enhances the therapeutic sensitivity to CDK4/6 inhibitors in triple-negative breast cancer patients by activating the Nanog pathway. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2805-2817. [PMID: 37460715 DOI: 10.1007/s11427-023-2343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/06/2023] [Indexed: 12/18/2023]
Abstract
CDK4/6 inhibitors are routinely recommended agents for the treatment of advanced HR+HER2- breast cancer. However, their therapeutic effectiveness in triple-negative breast cancer (TNBC) remains controversial. Here, we observed that the expression level of fibrous sheath interacting protein 1 (FSIP1) could predict the treatment response of TNBC to CDK4/6 inhibitors. High FSIP1 expression level was related to a poor prognosis in TNBC, which was associated with the ability of FSIP1 to promote tumor cell proliferation. FSIP1 downregulation led to slowed tumor growth and reduced lung metastasis in TNBC. FSIP1 knockout caused cell cycle arrest at the G0/G1 phase and reduced treatment sensitivity to CDK4/6 inhibitors by inactivating the Nanog/CCND1/CDK4/6 pathway. FSIP1 could form a complex with Nanog, protecting it from ubiquitination and degradation, which may facilitate the rapid cell cycle transition from G0/G1 to S phase and exhibit enhanced sensitivity to CDK4/6 inhibitors. Our findings suggest that TNBC patients with high FSIP1 expression levels may be suitable candidates for CDK4/6 inhibitor treatment.
Collapse
Affiliation(s)
- Guanglei Chen
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Lisha Sun
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xi Gu
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liping Ai
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jie Yang
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhan Zhang
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Pengjie Hou
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yining Wang
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xunyan Ou
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xiaofan Jiang
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xinbo Qiao
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Qingtian Ma
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Nan Niu
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Hao Zhang
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yongliang Yang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Caigang Liu
- Department of Oncology, Cancer Stem Cell and Translation Medicine Lab, Innovative Cancer Drug Research and Development Engineering Center of Liaoning Province, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
8
|
Klapp V, Bloy N, Jiménez-Cortegana C, Buqué A, Petroni G. Flow cytometry-assisted quantification of cell cycle arrest in cancer cells treated with CDK4/6 inhibitors. Methods Cell Biol 2023; 181:197-212. [PMID: 38302240 DOI: 10.1016/bs.mcb.2023.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 inhibitors (i.e., palbociclib, abemaciclib, and ribociclib) are well known for their capacity to mediate cytostatic effects by promoting cell cycle arrest in the G1 phase, thus inhibiting cancer cell proliferation. Cytostatic effects induced by CDK4/6 inhibitors can be transient or lead to a permanent state of cell cycle arrest, commonly defined as cellular senescence. Induction of senescence is often associated to metabolic modifications and to the acquisition of a senescence-associated secretory phenotype (SASP) by cancer cells, which in turn can promote or limit antitumor immunity (and thus the efficacy of CDK4/6 inhibitors) depending on SASP components. Thus, although accumulating evidence suggests that anti-cancer effects of CDK4/6 inhibitors also depend on the promotion of antitumor immune responses, assessing cell cycle arrest and progression in cells treated with palbociclib remains a key approach for investigating the efficacy of CDK4/6 inhibitors. Here, we describe a method to assess cell cycle distribution simultaneously with active DNA replication by flow cytometry in cultured hormone receptor-positive breast cancer MCF7 cells.
Collapse
Affiliation(s)
- Vanessa Klapp
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States; Tumor Stroma Interactions, Department of Cancer Research, Luxembourg, Institute of Health, Luxembourg, Luxembourg; Faculty of Science, Technology and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Norma Bloy
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | - Carlos Jiménez-Cortegana
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Medical College of Cornell University, New York, NY, United States.
| | - Giulia Petroni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
9
|
Alaouna M, Penny C, Hull R, Molefi T, Chauke-Malinga N, Khanyile R, Makgoka M, Bida M, Dlamini Z. Overcoming the Challenges of Phytochemicals in Triple Negative Breast Cancer Therapy: The Path Forward. PLANTS (BASEL, SWITZERLAND) 2023; 12:2350. [PMID: 37375975 DOI: 10.3390/plants12122350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/02/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Triple negative breast cancer (TNBC) is a very aggressive subtype of breast cancer that lacks estrogen, progesterone, and HER2 receptor expression. TNBC is thought to be produced by Wnt, Notch, TGF-beta, and VEGF pathway activation, which leads to cell invasion and metastasis. To address this, the use of phytochemicals as a therapeutic option for TNBC has been researched. Plants contain natural compounds known as phytochemicals. Curcumin, resveratrol, and EGCG are phytochemicals that have been found to inhibit the pathways that cause TNBC, but their limited bioavailability and lack of clinical evidence for their use as single therapies pose challenges to the use of these phytochemical therapies. More research is required to better understand the role of phytochemicals in TNBC therapy, or to advance the development of more effective delivery mechanisms for these phytochemicals to the site where they are required. This review will discuss the promise shown by phytochemicals as a treatment option for TNBC.
Collapse
Affiliation(s)
- Mohammed Alaouna
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Clement Penny
- Department of Internal Medicine, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Parktown 2193, South Africa
| | - Rodney Hull
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| | - Thulo Molefi
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Nkhensani Chauke-Malinga
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Plastic and Reconstructive Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa
| | - Richard Khanyile
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Medical Oncology, Steve Biko Academic Hospital and University of Pretoria, Pretoria 0001, South Africa
| | - Malose Makgoka
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Surgery, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Pretoria 0001, South Africa
| | - Meshack Bida
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
- Department of Anatomical Pathology, National Health Laboratory Service (NHLS), University of Pretoria, Pretoria 0001, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Pretoria 0001, South Africa
| |
Collapse
|
10
|
Gross SM, Mohammadi F, Sanchez-Aguila C, Zhan PJ, Liby TA, Dane MA, Meyer AS, Heiser LM. Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects. Nat Commun 2023; 14:3450. [PMID: 37301933 PMCID: PMC10257663 DOI: 10.1038/s41467-023-39122-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Identifying effective therapeutic treatment strategies is a major challenge to improving outcomes for patients with breast cancer. To gain a comprehensive understanding of how clinically relevant anti-cancer agents modulate cell cycle progression, here we use genetically engineered breast cancer cell lines to track drug-induced changes in cell number and cell cycle phase to reveal drug-specific cell cycle effects that vary across time. We use a linear chain trick (LCT) computational model, which faithfully captures drug-induced dynamic responses, correctly infers drug effects, and reproduces influences on specific cell cycle phases. We use the LCT model to predict the effects of unseen drug combinations and confirm these in independent validation experiments. Our integrated experimental and modeling approach opens avenues to assess drug responses, predict effective drug combinations, and identify optimal drug sequencing strategies.
Collapse
Affiliation(s)
- Sean M Gross
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Farnaz Mohammadi
- Department of Bioengineering, University of California, Los Angeles; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Crystal Sanchez-Aguila
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paulina J Zhan
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Tiera A Liby
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Mark A Dane
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles; Jonsson Comprehensive Cancer Center, University of California at Los Angeles, Los Angeles, CA, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
11
|
Bose P, Agrahari AK, Singh R, Singh M, Kumar S, Singh RK, Tiwari VK. Click inspired synthesis of piperazine-triazolyl sugar-conjugates as potent anti-Hela activity. Carbohydr Res 2023; 529:108846. [PMID: 37245419 DOI: 10.1016/j.carres.2023.108846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/06/2023] [Accepted: 05/16/2023] [Indexed: 05/30/2023]
Abstract
To imbibe the aim of synthesizing water-soluble and biocompatible motif, a click-inspired piperazine glycoconjugate has been devised up. In this report, we present a focused approach to design and synthesis of versatile sugar-appended triazoles through 'Click Chemistry' along with their pharmacological studies on cyclin-dependent kinases (CDKs) and cell cytotoxicity on cancer cells using in silico and in vitro approaches, respectively. The study has inclusively recognized the galactose- and mannose-derived piperazine conjugates as the promising motifs. The findings suggested that the galactosyl bis-triazolyl piperazine analogue 10b is the most CDK interactive derivative and also possess significant anticancer activity.
Collapse
Affiliation(s)
- Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India; Department of Chemistry, University of California, Davis, CA, 95616, USA
| | - Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Mala Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sunil Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
12
|
Yamakawa K, Koyanagi-Aoi M, Machinaga A, Kakiuchi N, Hirano T, Kodama Y, Aoi T. Blockage of retinoic acid signaling via RARγ suppressed the proliferation of pancreatic cancer cells by arresting the cell cycle progression of the G1-S phase. Cancer Cell Int 2023; 23:94. [PMID: 37198667 DOI: 10.1186/s12935-023-02928-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/18/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Our study and several studies have reported that in some cancers, including pancreatic ductal adenocarcinoma (PDAC), the expression of squamous lineage markers, such as esophagus-tissue-specific genes, correlated with a poor prognosis. However, the mechanism by which the acquisition of squamous lineage phenotypes leads to a poor prognosis remains unclear. We previously reported that retinoic acid signaling via retinoic acid receptor γ (RARγ signaling) determines the differentiation lineage into the esophageal squamous epithelium. These findings hypothesized that the activation of RARγ signaling contributed to acquiring squamous lineage phenotypes and malignant behavior in PDAC. METHODS This study utilized public databases and immunostaining of surgical specimens to examine RARγ expression in PDAC. We evaluated the function of RARγ signaling by inhibitors and siRNA knockdown using a PDAC cell line and patient-derived PDAC organoids. The mechanism of the tumor-suppressive effects by blocking RARγ signaling was examined by a cell cycle analysis, apoptosis assays, RNA sequencing and Western blotting. RESULTS RARγ expression in pancreatic intraepithelial neoplasia (PanIN) and PDAC was higher than that in the normal pancreatic duct. Its expression correlated with a poor patient prognosis in PDAC. In PDAC cell lines, blockade of RARγ signaling suppressed cell proliferation by inducing cell cycle arrest in the G1 phase without causing apoptosis. We demonstrated that blocking RARγ signaling upregulated p21 and p27 and downregulated many cell cycle genes, including cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6. Furthermore, using patient-derived PDAC organoids, we confirmed the tumor-suppressive effect of RARγ inhibition and indicated the synergistic effects of RARγ inhibition with gemcitabine. CONCLUSIONS This study clarified the function of RARγ signaling in PDAC progression and demonstrated the tumor-suppressive effect of selective blockade of RARγ signaling against PDAC. These results suggest that RARγ signaling might be a new therapeutic target for PDAC.
Collapse
Affiliation(s)
- Kohei Yamakawa
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Michiyo Koyanagi-Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan
| | - Akihito Machinaga
- Oncology Tsukuba Research Department, Discovery, Medicine Creation, DHBL, Eisai Co., Ltd, Tsukuba, Ibaraki, Japan
| | - Nobuyuki Kakiuchi
- Department of Pathology and Tumour Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Tomonori Hirano
- Department of Pathology and Tumour Biology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Yuzo Kodama
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takashi Aoi
- Division of Stem Cell Medicine, Graduate School of Medicine, Kobe University, 7-5-1 Kusunoki-Cho, Chuo-Ku, Kobe, Hyogo, 650-0017, Japan.
- Division of Advanced Medical Science, Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan.
- Center for Human Resource Development for Regenerative Medicine, Kobe University Hospital, Kobe, Hyogo, Japan.
| |
Collapse
|
13
|
Mortoglou M, Miralles F, Mould RR, Sengupta D, Uysal-Onganer P. Inhibiting CDK4/6 in pancreatic ductal adenocarcinoma via microRNA-21. Eur J Cell Biol 2023; 102:151318. [PMID: 37105116 DOI: 10.1016/j.ejcb.2023.151318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 04/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive malignancies, with a 5-year survival rate of 5-10 %. The high mortality rate is due to the asymptomatic progression of clinical features in metastatic stages of the disease, which renders standard therapeutic options futile. PDAC is characterised by alterations in several genes that drive carcinogenesis and limit therapeutic response. The two most common genetic aberrations in PDAC are the mutational activation of KRAS and loss of the tumour suppressor CDK inhibitor 2A (CDKN2A), which culminate the activation of the cyclin-dependent kinase 4 and 6 (CDK4/6), that promote G1 cell cycle progression. Therapeutic strategies focusing on the CDK4/6 inhibitors such as palbociclib (PD-0332991) may potentially improve outcomes in this malignancy. MicroRNAs (miRs/miRNAs) are small endogenous non-coding RNA molecules associated with cellular proliferation, invasion, apoptosis, and cell cycle. Primarily, miR-21 promotes cell proliferation and a higher proportion of PDAC cells in the S phase, while knockdown of miR-21 has been linked to cell cycle arrest at the G2/M phase and inhibition of cell proliferation. In this study, using a CRISPR/Cas9 loss-of-function screen, we individually silenced the expression of miR-21 in two PDAC cell lines and in combination with PD-0332991 treatment, we examined the synergetic mechanisms of CDK4/6 inhibitors and miR-21 knockouts (KOs) on cell survival and death. This combination reduced cell proliferation, cell viability, increased apoptosis and G1 arrest in vitro. We further analysed the mitochondrial respiration and glycolysis of PDAC cells; then assessed the protein content of these cells and revealed numerous Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with PD-0332991 treatment and miR-21 knocking out. Our results demonstrate that combined targeting of CDK4/6 and silencing of miR-21 represents a novel therapeutic strategy in PDAC.
Collapse
Affiliation(s)
- Maria Mortoglou
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Francesc Miralles
- Centre of Biomedical Education/Molecular and Clinical Sciences, Cell Biology Research Centre, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK
| | - Rhys Richard Mould
- Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Dipankar Sengupta
- Health Data Sciences Research Group, Research Centre for Optimal Health, School of Life Sciences, University of Westminster, W1W 6UW London, UK
| | - Pinar Uysal-Onganer
- Cancer Mechanisms and Biomarkers Research Group, School of Life Sciences, University of Westminster, W1W 6UW London, UK.
| |
Collapse
|
14
|
Huang Z, Hu H, Xian T, Xu Z, Tang D, Wang B, Zhang Y. Carrier-free nanomedicines self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer. RSC Adv 2023; 13:1617-1626. [PMID: 36688062 PMCID: PMC9827281 DOI: 10.1039/d2ra05932k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/30/2022] [Indexed: 01/10/2023] Open
Abstract
Palbociclib is the world's first CDK4/6 kinase inhibitor to be marketed. However, it is not effective in the treatment of triple negative breast cancer (TNBC) due to the loss of retinoblastoma protein expression. Thus, combinatorial chemotherapy is indispensable for TNBC treatment. Herein, a carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 for enhanced combined chemo-photodynamic therapy of breast cancer is reported. The dimeric prodrug (Palb-TK-Palb) was synthesized by conjugating two palbociclib molecules to the connecting skeleton containing a ROS-responsive cleavable thioketal bond. The Palb-TK-Palb/Ce6 NP co-delivery nanoplatform was prepared through the self-assembly of Palb-TK-Palb, Ce6 and DSPE-PEG2000. This novel carrier-free formulation as an efficient therapeutic agent showed efficient therapeutic agent loading capacity, high cellular uptake and huge therapeutic performance against breast cancer cells. The results of in vitro antitumor activity and cell apoptosis demonstrated that Palb-TK-Palb/Ce6 NPs presented a better inhibitory effect on the growth of cancer cells due to the palbociclib and Ce6 co-delivery nanomedicine-mediated synergistic chemo-photodynamic therapy. The IC50 values of Palb-TK-Palb/Ce6 NPs in MDA-MB-231 cells were around 1-2 μM and 2 μM and the Palb-TK-Palb/Ce6 NPs showed an increase in apoptosis up to 91.9%. In general, the carrier-free nanomedicine self-assembled from palbociclib dimers and Ce6 provides options for combinatorial chemo-photodynamic therapy.
Collapse
Affiliation(s)
- Zheng Huang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Huaisong Hu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Tong Xian
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Zhigang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Dianyong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China
| | - Bochu Wang
- Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| | - Yimei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, College of Pharmacy & International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and SciencesChongqing 402160China,Key Laboratory of Bio-theological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing UniversityChongqing400045China
| |
Collapse
|
15
|
Papadimitriou MC, Pazaiti A, Iliakopoulos K, Markouli M, Michalaki V, Papadimitriou CA. Resistance to CDK4/6 inhibition: Mechanisms and strategies to overcome a therapeutic problem in the treatment of hormone receptor-positive metastatic breast cancer. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119346. [PMID: 36030016 DOI: 10.1016/j.bbamcr.2022.119346] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/09/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Selective CDK4/6 inhibitors, such as palbociclib, ribociclib, and abemaciclib, have been approved in combination with hormone therapy for the treatment of patients with HR+, HER2-negative advanced or metastatic breast cancer (mBC). Despite their promising activity, approximately 10 % of patients have de novo resistance, while the rest of them will develop acquired resistance after 24-28 months when used as first-line therapy and after a shorter period when used as second-line therapy. Various mechanisms of resistance to CDK4/6 inhibitors have been described, including cell cycle-related mechanisms, such as RB loss, p16 amplification, CDK6 or CDK4 amplification, and cyclin E-CDK2 amplification. Other bypass mechanisms involve the activation of FGFR or PI3K/AKT/mTOR pathways. Identifying the different mechanisms by which resistance to CDK4/6 inhibitors occurs may help to design new treatment strategies to improve patient outcomes. This review presents the currently available knowledge on the mechanisms of resistance to CDK4/6 inhibitors, explores possible treatment strategies that could overcome this therapeutic problem, and summarizes relevant recent clinical trials.
Collapse
Affiliation(s)
- Marios C Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Anastasia Pazaiti
- Breast Clinic of Oncologic and Reconstructive Surgery, Metropolitan General Hospital, Leoforos Mesogeion 264, 155 62 Cholargos, Greece.
| | - Konstantinos Iliakopoulos
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Mariam Markouli
- Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Vasiliki Michalaki
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece
| | - Christos A Papadimitriou
- Oncology Unit, Second Department of Surgery, Aretaieio University Hospital, National and Kapodistrian University of Athens, Vasilissis Sofias 76, 115 28 Athens, Greece.
| |
Collapse
|
16
|
Terenziani R, Galetti M, La Monica S, Fumarola C, Zoppi S, Alfieri R, Digiacomo G, Cavazzoni A, Cavallo D, Corradi M, Tiseo M, Petronini PG, Bonelli M. CDK4/6 Inhibition Enhances the Efficacy of Standard Chemotherapy Treatment in Malignant Pleural Mesothelioma Cells. Cancers (Basel) 2022; 14:cancers14235925. [PMID: 36497412 PMCID: PMC9739278 DOI: 10.3390/cancers14235925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The loss of the CDKN2A/ARF (cyclin-dependent kinase inhibitor 2A/alternative reading frame) gene is the most common alteration in malignant pleural mesothelioma (MPM), with an incidence of about 70%, thus representing a novel target for mesothelioma treatment. In the present study, we evaluated the antitumor potential of combining the standard chemotherapy regimen used for unresectable MPM with the CDK4/6 (cyclin-dependent kinase 4 or 6) inhibitor abemaciclib. METHODS Cell viability, cell death, senescence, and autophagy induction were evaluated in two MPM cell lines and in a primary MPM cell culture. RESULTS The simultaneous treatment of abemaciclib with cisplatin and pemetrexed showed a greater antiproliferative effect than chemotherapy alone, both in MPM cell lines and in primary cells. This combined treatment induced cellular senescence or autophagic cell death, depending on the cell type. More in detail, the induction of cellular senescence was related to the increased expression of p21, whereas autophagy induction was due to the impairment of the AKT/mTOR signaling. Notably, the effect of the combination was irreversible and no resumption in tumor cell proliferation was observed after drug withdrawal. CONCLUSION Our results demonstrated the therapeutic potential of CDK4/6 inhibitors in combination with chemotherapy for the treatment of MPM and are consistent with the recent positive results in the MiST2 arm in abemaciclib-treated patients.
Collapse
Affiliation(s)
- Rita Terenziani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Maricla Galetti
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Silvia La Monica
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Correspondence: (M.G.); (S.L.M.); Tel.: +39-0521-033764 (M.G.); +39-0521-033747 (S.L.M.)
| | - Claudia Fumarola
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Silvia Zoppi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Roberta Alfieri
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Graziana Digiacomo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Cavazzoni
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Delia Cavallo
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL-Italian Workers’ Compensation Authority, Monte Porzio Catone, 00078 Rome, Italy
| | - Massimo Corradi
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Center of Excellence for Toxicological Research (CERT), University of Parma, 43126 Parma, Italy
| | - Marcello Tiseo
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
- Medical Oncology Unit, University Hospital of Parma, 43126 Parma, Italy
| | | | - Mara Bonelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| |
Collapse
|
17
|
Fleisher B, Werkman C, Jacobs B, Varkey J, Taha K, Ait-Oudhia S. KIFC1: A Reliable Prognostic Biomarker in Rb-positive Triple-negative Breast Cancer Patients Treated With Doxorubicin in Combination With Abemaciclib. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:525-532. [PMID: 36060015 PMCID: PMC9425577 DOI: 10.21873/cdp.10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) prevalence and risk of relapse are greatest in African American (AA) patients. Doxorubicin (DOX) and abemaciclib (ABE) synergism in Rb-positive TNBC cells (MDA-MB-231), and antagonism in Rb-negative TNBC cells (MDA-MB-468) have been previously shown. Here, we assessed Kinesin-like protein 1 (KIFC1) as an ethnic-specific prognostic biomarker of the DOX+ABE combination for the Rb-status in TNBC. MATERIALS AND METHODS Literature search for TNBC prognostic biomarkers in the AA population was conducted. MDA-MB-231 and MDA-MB-468 cells were exposed over 72 h to four treatment arms: 1) control (medium without drug), 2) DOX at 50% inhibitory concentration in MDA-MB-231 (0.565 μM) and MDA-MB-468 (0.121 μM), 3) ABE alone (2 μM), and 4) DOX+ABE combination at their corresponding concentrations in each cell-line. KIFC1 protein expression and temporal changes were quantified in MDA-MB-231 cells using western blot. RESULTS KIFC1, Kaiso, and Annexin A2 are literature-identified AA-specific TNBC prognostic biomarkers. KIFC1 was found to be uncorrelated to other proposed biomarkers, suggesting it may predict risk independently of other TNBC biomarkers. In both cell lines, DOX alone did not significantly change KIFC1 expression relative to control. Conversely, ABE reduced KIFC1 expression in MDA-MB-231 but not in MDA-MB-468 cells. The combination DOX+ABE resulted in a greatest reduction in KIFC1 in MDA-MB-231 cells with a more rapid time-to-full inhibition of KIFC1 compared to ABE alone. CONCLUSION Change in KIFC1 expression is primarily driven by ABE in Rb-positive TNBC cells. DOX increases ABE speed to achieve a full inhibition of KIFC1 in Rb-positive, yet, without influencing its expression in Rb-negative TNBC cells.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Justin Varkey
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Kareem Taha
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc, Kenilworth, NJ, U.S.A
| |
Collapse
|
18
|
Pribnow A, Jonchere B, Liu J, Smith KS, Campagne O, Xu K, Robinson S, Patel Y, Onar-Thomas A, Wu G, Stewart CF, Northcott PA, Yu J, Robinson GW, Roussel MF. Combination of Ribociclib and Gemcitabine for the Treatment of Medulloblastoma. Mol Cancer Ther 2022; 21:1306-1317. [PMID: 35709750 PMCID: PMC9578677 DOI: 10.1158/1535-7163.mct-21-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Group3 (G3) medulloblastoma (MB) is one of the deadliest forms of the disease for which novel treatment is desperately needed. Here we evaluate ribociclib, a highly selective CDK4/6 inhibitor, with gemcitabine in mouse and human G3MBs. Ribociclib central nervous system (CNS) penetration was assessed by in vivo microdialysis and by IHC and gene expression studies and found to be CNS-penetrant. Tumors from mice treated with short term oral ribociclib displayed inhibited RB phosphorylation, downregulated E2F target genes, and decreased proliferation. Survival studies to determine the efficacy of ribociclib and gemcitabine combination were performed on mice intracranially implanted with luciferase-labeled mouse and human G3MBs. Treatment of mice with the combination of ribociclib and gemcitabine was well tolerated, slowed tumor progression and metastatic spread, and increased survival. Expression-based gene activity and cell state analysis investigated the effects of the combination after short- and long-term treatments. Molecular analysis of treated versus untreated tumors showed a significant decrease in the activity and expression of genes involved in cell-cycle progression and DNA damage response, and an increase in the activity and expression of genes implicated in neuronal identity and neuronal differentiation. Our findings in both mouse and human patient-derived orthotopic xenograft models suggest that ribociclib and gemcitabine combination therapy warrants further investigation as a treatment strategy for children with G3MB.
Collapse
Affiliation(s)
- Allison Pribnow
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Kyle S. Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Ke Xu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Sarah Robinson
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Yogesh Patel
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Gang Wu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Clinton F. Stewart
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Giles W. Robinson
- Department of Neuro-Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105,Corresponding author: Martine F. Roussel, PhD. Department of Tumor Cell Biology, MS#350, 262, Danny thomas Place, Memphis, TN 38105, Phone: 901-595-3481; FAX: 901-595-2384; . Tel: 901-595-3481
| |
Collapse
|
19
|
Wander SA, O’Brien N, Litchfield LM, O’Dea D, Morato Guimaraes C, Slamon DJ, Goel S. Targeting CDK4 and 6 in Cancer Therapy: Emerging Preclinical Insights Related to Abemaciclib. Oncologist 2022; 27:811-821. [PMID: 35917168 PMCID: PMC9526495 DOI: 10.1093/oncolo/oyac138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/15/2022] Open
Abstract
Pharmacologic inhibitors of cyclin-dependent kinases 4 and 6 (CDK4 and 6) are approved for the treatment of subsets of patients with hormone receptor positive (HR+) breast cancer (BC). In metastatic disease, strategies involving endocrine therapy combined with CDK4 and 6 inhibitors (CDK4 and 6i) improve clinical outcomes in HR+ BCs. CDK4 and 6i prevent retinoblastoma tumor suppressor protein phosphorylation, thereby blocking the transcription of E2F target genes, which in turn inhibits both mitogen and estrogen-mediated cell proliferation. In this review, we summarize preclinical data pertaining to the use of CDK4 and 6i in BC, with a particular focus on several of the unique chemical, pharmacologic, and mechanistic properties of abemaciclib. As research efforts elucidate the novel mechanisms underlying abemaciclib activity, potential new applications are being identified. For example, preclinical studies have demonstrated abemaciclib can exert antitumor activity against multiple tumor types and can cross the blood-brain barrier. Abemaciclib has also demonstrated distinct activity as a monotherapeutic in the treatment of BC. Accordingly, we also discuss how a greater understanding of mechanisms related to CDK4 and 6 blockade highlight abemaciclib's unique in-class properties, and could pave new avenues for enhancing its therapeutic efficacy.
Collapse
Affiliation(s)
- Seth A Wander
- Seth Wander, MD, PhD, Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02114, USA.
| | - Neil O’Brien
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | | | | - Dennis J Slamon
- Department of Medicine, Division of Hematology/Oncology, Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Shom Goel
- Corresponding author: Shom Goel, B Med Sci (Hons), MBBS (Hons), FRACP, PhD, Department of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; The Sir Peter MacCallum Department of Oncology, University of Melbourne, VIC, 3000 Australia. Tel: +61 3 8559 8777; Fax: +61 3 8559 5039;
| |
Collapse
|
20
|
Barghi F, Shannon HE, Saadatzadeh MR, Bailey BJ, Riyahi N, Bijangi-Vishehsaraei K, Just M, Ferguson MJ, Pandya PH, Pollok KE. Precision Medicine Highlights Dysregulation of the CDK4/6 Cell Cycle Regulatory Pathway in Pediatric, Adolescents and Young Adult Sarcomas. Cancers (Basel) 2022; 14:cancers14153611. [PMID: 35892870 PMCID: PMC9331212 DOI: 10.3390/cancers14153611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/20/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary This review provides an overview of clinical features and current therapies in children, adolescents, and young adults (AYA) with sarcoma. It highlights the basic and clinical findings on the cyclin-dependent kinases 4 and 6 (CDK4/6) cell cycle regulatory pathway in the context of the precision medicine-based molecular profiles of the three most common types of pediatric and AYA sarcomas—osteosarcoma (OS), rhabdomyosarcoma (RMS), and Ewing sarcoma (EWS). Abstract Despite improved therapeutic and clinical outcomes for patients with localized diseases, outcomes for pediatric and AYA sarcoma patients with high-grade or aggressive disease are still relatively poor. With advancements in next generation sequencing (NGS), precision medicine now provides a strategy to improve outcomes in patients with aggressive disease by identifying biomarkers of therapeutic sensitivity or resistance. The integration of NGS into clinical decision making not only increases the accuracy of diagnosis and prognosis, but also has the potential to identify effective and less toxic therapies for pediatric and AYA sarcomas. Genome and transcriptome profiling have detected dysregulation of the CDK4/6 cell cycle regulatory pathway in subpopulations of pediatric and AYA OS, RMS, and EWS. In these patients, the inhibition of CDK4/6 represents a promising precision medicine-guided therapy. There is a critical need, however, to identify novel and promising combination therapies to fight the development of resistance to CDK4/6 inhibition. In this review, we offer rationale and perspective on the promise and challenges of this therapeutic approach.
Collapse
Affiliation(s)
- Farinaz Barghi
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Harlan E. Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Barbara J. Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
| | - Niknam Riyahi
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Marissa Just
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Michael J. Ferguson
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
| | - Pankita H. Pandya
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Correspondence: (P.H.P.); (K.E.P.)
| | - Karen E. Pollok
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.E.S.); (M.R.S.); (B.J.B.); (N.R.); (K.B.-V.)
- Department of Pediatrics, Hematology/Oncology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (M.J.); (M.J.F.)
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: (P.H.P.); (K.E.P.)
| |
Collapse
|
21
|
Young JS, Kidwell RL, Zheng A, Haddad AF, Aghi MK, Raleigh DR, Schulte JD, Butowski NA. CDK 4/6 inhibitors for the treatment of meningioma. Front Oncol 2022; 12:931371. [PMID: 35936751 PMCID: PMC9354681 DOI: 10.3389/fonc.2022.931371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/15/2022] Open
Abstract
Meningiomas are the most common non-metastatic brain tumors, and although the majority are relatively slow-growing and histologically benign, a subset of meningiomas are aggressive and remain challenging to treat. Despite a standard of care that includes surgical resection and radiotherapy, and recent advances in meningioma molecular grouping, there are no systemic medical options for patients with meningiomas that are resistant to standard interventions. Misactivation of the cell cycle at the level of CDK4/6 is common in high-grade or molecularly aggressive meningiomas, and CDK4/6 has emerged as a potential target for systemic meningioma treatments. In this review, we describe the preclinical evidence for CDK4/6 inhibitors as a treatment for high-grade meningiomas and summarize evolving clinical experience with these agents. Further, we highlight upcoming clinical trials for patients meningiomas, and discuss future directions aimed at optimizing the efficacy of these therapies and selecting patients most likely to benefit from their use.
Collapse
Affiliation(s)
- Jacob S. Young
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young, ; Nicholas A. Butowski,
| | - Reilly L. Kidwell
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Allison Zheng
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Alex F. Haddad
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Manish K. Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
| | - David R. Raleigh
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States
| | - Jessica D. Schulte
- Division of Neuro-Oncology, University of California San Diego, San Diego, CA, United States
- Department of Neuroscience, University of California San Diego, San Diego, CA, United States
| | - Nicholas A. Butowski
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Division of Neuro-Oncology, University of California San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young, ; Nicholas A. Butowski,
| |
Collapse
|
22
|
Yousuf M, Alam M, Shamsi A, Khan P, Hasan GM, Rizwanul Haque QM, Hassan MI. Structure-guided design and development of cyclin-dependent kinase 4/6 inhibitors: A review on therapeutic implications. Int J Biol Macromol 2022; 218:394-408. [PMID: 35878668 DOI: 10.1016/j.ijbiomac.2022.07.156] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/29/2022]
Abstract
Cyclin-dependent kinase 6 (EC 2.7.11.22) play significant roles in numerous biological processes and triggers cell cycle events. CDK6 controlled the transcriptional regulation. A dysregulated function of CDK6 is linked with the development of progression of multiple tumor types. Thus, it is considered as an effective drug target for cancer therapy. Based on the direct roles of CDK4/6 in tumor development, numerous inhibitors developed as promising anti-cancer agents. CDK4/6 inhibitors regulate the G1 to S transition by preventing Rb phosphorylation and E2F liberation, showing potent anti-cancer activity in several tumors, including HR+/HER2- breast cancer. CDK4/6 inhibitors such as abemaciclib, palbociclib, and ribociclib, control cell cycle, provoke cell senescence, and induces tumor cell disturbance in pre-clinical studies. Here, we discuss the roles of CDK6 in cancer along with the present status of CDK4/6 inhibitors in cancer therapy. We further discussed, how structural features of CDK4/6 could be implicated in the design and development of potential anti-cancer agents. In addition, the therapeutic potential and limitations of available CDK4/6 inhibitors are described in detail. Recent pre-clinical and clinical information for CDK4/6 inhibitors are highlighted. In addition, combination of CDK4/6 inhibitors with other drugs for the therapeutic management of cancer are discussed.
Collapse
Affiliation(s)
- Mohd Yousuf
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anas Shamsi
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Parvez Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | | | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
23
|
Han BS, Jung KH, Lee JE, Yoon YC, Ko S, Park MS, Lee YJ, Kim SE, Cho YJ, Lee P, Lim JH, Jang E, Kim H, Hong SS. Lidocaine enhances the efficacy of palbociclib in triple-negative breast cancer. Am J Cancer Res 2022; 12:3083-3098. [PMID: 35968350 PMCID: PMC9360229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023] Open
Abstract
The use of anesthetics in the surgical resection of tumors may influence the prognosis of cancer patients. Lidocaine, a local anesthetic, is known to act as a chemosensitizer and relieve pain in some cancers. In addition, palbociclib, a potent cyclin-dependent kinase (CDK) 4/6 inhibitor, has been approved for chemotherapy of advanced breast cancer. However, recent studies have revealed the acquired resistance of breast cancer cells to palbociclib. Therefore, the development of combination therapies that can extend the efficacy of palbociclib or delay resistance is crucial. This study investigated whether lidocaine would enhance the efficacy of palbociclib in breast cancer. Lidocaine synergistically suppressed the growth and proliferation of breast cancer cells by palbociclib. The combination treatment showed an increased cell cycle arrest in the G0/G1 phase by decreasing retinoblastoma protein (Rb) and E2F1 expression. In addition, it increased apoptosis by loss of mitochondrial membrane potential as observed by increases in cytochrome c release and inhibition of mitochondria-mediated protein expression. Additionally, it significantly reduced epithelial-mesenchymal transition and PI3K/AKT/GSK3β signaling. In orthotopic breast cancer models, this combination treatment significantly inhibited tumor growth and increased tumor cell apoptosis compared to those treated with a single drug. Taken together, this study demonstrates that the combination of palbociclib and lidocaine has a synergistic anti-cancer effect on breast cancer cells by the inhibition of the PI3K/AKT/GSK3β pathway, suggesting that this combination could potentially be an effective therapy for breast cancer.
Collapse
Affiliation(s)
- Beom Seok Han
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Kyung Hee Jung
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Ji Eun Lee
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Young-Chan Yoon
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Soyeon Ko
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Min Seok Park
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Yun Ji Lee
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Sang Eun Kim
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Ye Jin Cho
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Pureunchowon Lee
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Joo Han Lim
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Eunsoo Jang
- Department of Anaesthesiology and Pain Medicine, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Hyunzu Kim
- Department of Anaesthesiology and Pain Medicine, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| | - Soon-Sun Hong
- Department of Medicine, College of Medicine, Program in Biomedical Science & Engineering, Inha University366, Seohae-daero, Jung-gu, Incheon 22332, Korea
| |
Collapse
|
24
|
Ke Y, Liao CG, Zhao ZQ, Li XM, Lin RJ, Yang L, Zhang HL, Kong LM. Combining a CDK4/6 Inhibitor With Pemetrexed Inhibits Cell Proliferation and Metastasis in Human Lung Adenocarcinoma. Front Oncol 2022; 12:880153. [PMID: 35686110 PMCID: PMC9172583 DOI: 10.3389/fonc.2022.880153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/25/2022] [Indexed: 12/17/2022] Open
Abstract
Background Recent clinical trials of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) in human lung adenocarcinoma (LUAD) have not achieved satisfactory results. The disappointing results of single-drug treatments have prompted studies about synergistic therapies of CDK4/6i with other drugs. We aimed to test the anti-tumor effect of ribociclib (a CDK4/6i) combined with pemetrexed on LUAD and the potential mechanisms. Methods Cell lines were exposed to ribociclib and pemetrexed at different doses. Antitumor effects were measured using growth inhibition. Cell cycle distribution and apoptosis were evaluated using flow cytometry. Cell migration and invasion were measured using wound healing and transwell invasion assays, respectively. The expression levels of proteins were analyzed using western blotting. Mice xenograft models were used for validation in vivo. Results Synergism was associated with a combination of cell cycle effects from both agents. Cell cycle analysis revealed that pemetrexed blocked cells in the S phase, whereas ribociclib arrested cells in the G1 phase. Concomitant treatment with pemetrexed and ribociclib resulted in a significantly stronger antitumor ability than treatment alone. We also found that ribociclib strongly enhanced the pro-apoptotic activity of pemetrexed via the caspase/bcl-2 signaling pathway. In addition, we report for the first time that combination treatment with ribociclib and pemetrexed significantly inhibits the migration and invasion of LUAD cells. Conclusions Combining ribociclib and pemetrexed showed a powerful ability to inhibit cancer proliferation, invasion, and metastasis, and it holds potential as a novel effective combinative therapy for patients with LUAD.
Collapse
Affiliation(s)
- Yuan Ke
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Cheng-Gong Liao
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Zheng-Qing Zhao
- Department of Neurology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Min Li
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Military Medical University, Xi'an, China
| | - Rong-Jie Lin
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Air Force Military Medical University, Xi'an, China
| | - Long Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Military Medical University, Xi'an, China
| | - He-Long Zhang
- Department of Oncology, Second Affiliated Hospital of Air Force Military Medical University, Xi'an, China
| | - Ling-Min Kong
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
25
|
Abstract
Cyclin-dependent kinase 4 (CDK4) and CDK6 are critical mediators of cellular transition into S phase and are important for the initiation, growth and survival of many cancer types. Pharmacological inhibitors of CDK4/6 have rapidly become a new standard of care for patients with advanced hormone receptor-positive breast cancer. As expected, CDK4/6 inhibitors arrest sensitive tumour cells in the G1 phase of the cell cycle. However, the effects of CDK4/6 inhibition are far more wide-reaching. New insights into their mechanisms of action have triggered identification of new therapeutic opportunities, including the development of novel combination regimens, expanded application to a broader range of cancers and use as supportive care to ameliorate the toxic effects of other therapies. Exploring these new opportunities in the clinic is an urgent priority, which in many cases has not been adequately addressed. Here, we provide a framework for conceptualizing the activity of CDK4/6 inhibitors in cancer and explain how this framework might shape the future clinical development of these agents. We also discuss the biological underpinnings of CDK4/6 inhibitor resistance, an increasingly common challenge in clinical oncology.
Collapse
Affiliation(s)
- Shom Goel
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia.
| | - Johann S Bergholz
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jean J Zhao
- Dana-Farber Cancer Institute, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
26
|
Rampioni Vinciguerra GL, Sonego M, Segatto I, Dall’Acqua A, Vecchione A, Baldassarre G, Belletti B. CDK4/6 Inhibitors in Combination Therapies: Better in Company Than Alone: A Mini Review. Front Oncol 2022; 12:891580. [PMID: 35712501 PMCID: PMC9197541 DOI: 10.3389/fonc.2022.891580] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022] Open
Abstract
The cyclin D-CDK4/6 complexes play a pivotal role in controlling the cell cycle. Deregulation in cyclin D-CDK4/6 pathway has been described in many types of cancer and it invariably leads to uncontrolled cell proliferation. Many efforts have been made to develop a target therapy able to inhibit CDK4/6 activity. To date, three selective CDK4/6 small inhibitors have been introduced in the clinic for the treatment of hormone positive advanced breast cancer patients, following the impressive results obtained in phase III clinical trials. However, since their approval, clinical evidences have demonstrated that about 30% of breast cancer is intrinsically resistant to CDK4/6 inhibitors and that prolonged treatment eventually leads to acquired resistance in many patients. So, on one hand, clinical and preclinical studies fully support to go beyond breast cancer and expand the use of CDK4/6 inhibitors in other tumor types; on the other hand, the question of primary and secondary resistance has to be taken into account, since it is now very clear that neoplastic cells rapidly develop adaptive strategies under treatment, eventually resulting in disease progression. Resistance mechanisms so far discovered involve both cell-cycle and non-cell-cycle related escape strategies. Full understanding is yet to be achieved but many different pathways that, if targeted, may lead to reversion of the resistant phenotype, have been already elucidated. Here, we aim to summarize the knowledge in this field, focusing on predictive biomarkers, to recognize intrinsically resistant tumors, and therapeutic strategies, to overcome acquired resistance.
Collapse
Affiliation(s)
- Gian Luca Rampioni Vinciguerra
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| | - Maura Sonego
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Ilenia Segatto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Alessandra Dall’Acqua
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Andrea Vecchione
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant’Andrea Hospital, University of Rome “Sapienza”, Rome, Italy
| | - Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
- *Correspondence: Barbara Belletti,
| |
Collapse
|
27
|
Qi J, Ouyang Z. Targeting CDK4/6 for Anticancer Therapy. Biomedicines 2022; 10:685. [PMID: 35327487 PMCID: PMC8945444 DOI: 10.3390/biomedicines10030685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 12/26/2022] Open
Abstract
Cyclin-dependent kinase 4/6 (CDK4/6) are key regulators of the cell cycle and are deemed as critical therapeutic targets of multiple cancers. Various approaches have been applied to silence CDK4/6 at different levels, i.e., CRISPR to knock out at the DNA level, siRNA to inhibit translation, and drugs that target the protein of interest. Here we summarize the current status in this field, highlighting the mechanisms of small molecular inhibitors treatment and drug resistance. We describe approaches to combat drug resistance, including combination therapy and PROTACs drugs that degrade the kinases. Finally, critical issues and perspectives in the field are outlined.
Collapse
Affiliation(s)
- Jiating Qi
- The Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Zhuqing Ouyang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
28
|
Frankman ZD, Jiang L, Schroeder JA, Zohar Y. Application of Microfluidic Systems for Breast Cancer Research. MICROMACHINES 2022; 13:152. [PMID: 35208277 PMCID: PMC8877872 DOI: 10.3390/mi13020152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023]
Abstract
Cancer is a disease in which cells in the body grow out of control; breast cancer is the most common cancer in women in the United States. Due to early screening and advancements in therapeutic interventions, deaths from breast cancer have declined over time, although breast cancer remains the second leading cause of cancer death among women. Most deaths are due to metastasis, as cancer cells from the primary tumor in the breast form secondary tumors in remote sites in distant organs. Over many years, the basic biological mechanisms of breast cancer initiation and progression, as well as the subsequent metastatic cascade, have been studied using cell cultures and animal models. These models, although extremely useful for delineating cellular mechanisms, are poor predictors of physiological responses, primarily due to lack of proper microenvironments. In the last decade, microfluidics has emerged as a technology that could lead to a paradigm shift in breast cancer research. With the introduction of the organ-on-a-chip concept, microfluidic-based systems have been developed to reconstitute the dominant functions of several organs. These systems enable the construction of 3D cellular co-cultures mimicking in vivo tissue-level microenvironments, including that of breast cancer. Several reviews have been presented focusing on breast cancer formation, growth and metastasis, including invasion, intravasation, and extravasation. In this review, realizing that breast cancer can recur decades following post-treatment disease-free survival, we expand the discussion to account for microfluidic applications in the important areas of breast cancer detection, dormancy, and therapeutic development. It appears that, in the future, the role of microfluidics will only increase in the effort to eradicate breast cancer.
Collapse
Affiliation(s)
- Zachary D. Frankman
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Linan Jiang
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| | - Joyce A. Schroeder
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
| | - Yitshak Zohar
- Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
29
|
Pandey K, Katuwal NB, Park N, Hur J, Cho YB, Kim SK, Lee SA, Kim I, Lee SR, Moon YW. Combination of Abemaciclib following Eribulin Overcomes Palbociclib-Resistant Breast Cancer by Inhibiting the G2/M Cell Cycle Phase. Cancers (Basel) 2022; 14:210. [PMID: 35008374 PMCID: PMC8750394 DOI: 10.3390/cancers14010210] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Breast cancer remains a leading cancer burden among women worldwide. Acquired resistance of cyclin-dependent kinase (CDK) 4/6 inhibitors occurs in almost all hormone receptor (HR)-positive subtype cases, comprising 70% of breast cancers, although CDK4/6 inhibitors combined with endocrine therapy are highly effective. CDK4/6 inhibitors are not expected to cooperate with cytotoxic chemotherapy based on the basic cytotoxic chemotherapy mode of action that inhibits rapidly proliferating cells. The palbociclib-resistant preclinical model developed in the current study investigated whether the combination of abemaciclib, CDK4/6 inhibitor with eribulin, an antimitotic chemotherapy could be a strategy to overcome palbociclib-resistant HR-positive breast cancer. The current study demonstrated that sequential abemaciclib treatment following eribulin synergistically suppressed CDK4/6 inhibitor-resistant cells by inhibiting the G2/M cell cycle phase more effectively. The current study showed the significant association of the pole-like kinase 1 (PLK1) level and palbociclib resistance. Moreover, the cumulative PLK1 inhibition in the G2/M phase by each eribulin or abemaciclib proved to be a mechanism of the synergistic effect. The synergistic antitumor effect was also supported by in vivo study. The sequential combination of abemaciclib following eribulin merits further clinical trials to overcome resistance to CDK4/6 inhibitors in HR-positive breast cancer.
Collapse
Affiliation(s)
- Kamal Pandey
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Nar Bahadur Katuwal
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Nahee Park
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| | - Jin Hur
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
- Department of Biomedical Science, The Graduate School, CHA University, Seongnam 13620, Korea
| | - Young Bin Cho
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| | - Seung Ki Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Seung Ah Lee
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Isaac Kim
- Department of Surgery, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea; (S.K.K.); (S.A.L.); (I.K.)
| | - Seung-Ryeol Lee
- Department of Urology, CHA Bundang Medical Center, CHA University, Seongnam 13620, Korea
| | - Yong Wha Moon
- Hematology and Oncology, Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam 13488, Korea; (K.P.); (N.B.K.); (N.P.); (J.H.); (Y.B.C.)
| |
Collapse
|
30
|
Arora M, Bogenberger JM, Abdelrahman AM, Yonkus J, Alva-Ruiz R, Leiting JL, Chen X, Serrano Uson Junior PL, Dumbauld CR, Baker AT, Gamb SI, Egan JB, Zhou Y, Nagalo BM, Meurice N, Eskelinen EL, Salomao MA, Kosiorek HE, Braggio E, Barrett MT, Buetow KH, Sonbol MB, Mansfield AS, Roberts LR, Bekaii-Saab TS, Ahn DH, Truty MJ, Borad MJ. Synergistic combination of cytotoxic chemotherapy and cyclin-dependent kinase 4/6 inhibitors in biliary tract cancers. Hepatology 2022; 75:43-58. [PMID: 34407567 DOI: 10.1002/hep.32102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND AND AIMS Biliary tract cancers (BTCs) are uncommon, but highly lethal, gastrointestinal malignancies. Gemcitabine/cisplatin is a standard-of-care systemic therapy, but has a modest impact on survival and harbors toxicities, including myelosuppression, nephropathy, neuropathy, and ototoxicity. Whereas BTCs are characterized by aberrations activating the cyclinD1/cyclin-dependent kinase (CDK)4/6/CDK inhibitor 2a/retinoblastoma pathway, clinical use of CDK4/6 inhibitors as monotherapy is limited by lack of validated biomarkers, diffident preclinical efficacy, and development of acquired drug resistance. Emerging studies have explored therapeutic strategies to enhance the antitumor efficacy of CDK4/6 inhibitors by the combination with chemotherapy regimens, but their mechanism of action remains elusive. APPROACH AND RESULTS Here, we report in vitro and in vivo synergy in BTC models, showing enhanced efficacy, reduced toxicity, and better survival with a combination comprising gemcitabine/cisplatin and CDK4/6 inhibitors. Furthermore, we demonstrated that abemaciclib monotherapy had only modest efficacy attributable to autophagy-induced resistance. Notably, triplet therapy was able to potentiate efficacy through elimination of the autophagic flux. Correspondingly, abemaciclib potentiated ribonucleotide reductase catalytic subunit M1 reduction, resulting in sensitization to gemcitabine. CONCLUSIONS As such, these data provide robust preclinical mechanistic evidence of synergy between gemcitabine/cisplatin and CDK4/6 inhibitors and delineate a path forward for translation of these findings to preliminary clinical studies in advanced BTC patients.
Collapse
Affiliation(s)
- Mansi Arora
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - James M Bogenberger
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Jennifer Yonkus
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Xianfeng Chen
- Department of Informatics, Mayo Clinic, Scottsdale, Arizona, USA
| | | | - Chelsae R Dumbauld
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Alexander T Baker
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Scott I Gamb
- Microscopy and Cell Analysis Core, Mayo Clinic, Rochester, Minnesota, USA
| | - Jan B Egan
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Yumei Zhou
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Bolni Marius Nagalo
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Nathalie Meurice
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | | | - Marcela A Salomao
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Heidi E Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona, USA
| | - Esteban Braggio
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Michael T Barrett
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Kenneth H Buetow
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Mohamad B Sonbol
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA
| | - Aaron S Mansfield
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Lewis R Roberts
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Tanios S Bekaii-Saab
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Daniel H Ahn
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA
| | - Mark J Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Mitesh J Borad
- Division of Hematology/Oncology, Department of Internal Medicine, Mayo Clinic, Scottsdale, Arizona, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA.,Mayo Clinic Cancer Center, Mayo Clinic, Phoenix, Arizona, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
31
|
Wang D, Bao H. Abemaciclib is synergistic with doxorubicin in osteosarcoma pre-clinical models via inhibition of CDK4/6-Cyclin D-Rb pathway. Cancer Chemother Pharmacol 2022; 89:31-40. [PMID: 34655298 DOI: 10.1007/s00280-021-04363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 10/05/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Osteosarcoma is a prevalent type of bone tumor in children and adolescents, with limited treatment and poor prognosis. Abemaciclib, an inhibitor of cyclin-dependent kinases 4 and 6 (CDK4/6), is approved for the treatment of advanced breast cancer as single agent therapy and is currently under investigation in clinical trials for the treatment of several solid tumors. METHODS The efficacy of abemaciclib was determined using osteosarcoma cellular assays and xenograft mouse model. The combination studies were performed based on the Chou-Talalay method. Immunoblotting analysis was performed to determine the underlying mechanisms of abemaciclib in osteosarcoma cell lines. RESULTS Abemaciclib potently inhibits growth, anchorage-independent colony formation and survival of a panel of osteosarcoma cell lines, with IC50 range from 90 nM to >20 μM. In addition, the combination of abemaciclib and doxorubicin is synergistic and antagonistic in abemaciclib-sensitive (IC50 <1 μM) and abemaciclib-resistant (IC50 >1 μM), respectively. Abemaciclib inhibits tumor formation and growth in a dose-dependent manner without causing significant drug toxicity in mice. The combination of abemaciclib and doxorubicin results in much greater efficacy than doxorubicin alone in inhibiting tumor growth throughout the whole treatment duration. Abemaciclib acts on osteosarcoma via suppressing CDK4/6-Cyclin D-Rb pathway. CONCLUSIONS Our pre-clinical evidence provides a rationale of initializing clinical trial of investigating the efficacy of abemaciclib in combination with doxorubicin in osteosarcoma patients. Our work also highlights the therapeutic value of CDK4/6 inhibition in osteosarcoma with proper function of Rb.
Collapse
Affiliation(s)
- Deli Wang
- Department of Rehabilitation Medicine, Renmin Hospital, Hubei University of Medicine, Maojian District, Chaoyangzhong Road 39, Shiyan, 442000, China
| | - Haiqin Bao
- Department of Rehabilitation Medicine, Renmin Hospital, Hubei University of Medicine, Maojian District, Chaoyangzhong Road 39, Shiyan, 442000, China.
| |
Collapse
|
32
|
Ribociclib Induces Broad Chemotherapy Resistance and EGFR Dependency in ESR1 Wildtype and Mutant Breast Cancer. Cancers (Basel) 2021; 13:cancers13246314. [PMID: 34944934 PMCID: PMC8699146 DOI: 10.3390/cancers13246314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/05/2021] [Accepted: 12/11/2021] [Indexed: 12/24/2022] Open
Abstract
While endocrine therapy is highly effective for the treatment of oestrogen receptor-α (ERα)-positive breast cancer, a significant number of patients will eventually experience disease progression and develop treatment-resistant, metastatic cancer. The majority of resistant tumours remain dependent on ERα-action, with activating ESR1 gene mutations occurring in 15-40% of advanced cancers. Therefore, there is an urgent need to discover novel effective therapies that can eradicate cancer cells with aberrant ERα and to understand the cellular response underlying their action. Here, we evaluate the response of MCF7-derived, CRISPR-Cas9-generated cell lines expressing mutant ERα (Y537S) to a large number of drugs. We report sensitivity to numerous clinically approved inhibitors, including CDK4/6 inhibitor ribociclib, which is a standard-of-care therapy in the treatment of metastatic ERα-positive breast cancer and currently under evaluation in the neoadjuvant setting. Ribociclib treatment induces senescence in both wildtype and mutant ERα breast cancer models and leads to a broad-range drug tolerance. Strikingly, viability of cells undergoing ribociclib-induced cellular senescence is maintained via engagement of EGFR signalling, which may be therapeutically exploited in both wildtype and mutant ERα-positive breast cancer. Our study highlights a wide-spread reduction in sensitivity to anti-cancer drugs accompanied with an acquired vulnerability to EGFR inhibitors following CDK4/6 inhibitor treatment.
Collapse
|
33
|
Lukow DA, Sausville EL, Suri P, Chunduri NK, Wieland A, Leu J, Smith JC, Girish V, Kumar AA, Kendall J, Wang Z, Storchova Z, Sheltzer JM. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev Cell 2021; 56:2427-2439.e4. [PMID: 34352222 PMCID: PMC8933054 DOI: 10.1016/j.devcel.2021.07.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/09/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Aneuploidy is a ubiquitous feature of human tumors, but the acquisition of aneuploidy typically antagonizes cellular fitness. To investigate how aneuploidy could contribute to tumor growth, we triggered periods of chromosomal instability (CIN) in human cells and then exposed them to different culture environments. We discovered that transient CIN reproducibly accelerates the acquisition of resistance to anti-cancer therapies. Single-cell sequencing revealed that these resistant populations develop recurrent aneuploidies, and independently deriving one chromosome-loss event that was frequently observed in paclitaxel-resistant cells was sufficient to decrease paclitaxel sensitivity. Finally, we demonstrated that intrinsic levels of CIN correlate with poor responses to numerous therapies in human tumors. Our results show that, although CIN generally decreases cancer cell fitness, it also provides phenotypic plasticity to cancer cells that can allow them to adapt to diverse stressful environments. Moreover, our findings suggest that aneuploidy may function as an under-explored cause of therapy failure.
Collapse
Affiliation(s)
- Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Stony Brook University, Stony Brook, NY 11794, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavit Suri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Narendra Kumar Chunduri
- European Research Institute for the Biology of Aging, 9713 AV Groningen, the Netherlands; Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Angela Wieland
- Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Justin Leu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joan C Smith
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Google, Inc., New York, NY 10011, USA
| | - Vishruth Girish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ankith A Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
34
|
Wang R, Xu K, Gao F, Huang J, Guan X. Clinical considerations of CDK4/6 inhibitors in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188590. [PMID: 34271137 DOI: 10.1016/j.bbcan.2021.188590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/21/2021] [Accepted: 07/08/2021] [Indexed: 02/08/2023]
Abstract
The formation of cyclinD-CDK4/6 complex plays vital roles in the cell cycle transition from G1 phase to S phase which is characterized by vigorous transcription and synthesis. Through cyclinD-CDK4/6-Rb axis, CDK4/6 inhibitors arrest the cell cycle in the G1 phase and block the proliferation of aggressive cells, exhibiting promising effects in containing the aggressiveness of breast cancers. To date, there are three CDK4/6 inhibitors approved by the U.S. Food and Drug Administration in treating advanced hormone receptor-positive breast cancer, including palbociclib, abemaciclib, and ribociclib. In fact, several preclinical experiments and clinical trials presented therapeutic effects of CDK4/6 inhibitor-based treatment in triple-negative breast cancer.
Collapse
Affiliation(s)
- Runtian Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kun Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fangyan Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinyi Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoxiang Guan
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
35
|
Johnson TI, Minteer CJ, Kottmann D, Dunlop CR, Fernández SBDQ, Carnevalli LS, Wallez Y, Lau A, Richards FM, Jodrell DI. Quantifying cell cycle-dependent drug sensitivities in cancer using a high throughput synchronisation and screening approach. EBioMedicine 2021; 68:103396. [PMID: 34049239 PMCID: PMC8170111 DOI: 10.1016/j.ebiom.2021.103396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/16/2021] [Accepted: 04/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chemotherapy and targeted agent anti-cancer efficacy is largely dependent on the proliferative state of tumours, as exemplified by agents that target DNA synthesis/replication or mitosis. As a result, cell cycle specificities of a number of cancer drugs are well known. However, they are yet to be described in a quantifiable manner. METHODS A scalable cell synchronisation protocol used to screen a library of 235 anti-cancer compounds exposed over six hours in G1 or S/G2 accumulated AsPC-1 cells to generate a cell cycle specificity (CCS) score. FINDINGS The synchronisation method was associated with reduced method-related cytotoxicity compared to nocodazole, delivering sufficient cell cycle purity and cell numbers to run high-throughput drug library screens. Compounds were identified with G1 and S/G2-associated specificities that, overall, functionally matched with a compound's target/mechanism of action. This annotation was used to describe a synergistic schedule using the CDK4/6 inhibitor, palbociclib, prior to gemcitabine/AZD6738 as well as describe the correlation between the CCS score and published synergistic/antagonistic drug schedules. INTERPRETATION This is the first highly quantitative description of cell cycle-dependent drug sensitivities that utilised a tractable and tolerated method with potential uses outside the present study. Drug treatments such as those shown to be G1 or S/G2 associated may benefit from scheduling considerations such as after CDK4/6 inhibitors and being first in drug sequences respectively. FUNDING Cancer Research UK (CRUK) Institute core grants C14303/A17197 and C9545/A29580. The Li Ka Shing Centre where this work was performed was generously funded by CK Hutchison Holdings Limited, the University of Cambridge, CRUK, The Atlantic Philanthropies and others.
Collapse
Affiliation(s)
- Timothy I Johnson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| | | | - Daniel Kottmann
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Charles R Dunlop
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | | | - Yann Wallez
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Alan Lau
- Bioscience, Early Oncology R&D, AstraZeneca, Cambridge, UK
| | - Frances M Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Duncan I Jodrell
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK; Department of Oncology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
36
|
Brastianos PK, Kim AE, Wang N, Lee EQ, Ligibel J, Cohen JV, Chukwueke UN, Mahar M, Oh K, White MD, Shih HA, Forst D, Gainor JF, Heist RS, Gerstner ER, Batchelor TT, Lawrence D, Ryan DP, Iafrate AJ, Giobbie-Hurder A, Santagata S, Carter SL, Cahill DP, Sullivan RJ. Palbociclib demonstrates intracranial activity in progressive brain metastases harboring cyclin-dependent kinase pathway alterations. NATURE CANCER 2021; 2:498-502. [PMID: 35122016 PMCID: PMC10644914 DOI: 10.1038/s43018-021-00198-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
Recent studies suggest that the cyclin-dependent kinase (CDK) pathway may be a therapeutic target for brain metastases (BM). Here, we present interim analysis of a basket trial evaluating the intracranial efficacy of the CDK inhibitor palbociclib in patients with progressive BM and CDK alterations. Our study met its primary endpoint and provides evidence for performing molecular testing of archival BM tissue, if available, to inform the choice of CNS-penetrant targeted therapy.
Collapse
Affiliation(s)
| | - Albert E Kim
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Nancy Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Eudocia Q Lee
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jennifer Ligibel
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Justine V Cohen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
- Abramson Cancer Center, University of Pennsylvania Health System, Philadelphia, PA, USA
| | | | - Maura Mahar
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kevin Oh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael D White
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Helen A Shih
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Deborah Forst
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Justin F Gainor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Rebecca S Heist
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Elizabeth R Gerstner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Tracy T Batchelor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Donald Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - David P Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - A John Iafrate
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | | | - Sandro Santagata
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Scott L Carter
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel P Cahill
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
37
|
Zhu X, Chen L, Huang B, Li X, Yang L, Hu X, Jiang Y, Shao Z, Wang Z. Efficacy and mechanism of the combination of PARP and CDK4/6 inhibitors in the treatment of triple-negative breast cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:122. [PMID: 33832512 PMCID: PMC8028839 DOI: 10.1186/s13046-021-01930-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/28/2021] [Indexed: 12/31/2022]
Abstract
Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01930-w.
Collapse
Affiliation(s)
- Xiuzhi Zhu
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Li Chen
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Binhao Huang
- Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Gastric Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xiaoguang Li
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Liu Yang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Xin Hu
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Precision Cancer Medicine Center, Shanghai, 200032, China
| | - Yizhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China
| | - Zhimin Shao
- Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Department of Breast Surgery, Fudan University Shanghai Cancer Center, 270 Dong-An Road, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | - Zhonghua Wang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| |
Collapse
|
38
|
Xiang Y, Liu C, Chen L, Li L, Huang Y. Active Targeting Nanoparticle Self‐Assembled from Cisplatin‐Palbociclib Amphiphiles Ensures Optimal Drug Ratio for Combinatorial Chemotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Yucheng Xiang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy Sichuan University No. 17, Block 3, South Renmin Road Chengdu 610041 P. R. China
| | - Chendong Liu
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy Sichuan University No. 17, Block 3, South Renmin Road Chengdu 610041 P. R. China
| | - Liqiang Chen
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy Sichuan University No. 17, Block 3, South Renmin Road Chengdu 610041 P. R. China
| | - Lian Li
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy Sichuan University No. 17, Block 3, South Renmin Road Chengdu 610041 P. R. China
| | - Yuan Huang
- Key laboratory of Drug Targeting and Drug Delivery System (Ministry of Education), West China School of Pharmacy Sichuan University No. 17, Block 3, South Renmin Road Chengdu 610041 P. R. China
| |
Collapse
|
39
|
Fleisher B, Lezeau J, Werkman C, Jacobs B, Ait-Oudhia S. In vitro to Clinical Translation of Combinatorial Effects of Doxorubicin and Abemaciclib in Rb-Positive Triple Negative Breast Cancer: A Systems-Based Pharmacokinetic/Pharmacodynamic Modeling Approach. BREAST CANCER-TARGETS AND THERAPY 2021; 13:87-105. [PMID: 33628047 PMCID: PMC7899308 DOI: 10.2147/bctt.s292161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
Background Doxorubicin (DOX) and its pegylated liposomal formulation (L_DOX) are the standard of care for triple-negative breast cancer (TNBC). However, resistance to DOX often occurs, motivating the search for alternative treatment approaches. The retinoblastoma protein (Rb) is a potential pharmacological target for TNBC treatment since its expression has been associated with resistance to DOX-based therapy. Methods DOX (0.01–20 μM) combination with abemaciclib (ABE, 1–6 μM) was evaluated over 72 hours on Rb-positive (MDA-MB-231) and Rb-negative (MDA-MB-468) TNBC cells. Combination indices (CI) for DOX+ABE were calculated using Compusyn software. The TNBC cell viability time-course and fold-change from the control of phosphorylated-Rb (pRb) protein expression were measured with CCK8-kit and enzyme-linked immunosorbent assay. A cell-based pharmacodynamic (PD) model was developed, where pRb protein dynamics drove cell viability response. Clinical pharmacokinetic (PK) models for DOX, L_DOX, and ABE were developed using data extracted from the literature. After scaling cancer cell growth to clinical TNBC tumor growth, the time-to-tumor progression (TTP) was predicted for human dosing regimens of DOX, ABE, and DOX+ABE. Results DOX and ABE combinations were synergistic (CI<1) in MDA-MB-231 and antagonistic (CI>1) in MDA-MB-468. The maximum inhibitory effects (Imax) for both drugs were set to one. The drug concentrations producing 50% of Imax for DOX and ABE were 0.565 and 2.31 μM (MDA-MB-231) and 0.121 and 1.61 μM (MDA-MB-468). The first-orders rate constants of abemaciclib absorption (ka) and doxorubicin release from L_DOX (kRel) were estimated at 0.31 and 0.013 h−1. Their linear clearances were 21.7 (ABE) and 32.1 L/h (DOX). The estimated TTP for intravenous DOX (75 mg/m2 every 21 days), intravenous L_DOX (50 mg/m2 every 28 days), and oral ABE (200 mg twice a day) were 125, 31.2, and 8.6 days shorter than drug-free control. The TTP for DOX+ABE and L_DOX+ABE were 312 days and 47.5 days shorter than control, both larger than single-agent DOX, suggesting improved activity with the DOX+ABE combination. Conclusion The developed translational systems-based PK/PD model provides an in vitro-to-clinic modeling platform for DOX+ABE in TNBC. Although model-based simulations suggest improved outcomes with combination over monotherapy, tumor relapse was not prevented with the combination. Hence, DOX+ABE may not be an effective treatment combination for TNBC.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jovin Lezeau
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co, Inc, Kenilworth, New Jersey, USA
| |
Collapse
|
40
|
Braal CL, Jongbloed EM, Wilting SM, Mathijssen RHJ, Koolen SLW, Jager A. Inhibiting CDK4/6 in Breast Cancer with Palbociclib, Ribociclib, and Abemaciclib: Similarities and Differences. Drugs 2021; 81:317-331. [PMID: 33369721 PMCID: PMC7952354 DOI: 10.1007/s40265-020-01461-2] [Citation(s) in RCA: 204] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2020] [Indexed: 12/22/2022]
Abstract
The cyclin-dependent kinase (CDK) 4/6 inhibitors belong to a new class of drugs that interrupt proliferation of malignant cells by inhibiting progression through the cell cycle. Three such inhibitors, palbociclib, ribociclib, and abemaciclib were recently approved for breast cancer treatment in various settings and combination regimens. On the basis of their impressive efficacy, all three CDK4/6 inhibitors now play an important role in the treatment of patients with HR+, HER2- breast cancer; however, their optimal use still needs to be established. The three drugs have many similarities in both pharmacokinetics and pharmacodynamics. However, there are some differences on the basis of which the choice for a particular CDK4/6 inhibitor for an individual patient can be important. In this article, the clinical pharmacokinetic and pharmacodynamic profiles of the three CDK4/6 inhibitors are reviewed and important future directions of the clinical applicability of CDK4/6 inhibitors will be discussed.
Collapse
Affiliation(s)
- C Louwrens Braal
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | - Elisabeth M Jongbloed
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Saskia M Wilting
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus University MC Cancer Institute, Dr. Molewaterplein 40, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| |
Collapse
|
41
|
Wright MD, Abraham MJ. Preclinical discovery and development of abemaciclib used to treat breast cancer. Expert Opin Drug Discov 2021; 16:485-496. [PMID: 33280445 DOI: 10.1080/17460441.2021.1853097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Introduction: Cyclin-dependent kinase (CDK) 4/6 inhibitors have altered the standard-of-care treatment for patients with ER-positive, HER2-negative metastatic breast cancer. One such inhibitor, abemaciclib, a reversible ATP-competitive CDK4/6 inhibitor developed by Eli Lilly and Company, was approved by the FDA for ER-positive, HER2-negative metastatic breast cancer.Areas covered: Preclinical studies revealed abemaciclib's distinct structure, efficacy as monotherapy, and ability to penetrate the Central Nervous System. In this review, the authors have examined the literature regarding the development of CDK 4/6 inhibitors before providing a focused review on the preclinical discovery and development of abemaciclib. The authors then conclude their manuscript by providing their expert opinion and future perspectives.Expert opinion: Understanding the genesis and evolution from concept to approval and beyond will allow one to analyze the impact of abemaciclib. With its unique characteristics, abemaciclib has provided a meaningful addition to the therapeutic arsenal for metastatic breast cancer. There is, however, a need for predictive biomarkers to identify patients who may not benefit from or may develop resistance to CDK4/6 inhibition.
Collapse
Affiliation(s)
- Matthew D Wright
- Department of Hematology Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Md Jame Abraham
- Department of Hematology Oncology, Taussig Cancer Institute; Lerner College of Medicine, Cleveland Clinic, Cleveland
| |
Collapse
|
42
|
Aneuploidy increases resistance to chemotherapeutics by antagonizing cell division. Proc Natl Acad Sci U S A 2020; 117:30566-30576. [PMID: 33203674 DOI: 10.1073/pnas.2009506117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aneuploidy, defined as whole chromosome gains and losses, is associated with poor patient prognosis in many cancer types. However, the condition causes cellular stress and cell cycle delays, foremost in G1 and S phase. Here, we investigate how aneuploidy causes both slow proliferation and poor disease outcome. We test the hypothesis that aneuploidy brings about resistance to chemotherapies because of a general feature of the aneuploid condition-G1 delays. We show that single chromosome gains lead to increased resistance to the frontline chemotherapeutics cisplatin and paclitaxel. Furthermore, G1 cell cycle delays are sufficient to increase chemotherapeutic resistance in euploid cells. Mechanistically, G1 delays increase drug resistance to cisplatin and paclitaxel by reducing their ability to damage DNA and microtubules, respectively. Finally, we show that our findings are clinically relevant. Aneuploidy correlates with slowed proliferation and drug resistance in the Cancer Cell Line Encyclopedia (CCLE) dataset. We conclude that a general and seemingly detrimental effect of aneuploidy, slowed proliferation, provides a selective benefit to cancer cells during chemotherapy treatment.
Collapse
|
43
|
Forrest WF, Alicke B, Mayba O, Osinska M, Jakubczak M, Piatkowski P, Choniawko L, Starr A, Gould SE. Generalized Additive Mixed Modeling of Longitudinal Tumor Growth Reduces Bias and Improves Decision Making in Translational Oncology. Cancer Res 2020; 80:5089-5097. [PMID: 32978171 DOI: 10.1158/0008-5472.can-20-0342] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/01/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Scientists working in translational oncology regularly conduct multigroup studies of mice with serially measured tumors. Longitudinal data collected can feature mid-study dropouts and complex nonlinear temporal response patterns. Parametric statistical models such as ones assuming exponential growth are useful for summarizing tumor volume over ranges for which the growth model holds, with the advantage that the model's parameter estimates can be used to summarize between-group differences in tumor volume growth with statistical measures of uncertainty. However, these same assumed growth models are too rigid to recapitulate patterns observed in many experiments, which in turn diminishes the effectiveness of their parameter estimates as summary statistics. To address this problem, we generalized such models by adopting a nonparametric approach in which group-level response trends for logarithmically scaled tumor volume are estimated as regression splines in a generalized additive mixed model. We also describe a novel summary statistic for group level splines over user-defined, experimentally relevant time ranges. This statistic reduces to the log-linear growth rate for data well described by exponential growth and also has a sampling distribution across groups that is well approximated by a multivariate Gaussian, thus facilitating downstream analysis. Real-data examples show that this nonparametric approach not only enhances fidelity in describing nonlinear growth scenarios but also improves statistical power to detect interregimen differences when compared with the simple exponential model so that it generalizes the linear mixed effects paradigm for analysis of log-linear growth to nonlinear scenarios in a useful way. SIGNIFICANCE: This work generalizes the statistical linear mixed modeling paradigm for summarizing longitudinally measured preclinical tumor volume studies to encompass studies with nonlinear and nonmonotonic group response patterns in a statistically rigorous manner.
Collapse
Affiliation(s)
- William F Forrest
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, California.
| | - Bruno Alicke
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| | - Oleg Mayba
- Department of OMNI Bioinformatics, Genentech, Inc., South San Francisco, California
| | - Magdalena Osinska
- Department of Research Engineering and Software Informatics, Genentech, Inc., South San Francisco, California
| | | | - Pawel Piatkowski
- Roche Global IT Solutions Centre: Research and Early Development Support, Roche Pharmaceuticals, Warsaw, Poland
| | - Lech Choniawko
- Roche Global IT Solutions Centre: Regions, Diagnostics, and Research Technology Center, Roche Pharmaceuticals, Wroclaw, Poland
| | - Alice Starr
- Insitro, Inc., South San Francisco, California
| | - Stephen E Gould
- Department of Translational Oncology, Genentech, Inc., South San Francisco, California
| |
Collapse
|
44
|
Roberts PJ, Kumarasamy V, Witkiewicz AK, Knudsen ES. Chemotherapy and CDK4/6 Inhibitors: Unexpected Bedfellows. Mol Cancer Ther 2020; 19:1575-1588. [PMID: 32546660 PMCID: PMC7473501 DOI: 10.1158/1535-7163.mct-18-1161] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/17/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Cyclin-dependent kinases 4 and 6 (CDK4/6) have emerged as important therapeutic targets. Pharmacologic inhibitors of these kinases function to inhibit cell-cycle progression and exert other important effects on the tumor and host environment. Because of their impact on the cell cycle, CDK4/6 inhibitors (CDK4/6i) have been hypothesized to antagonize the antitumor effects of cytotoxic chemotherapy in tumors that are CDK4/6 dependent. However, there are multiple preclinical studies that illustrate potent cooperation between CDK4/6i and chemotherapy. Furthermore, the combination of CDK4/6i and chemotherapy is being tested in clinical trials to both enhance antitumor efficacy and limit toxicity. Exploitation of the noncanonical effects of CDK4/6i could also provide an impetus for future studies in combination with chemotherapy. Thus, while seemingly mutually exclusive mechanisms are at play, the combination of CDK4/6 inhibition and chemotherapy could exemplify rational medicine.
Collapse
Affiliation(s)
| | - Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, New York.
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
45
|
Knudsen ES, Shapiro GI, Keyomarsi K. Selective CDK4/6 Inhibitors: Biologic Outcomes, Determinants of Sensitivity, Mechanisms of Resistance, Combinatorial Approaches, and Pharmacodynamic Biomarkers. Am Soc Clin Oncol Educ Book 2020; 40:115-126. [PMID: 32421454 PMCID: PMC7306922 DOI: 10.1200/edbk_281085] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CDK4/6 inhibitors are now part of the standard armamentarium for hormone receptor-positive breast cancer. In this article, we review the biologic outcomes imposed by these drugs on cancer cells, determinants of response, mechanisms of intrinsic and acquired resistance, as well as combinatorial approaches emanating from mechanistic studies that may allow use of these agents to extend beyond breast cancer. In addition, we will address tumor-, imaging-, and blood-based pharmacodynamic biomarkers that can inform rationally designed trials as clinical development continues.
Collapse
Affiliation(s)
- Erik S. Knudsen
- Center for Personalized Medicine and Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY
| | - Geoffrey I. Shapiro
- Early Drug Development Center, Department of Medical Oncology, Dana-Farber Cancer Institute and Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
46
|
Álvarez-Fernández M, Malumbres M. Mechanisms of Sensitivity and Resistance to CDK4/6 Inhibition. Cancer Cell 2020; 37:514-529. [PMID: 32289274 DOI: 10.1016/j.ccell.2020.03.010] [Citation(s) in RCA: 212] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/04/2020] [Accepted: 03/12/2020] [Indexed: 12/25/2022]
Abstract
Inhibiting the cell-cycle kinases CDK4 and CDK6 results in significant therapeutic effect in patients with advanced hormone-positive breast cancer. The efficacy of this strategy is, however, limited by innate or acquired resistance mechanisms and its application to other tumor types is still uncertain. Here, through an integrative analysis of sensitivity and resistance mechanisms, we discuss the use of CDK4/6 inhibitors in combination with available targeted therapies, immunotherapy, or classical chemotherapy with the aim of improving future therapeutic uses of CDK4/6 inhibition in a variety of cancers.
Collapse
Affiliation(s)
- Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
47
|
Abstract
Chemotherapy remains the main treatment option for patients with several tumor types. In this issue of Cancer Cell, Salvador-Barbero et al. demonstrate that treatment with CDK4/6 inhibitors after application of taxanes (or other chemotherapeutic compounds) strongly potentiates the anti-tumor effect due to repression of DNA repair machinery.
Collapse
Affiliation(s)
- Anne Fassl
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavantik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Piotr Sicinski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavantik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
48
|
Salvador-Barbero B, Álvarez-Fernández M, Zapatero-Solana E, El Bakkali A, Menéndez MDC, López-Casas PP, Di Domenico T, Xie T, VanArsdale T, Shields DJ, Hidalgo M, Malumbres M. CDK4/6 Inhibitors Impair Recovery from Cytotoxic Chemotherapy in Pancreatic Adenocarcinoma. Cancer Cell 2020; 37:340-353.e6. [PMID: 32109375 DOI: 10.1016/j.ccell.2020.01.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 01/06/2023]
Abstract
Inhibition of the cell-cycle kinases CDK4 and CDK6 is now part of the standard treatment in advanced breast cancer. CDK4/6 inhibitors, however, are not expected to cooperate with DNA-damaging or antimitotic chemotherapies as the former prevent cell-cycle entry, thus interfering with S-phase- or mitosis-targeting agents. Here, we report that sequential administration of CDK4/6 inhibitors after taxanes cooperates to prevent cellular proliferation in pancreatic ductal adenocarcinoma (PDAC) cells, patient-derived xenografts, and genetically engineered mice with Kras G12V and Cdkn2a-null mutations frequently observed in PDAC. This effect correlates with the repressive activity of CDK4/6 inhibitors on homologous recombination proteins required for the recovery from chromosomal damage. CDK4/6 inhibitors also prevent recovery from multiple DNA-damaging agents, suggesting broad applicability for their sequential administration after available chemotherapeutic agents.
Collapse
Affiliation(s)
- Beatriz Salvador-Barbero
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain; Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Mónica Álvarez-Fernández
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Elisabet Zapatero-Solana
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Aicha El Bakkali
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | | | - Pedro P López-Casas
- Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Tomas Di Domenico
- Bioinformatics Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain
| | - Tao Xie
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - Todd VanArsdale
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA
| | - David J Shields
- Oncology R&D, Pfizer Inc, 10646 Science Center Dr, San Diego, CA 92121, USA.
| | - Manuel Hidalgo
- Gastrointestinal Unit, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain; Division of Hematology and Medical Oncology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Marcos Malumbres
- Cell Division and Cancer Group, Spanish National Cancer Research Centre (CNIO) Madrid, Madrid 28029, Spain.
| |
Collapse
|
49
|
CDK4/6 inhibitors in P16/HPV16-negative squamous cell carcinoma of the head and neck. Eur Arch Otorhinolaryngol 2020; 277:1273-1280. [PMID: 32162057 DOI: 10.1007/s00405-020-05891-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/25/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Addition of CDK4/6 inhibitors to a variety of established treatments in squamous cell carcinoma of the head and neck (SCCHN) has the potential to improve responses to other therapies and may help overcome treatment resistance. The SCCHN is a heterogeneous group of cancers of the oral cavity, the pharynx and the larynx with poor prognosis despite the aggressive multimodal therapies. In the past decade, significant advances were made in understanding of the molecular and genetic abnormalities leading to oncogenesis in SCCHN. RECENT FINDINGS Besides EGFR targeting agents, antiangiogenic agents have been shown to produce antitumor activity in these tumors. The cyclin D-cyclin-dependent kinase (CDK) 4/6-inhibitor of CDK4 (INK4)-retinoblastoma (Rb) pathway regulates cellular proliferation by controlling the G1 to S cell cycle checkpoint. In SCCHN, the Rb pathway is frequently altered through amplification of CCND1 (cyclin D1) or deletion of CDKN2A (cyclin-dependent kinase inhibitor 2A) coding for p16INK4A, and thus promoting proliferation. This article summarizes what we actually know of the place of CDK4/6 inhibitors in the therapeutic arsenal of SCCHN. CDK4/6 inhibitors could serve as a method to target these tumors, and both p16 loss and CCND1 amplification could be investigated as biomarkers.
Collapse
|
50
|
Kumarasamy V, Ruiz A, Nambiar R, Witkiewicz AK, Knudsen ES. Chemotherapy impacts on the cellular response to CDK4/6 inhibition: distinct mechanisms of interaction and efficacy in models of pancreatic cancer. Oncogene 2019; 39:1831-1845. [PMID: 31745297 PMCID: PMC7047578 DOI: 10.1038/s41388-019-1102-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/26/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a therapy recalcitrant disease characterized by the aberrations in multiple genes that drive pathogenesis and limit therapeutic response. While CDK4/6 represents a downstream target of both KRAS mutation and loss of the CDKN2A tumor suppressor in PDAC, clinical and preclinical studies indicate that pharmacological CDK4/6 inhibitors are only modestly effective. Since chemotherapy represents the established backbone of PDAC treatment we evaluated the interaction of CDK4/6 inhibitors with gemcitabine and taxanes that are employed in the treatment of PDAC. Herein, we demonstrate that the difference in mechanisms of actions of chemotherapeutic agents elicit distinct effects on the cellular response to CDK4/6 inhibition. Gemcitabine largely ablates the function of CDK4/6 inhibition in S-phase arrested cells when administered contemporaneously; although, when cells recover from S-phase block they exhibit sensitivity to CDK4/6 inhibition. In contrast, pharmacological inhibition of CDK4/6 yields a cooperative cytostatic effect in combination with docetaxel and prevents adaptation and cell cycle re-entry, which is a common basis for resistance to such agents. Importantly, using organoid and PDX models we could confirm the cooperative effects between chemotherapy and CDK4/6 inhibition. These data indicate that the combination of cytotoxic and cytostatic agents could represent an important modality in those tumor types that are relatively resistant to CDK4/6 inhibitors.
Collapse
Affiliation(s)
- Vishnu Kumarasamy
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amanda Ruiz
- Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Ram Nambiar
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA.,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Agnieszka K Witkiewicz
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| | - Erik S Knudsen
- Center for Personalized Medicine, Roswell Park Cancer Institute, Buffalo, NY, USA. .,Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|