1
|
Chmurska A, Matczak K, Marczak A. Two Faces of Autophagy in the Struggle against Cancer. Int J Mol Sci 2021; 22:2981. [PMID: 33804163 PMCID: PMC8000091 DOI: 10.3390/ijms22062981] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy can play a double role in cancerogenesis: it can either inhibit further development of the disease or protect cells, causing stimulation of tumour growth. This phenomenon is called "autophagy paradox", and is characterised by the features that the autophagy process provides the necessary substrates for biosynthesis to meet the cell's energy needs, and that the over-programmed activity of this process can lead to cell death through apoptosis. The fight against cancer is a difficult process due to high levels of resistance to chemotherapy and radiotherapy. More and more research is indicating that autophagy may play a very important role in the development of resistance by protecting cancer cells, which is why autophagy in cancer therapy can act as a "double-edged sword". This paper attempts to analyse the influence of autophagy and cancer stem cells on tumour development, and to compare new therapeutic strategies based on the modulation of these processes.
Collapse
Affiliation(s)
- Anna Chmurska
- Doctoral School of Exact and Natural Sciences, University of Lodz, Banacha Street 12/16, 90-237 Lodz, Poland
| | - Karolina Matczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| | - Agnieszka Marczak
- Department of Medical Biophysics, Faculty of Biology and Environmental Protection, Institute of Biophysics, University of Lodz, Pomorska Street 141/143, 90-236 Lodz, Poland; (K.M.); (A.M.)
| |
Collapse
|
2
|
Nazio F, Bordi M, Cianfanelli V, Locatelli F, Cecconi F. Autophagy and cancer stem cells: molecular mechanisms and therapeutic applications. Cell Death Differ 2019; 26:690-702. [PMID: 30728463 PMCID: PMC6460398 DOI: 10.1038/s41418-019-0292-y] [Citation(s) in RCA: 275] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
Autophagy and mitophagy act in cancer as bimodal processes, whose differential functions strictly depend on cancer ontogenesis, progression, and type. For instance, they can act to promote cancer progression by helping cancer cells survive stress or, instead, when mutated or abnormal, to induce carcinogenesis by influencing cell signaling or promoting intracellular toxicity. For this reason, the study of autophagy in cancer is the main focus of many researchers and several clinical trials are already ongoing to manipulate autophagy and by this way determine the outcome of disease therapy. Since the establishment of the cancer stem cell (CSC) theory and the discovery of CSCs in individual cancer types, autophagy and mitophagy have been proposed as key mechanisms in their homeostasis, dismissal or spread, even though we still miss a comprehensive view of how and by which regulatory molecules these two processes drive cell fate. In this review, we will dive into the deep water of autophagy, mitophagy, and CSCs and offer novel viewpoints on possible therapeutic strategies, based on the modulation of these degradative systems.
Collapse
Affiliation(s)
- Francesca Nazio
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
| | - Matteo Bordi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy
| | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark
| | - Franco Locatelli
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy
- Department of Gynecology/Obstetrics and Pediatrics, Sapienza University of Rome, Rome, Italy
| | - Francesco Cecconi
- Department of Oncohaematology and Cellular and Gene Therapy, IRCSS Bambino Gesù Children's Hospital, 00165, Rome, Italy.
- Department of Biology, University of Tor Vergata, 00133, Rome, Italy.
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
3
|
Autophagy defects and related genetic variations in renal cell carcinoma with eosinophilic cytoplasmic inclusions. Sci Rep 2018; 8:9972. [PMID: 29967346 PMCID: PMC6028630 DOI: 10.1038/s41598-018-28369-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/19/2018] [Accepted: 06/21/2018] [Indexed: 12/11/2022] Open
Abstract
The relationship between autophagy and tumour is well studied, but tumour cell morphological changes associated with autophagy defects are rarely reported, especially in renal cell carcinoma (RCC). We collected 10 renal tumour samples with characteristic eosinophilic cytoplasmic inclusions (ECIs) and found that the ECIs were majorly composed of sequestosome 1/P62, neighbor of BRCA1 gene 1 (NBR1), PEX14, and CATALASE1 (CAT1). Further, transmission electron microscopy analysis revealed that ECIs were aggregates of proteinaceous material and peroxisomes. These results confirmed that ECIs in RCCs were the products of autophagy defects. The presence of ECIs was correlated with high Fuhrman grade components of RCCs. Whole-exome sequencing (WES) and Sanger sequencing confirmed that tumours with ECIs showed somatic mutations or high frequency of genetic variations in autophagy-related (ATG) genes, such as ATG7, ATG5, and ATG10. These results indicate that nucleotide changes in ATG genes are associated with autophagy defect, ECI formation, and even tumour grade in RCCs.
Collapse
|
4
|
Huang J, Yang Y, Fang F, Liu K. MALAT1 modulates the autophagy of retinoblastoma cell through miR‐124‐mediated stx17 regulation. J Cell Biochem 2018; 119:3853-3863. [DOI: 10.1002/jcb.26464] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/21/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jun Huang
- Department of OrthopedicsThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yuting Yang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fang Fang
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Ke Liu
- Department of OphthalmologyThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
5
|
Liu X, Sun K, Wang H, Dai Y. Knockdown of retinoblastoma protein may sensitize glioma cells to cisplatin through inhibition of autophagy. Neurosci Lett 2016; 620:137-42. [DOI: 10.1016/j.neulet.2016.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2016] [Revised: 03/28/2016] [Accepted: 04/01/2016] [Indexed: 11/25/2022]
|
6
|
First trimester human placental factors induce breast cancer cell autophagy. Breast Cancer Res Treat 2015; 149:645-54. [DOI: 10.1007/s10549-015-3266-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/22/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022]
|
7
|
Poillet L, Pernodet N, Boyer-Guittaut M, Adami P, Borg C, Jouvenot M, Delage-Mourroux R, Despouy G. QSOX1 inhibits autophagic flux in breast cancer cells. PLoS One 2014; 9:e86641. [PMID: 24475161 PMCID: PMC3901705 DOI: 10.1371/journal.pone.0086641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2013] [Accepted: 12/13/2013] [Indexed: 12/23/2022] Open
Abstract
The QSOX1 protein (Quiescin Sulfhydryl oxidase 1) catalyzes the formation of disulfide bonds and is involved in the folding and stability of proteins. More recently, QSOX1 has been associated with tumorigenesis and protection against cellular stress. It has been demonstrated in our laboratory that QSOX1 reduces proliferation, migration and invasion of breast cancer cells in vitro and reduces tumor growth in vivo. In addition, QSOX1 expression has been shown to be induced by oxidative or ER stress and to prevent cell death linked to these stressors. Given the function of QSOX1 in these two processes, which have been previously linked to autophagy, we wondered whether QSOX1 might be regulated by autophagy inducers and play a role in this catabolic process. To answer this question, we used in vitro models of breast cancer cells in which QSOX1 was overexpressed (MCF-7) or extinguished (MDA-MB-231). We first showed that QSOX1 expression is induced following amino acid starvation and maintains cellular homeostasis. Our results also indicated that QSOX1 inhibits autophagy through the inhibition of autophagosome/lysosome fusion. Moreover, we demonstrated that inhibitors of autophagy mimic the effect of QSOX1 on cell invasion, suggesting that its role in this process is linked to the autophagy pathway. Previously published data demonstrated that extinction of QSOX1 promotes tumor growth in NOG mice. In this study, we further demonstrated that QSOX1 null tumors present lower levels of the p62 protein. Altogether, our results demonstrate for the first time a role of QSOX1 in autophagy in breast cancer cells and tumors.
Collapse
Affiliation(s)
- Laura Poillet
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Nicolas Pernodet
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Michaël Boyer-Guittaut
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Pascale Adami
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Christophe Borg
- Université de Franche-Comté, Inserm UMR 1098, Relation Hôte Greffon et Ingénierie Cellulaire et Génique, Besançon, Doubs, France
| | - Michèle Jouvenot
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Régis Delage-Mourroux
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
| | - Gilles Despouy
- Université de Franche-Comté, Estrogènes, Expression Génique et Pathologies du Système Nerveux Central, U.F.R. Sciences et Techniques, Besançon, Doubs, France
- * E-mail:
| |
Collapse
|
8
|
Manipulation of autophagy in cancer cells: an innovative strategy to fight drug resistance. Future Med Chem 2013; 5:1009-21. [PMID: 23734684 DOI: 10.4155/fmc.13.85] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Autophagy is a catabolic process activated by stress conditions and nutrient deprivation, to which it reacts by promoting the degradation of damaged organelles and misfolded/aggregated proteins, as well as generating new energetic pools. Paradoxically, in cancer cells, which signal the dangerous microenvironment occurring during clinical therapies, autophagy could promote their proliferation and sustain drug resistance. Special attention is given to autophagy manipulation in order to counteract drug resistance of cancer cells. This article describes the basic properties of autophagy and focuses on the strategies of manipulating it.
Collapse
|
9
|
Guan JL, Simon AK, Prescott M, Menendez JA, Liu F, Wang F, Wang C, Wolvetang E, Vazquez-Martin A, Zhang J. Autophagy in stem cells. Autophagy 2013; 9:830-49. [PMID: 23486312 DOI: 10.4161/auto.24132] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a highly conserved cellular process by which cytoplasmic components are sequestered in autophagosomes and delivered to lysosomes for degradation. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining cellular homeostasis as well as remodeling during normal development, and dysfunctions in autophagy have been associated with a variety of pathologies including cancer, inflammatory bowel disease and neurodegenerative disease. Stem cells are unique in their ability to self-renew and differentiate into various cells in the body, which are important in development, tissue renewal and a range of disease processes. Therefore, it is predicted that autophagy would be crucial for the quality control mechanisms and maintenance of cellular homeostasis in various stem cells given their relatively long life in the organisms. In contrast to the extensive body of knowledge available for somatic cells, the role of autophagy in the maintenance and function of stem cells is only beginning to be revealed as a result of recent studies. Here we provide a comprehensive review of the current understanding of the mechanisms and regulation of autophagy in embryonic stem cells, several tissue stem cells (particularly hematopoietic stem cells), as well as a number of cancer stem cells. We discuss how recent studies of different knockout mice models have defined the roles of various autophagy genes and related pathways in the regulation of the maintenance, expansion and differentiation of various stem cells. We also highlight the many unanswered questions that will help to drive further research at the intersection of autophagy and stem cell biology in the near future.
Collapse
Affiliation(s)
- Jun-Lin Guan
- Division of Molecular Medicine, Department of Internal Medicine and Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|