1
|
Baczyk D, Audette MC, Coyaud E, Raught B, Kingdom JC. Spatiotemporal distribution of small ubiquitin-like modifiers during human placental development and in response to oxidative and inflammatory stress. J Physiol 2018; 596:1587-1600. [PMID: 29468681 PMCID: PMC5924830 DOI: 10.1113/jp275288] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 02/05/2018] [Indexed: 12/28/2022] Open
Abstract
Key points The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Abstract SUMOylation is a dynamic, reversible post‐translational modification that regulates cellular protein stability and localization. SUMOylation occurs in response to various stressors, including hypoxia and inflammation, features common in the obstetrical condition of pre‐eclampsia. SUMO isoforms 1–4 have recently been identified in the human placenta, but less is known about their role in response to pre‐eclamptic stress. We hypothesized that SUMOylation components have a unique spatiotemporal distribution during placental development and that their subcellular localization can be further modulated by extra‐cellular stressors. Placental SUMO expression was examined across gestation. First‐trimester human placental explants and JAR cells were subjected to hypoxia or TNF‐α cytokine, and subcellular translocation of SUMOs was monitored. SUMOylation target proteins were elucidated using mass spectrometry and proximity ligation assay. Placental SUMO‐1 and SUMO‐4 were restricted to villous cytotrophoblast cells in first trimester and syncytium by term, while SUMO‐2/3 staining was evenly distributed throughout the trophoblast across gestation. In placental villous explants, oxidative stress induced hyperSUMOylation of SUMO‐1 and SUMO‐4 in the syncytial cytoplasm, whereas SUMO‐2/3 nuclear expression increased. Oxidative stress also upregulated cytoplasmic SUMO‐1 and SUMO‐4 protein expression (P < 0.05), similar to pre‐eclamptic placentas. Keratins were identified as major targets of placental SUMOylation. Oxidative stress increased the cytokeratin‐7 to SUMO‐1 and SUMO‐4 interactions, while inflammatory stress increased its interaction with SUMO‐2/3. Overall, SUMOs display a unique spatiotemporal distribution in normal human placental development. Our data indicate SUMOylation in pre‐eclampsia, which may impair the stability of cytoskeleton filaments and thus promote trophoblast shedding into the maternal circulation in this condition. The post‐translational modification of target proteins by SUMOylation occurs in response to stressful stimuli in a variety of organ systems. Small ubiquitin‐like modifier (SUMO) isoforms 1–4 have recently been identified in the human placenta, and are upregulated in the major obstetrical complication of pre‐eclampsia. This is the first study to characterize the spatiotemporal distribution of SUMO isoforms and their targets during placental development across gestation and in response to stress induced by pre‐eclampsia and chorioamnionitis. Keratins were identified as major targets of placental SUMOylation. The interaction with SUMOs and cytoskeletal filaments provides evidence for SUMOylation possibly contributing to underlying dysfunctional trophoblast turnover, which is a hallmark feature of pre‐eclampsia. Further understanding the role of individual SUMO isoforms and SUMOylation underlying placental dysfunction may provide a target for a novel therapeutic candidate as an approach for treating pre‐eclampsia complicated with placental pathology.
Collapse
Affiliation(s)
- Dora Baczyk
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada
| | - Melanie C Audette
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G1L7, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G1L7, Canada
| | - John C Kingdom
- Program in Development and Fetal Health, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, M5T3H7, Canada.,Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.,Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Sinai Health System, Toronto, Ontario, M5G 1X5, Canada
| |
Collapse
|
2
|
Wang Y, Lin Z, Huang H, He H, Yang L, Chen T, Yang T, Ren N, Jiang Y, Xu W, Kamp DW, Liu T, Liu G. AMPK is required for PM2.5-induced autophagy in human lung epithelial A549 cells. Int J Clin Exp Med 2015; 8:58-72. [PMID: 25784975 PMCID: PMC4358430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 01/07/2015] [Indexed: 06/04/2023]
Abstract
The aim is to investigate the molecular mechanisms underlying the PM2.5-induced autophagy in human lung cancer epithelial cells (A549). The effects of the PM2.5 on morphological and biochemical markers of autophagy in A549 were analyzed by electron microscopy, GFP-LC3 puncta was observed by confocal fluorescence microscope. The effects of phosphorylation of AMPK, mTOR, AKT, ERK, JNK, and p53 on LC3II in A549 were observed following PM2.5 exposure; the role of autophagy in PM2.5-induced apoptosis was examined using 3-methyladenine and rapamycin. PM2.5 induced morphological and biochemical markers of autophagy in A549. Phosphorylation of AMPK and dephosphorylation of mTOR were observed following PM2.5 treatment, and AMPK inhibitor blocked LC3B-II expression. In addition, we demonstrated that PM2.5-induced autophagy confers a pro-survival role in host defense.
Collapse
Affiliation(s)
- Yahong Wang
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Ziying Lin
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Haili Huang
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Huijuan He
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Lawei Yang
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Ting Chen
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Teng Yang
- Clinical Research Center, Guangdong Medical CollegeChina
| | - Nina Ren
- Clinical Research Center, Guangdong Medical CollegeChina
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical CollegeChina
| | - Yun Jiang
- Clinical Research Center, Guangdong Medical CollegeChina
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical CollegeChina
| | - Wenya Xu
- Clinical Research Center, Guangdong Medical CollegeChina
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical CollegeChina
| | - David W Kamp
- Department of Medicine, Northwestern University Feinberg School of Medicine and Jesse Brown VA Medical CenterUSA
| | - Tie Liu
- Immunology and Tumor Research Instituted, The First Affiliated Hospital, Health Science Center of Xi’an Jiaotong UniversityChina
| | - Gang Liu
- Clinical Research Center, Guangdong Medical CollegeChina
- Department of Respiratory Medicine, Affiliated Hospital of Guangdong Medical CollegeChina
| |
Collapse
|
3
|
Wasik U, Filipek A. Non-nuclear function of sumoylated proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2878-2885. [PMID: 25110347 DOI: 10.1016/j.bbamcr.2014.07.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/11/2014] [Accepted: 07/30/2014] [Indexed: 12/16/2022]
Abstract
Post-translational modification by the SUMO moiety is now regarded as one of the key regulatory modifications in eukaryotic cells. Up to now, plenty of sumoylated proteins have been found to be involved in nuclear processes such as chromatin organization, transcription and DNA repair as well as in other cellular functions. Since the number of data concerning sumoylated proteins and their function outside the nucleus has grown rapidly, in this review we summarized the results describing the non-nuclear role of SUMO substrates. In particular, we focused on the role of sumoylation in the regulation of channel activity, receptor function, G-protein signaling, activity of enzymes, cytoskeletal organization, exocytosis, autophagy and mitochondrial dynamics.
Collapse
Affiliation(s)
- Urszula Wasik
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Warsaw, Poland.
| |
Collapse
|
4
|
Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 2013; 5:1009-21. [PMID: 23734684 DOI: 10.4155/fmc.13.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.
Collapse
|
5
|
Chae YB, Kim MM. Activation of p53 by spermine mediates induction of autophagy in HT1080 cells. Int J Biol Macromol 2013; 63:56-63. [PMID: 24189165 DOI: 10.1016/j.ijbiomac.2013.10.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/25/2013] [Accepted: 10/29/2013] [Indexed: 12/19/2022]
Abstract
The recent evidences indicate that autophagy is associated with a number of pathological processes including cancer, muscular disorder and neurodegeneration in addition to longevity. The efficacy of spermine was investigated on induction of autophagy through histone deacetylation and p53 activation in human fibrosarcoma cell line, HT1080. In this study, it was discovered that spermine increases the activity of HAT and autophagy. It was also identified that the transcriptional activation of p53 and the activation of p21 promoter by spermine are related to the induction of autophagy in reporter gene assay. Furthermore, western blot analyses demonstrated that spermine modulates the expression of proteins related to autophagy and apoptosis. The expression levels of Ac-histone H3, HDAC1, HAT1, p300 and SIRT1 were increased in HT1080 cells treated with spermine. In addition, the expression levels of protein such as acetyl-p53, p-p53, Bcl-2 and caspase-9 inducing apoptosis were increased in the presence of spermine. Moreover, the levels of Mdm2 and caspase-3 expression were reduced in the cells exposed to spermine compared to blank group. These results suggest that activation of HAT in the presence of spermine promotes the induction of autophagy in HT1080 cells through the enhanced activity of p-p53 and acetyl p53.
Collapse
Affiliation(s)
- Yong-Byung Chae
- Department of Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea
| | - Moon-Moo Kim
- Department of Chemistry, Dong-Eui University, Busan 614-714, Republic of Korea.
| |
Collapse
|
6
|
Sanhaji M, Louwen F, Zimmer B, Kreis NN, Roth S, Yuan J. Polo-like kinase 1 inhibitors, mitotic stress and the tumor suppressor p53. Cell Cycle 2013; 12:1340-51. [PMID: 23574746 PMCID: PMC3674062 DOI: 10.4161/cc.24573] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 12/21/2022] Open
Abstract
Polo-like kinase 1 has been established as one of the most attractive targets for molecular cancer therapy. In fact, multiple small-molecule inhibitors targeting this kinase have been developed and intensively investigated. Recently, it has been reported that the cytotoxicity induced by Plk1 inhibition is elevated in cancer cells with inactive p53, leading to the hypothesis that inactive p53 is a predictive marker for the response of Plk1 inhibition. In our previous study based on different cancer cell lines, we showed that cancer cells with wild type p53 were more sensitive to Plk1 inhibition by inducing more apoptosis, compared with cancer cells depleted of p53. In the present work, we further demonstrate that in the presence of mitotic stress induced by different agents, Plk1 inhibitors strongly induced apoptosis in HCT116 p53(+/+) cells, whereas HCT116 p53(-/-) cells arrested in mitosis with less apoptosis. Depletion of p53 in HCT116 p53(+/+) or U2OS cells reduced the induction of apoptosis. Moreover, the surviving HCT116 p53(-/-) cells showed DNA damage and a strong capability of colony formation. Plk1 inhibition in combination with other anti-mitotic agents inhibited proliferation of tumor cells more strongly than Plk1 inhibition alone. Taken together, the data underscore that functional p53 strengthens the efficacy of Plk1 inhibition alone or in combination by strongly activating cell death signaling pathways. Further studies are required to investigate if the long-term outcomes of losing p53, such as low differential grade of tumor cells or defective DNA damage checkpoint, are responsible for the cytotoxicity of Plk1 inhibition.
Collapse
Affiliation(s)
- Mourad Sanhaji
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Susanne Roth
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics; School of Medicine; J.W. Goethe-University; Frankfurt, Germany
| |
Collapse
|