1
|
Emamjomeh A, Choobineh D, Hajieghrari B, MahdiNezhad N, Khodavirdipour A. DNA-protein interaction: identification, prediction and data analysis. Mol Biol Rep 2019; 46:3571-3596. [PMID: 30915687 DOI: 10.1007/s11033-019-04763-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/14/2019] [Indexed: 12/30/2022]
Abstract
Life in living organisms is dependent on specific and purposeful interaction between other molecules. Such purposeful interactions make the various processes inside the cells and the bodies of living organisms possible. DNA-protein interactions, among all the types of interactions between different molecules, are of considerable importance. Currently, with the development of numerous experimental techniques, diverse methods are convenient for recognition and investigating such interactions. While the traditional experimental techniques to identify DNA-protein complexes are time-consuming and are unsuitable for genome-scale studies, the current high throughput approaches are more efficient in determining such interaction at a large-scale, but they are clearly too costly to be practice for daily applications. Hence, according to the availability of much information related to different biological sequences and clearing different dimensions of conditions in which such interactions are formed, with the developments related to the computer, mathematics, and statistics motivate scientists to develop bioinformatics tools for prediction the interaction site(s). Until now, there has been much progress in this field. In this review, the factors and conditions governing the interaction and the laboratory techniques for examining such interactions are addressed. In addition, developed bioinformatics tools are introduced and compared for this reason and, in the end, several suggestions are offered for the promotion of such tools in prediction with much more precision.
Collapse
Affiliation(s)
- Abbasali Emamjomeh
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran.
| | - Darush Choobineh
- Agricultural Biotechnology, Department of Plant Breeding and Biotechnology (PBB), Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Behzad Hajieghrari
- Department of Agricultural Biotechnology, College of Agriculture, Jahrom University, Jahrom, 74135-111, Iran.
| | - Nafiseh MahdiNezhad
- Laboratory of Computational Biotechnology and Bioinformatics (CBB), Department of Plant Breeding and Biotechnology (PBB), University of Zabol, Zabol, 98615-538, Iran
| | - Amir Khodavirdipour
- Division of Human Genetics, Department of Anatomy, St. John's hospital, Bangalore, India
| |
Collapse
|
2
|
Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants. Methods Mol Biol 2018. [PMID: 30043381 DOI: 10.1007/978-1-4939-8657-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The precise positioning of nucleosomes along the underlying DNA is critical for a variety of biological processes, especially in regulating transcription. The interplay between nucleosomes and transcription factors for accessing the underlying DNA sequences is one of the key determinants that affect transcriptional regulation. Moreover, nucleosomes with various packing statuses confer distinct functions in regulating gene expressions in response to various internal or external signals. Therefore, global mapping of nucleosome positions is one informative way to elucidate the relationship between patterns of nucleosome positioning/occupancy and transcriptional regulations. MNase digestion coupled with high-throughput sequencing (MNase-seq) has been utilized widely for global mapping of nucleosome positioning in eukaryotes that have a sequenced genome. We have developed a robust MNase-seq procedure in plants. It mainly includes plant nuclei isolation, treatment of purified nuclei with MNase, gel recovery of MNase-trimmed mononucleosomal DNA with an approximate size of 150 bp, MNase-seq library preparation followed by Illumina sequencing, and data analysis. MNase-seq has already been successfully applied to identify genome-wide nucleosome positioning in model plants, rice, and Arabidopsis thaliana.
Collapse
|
3
|
Traewachiwiphak S, Yokthongwattana C, Ves-Urai P, Charoensawan V, Yokthongwattana K. Gene expression and promoter characterization of heat-shock protein 90B gene (HSP90B) in the model unicellular green alga Chlamydomonas reinhardtii. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:107-116. [PMID: 29807581 DOI: 10.1016/j.plantsci.2018.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/11/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
Molecular chaperones or heat shock proteins are a large protein family with important functions in every cellular organism. Among all types of the heat shock proteins, information on the ER-localized HSP90 protein (HSP90B) and its encoding gene is relatively scarce in the literature, especially in photosynthetic organisms. In this study, expression profiles as well as promoter sequence of the HSP90B gene were investigated in the model green alga Chlamydomonas reinhardtii. We have found that HSP90B is strongly induced by heat and ER stresses, while other short-term exposure to abiotic stresses, such as salinity, dark-to-light transition or light stress does not appear to affect the expression. Promoter truncation analysis as well as chromatin immunoprecipitation using the antibodies recognizing histone H3 and acetylated histone H3, revealed a putative core constitutive promoter sequence between -1 to -253 bp from the transcription start site. Our results also suggested that the nucleotides upstream of the core promoter may contain repressive elements such as putative repressor binding site(s).
Collapse
Affiliation(s)
- Somchoke Traewachiwiphak
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Chotika Yokthongwattana
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Rd., Bangkok 10900, Thailand
| | - Parthompong Ves-Urai
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand; Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kittisak Yokthongwattana
- Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand; Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, 272 Rama 6 Rd., Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Cortijo S, Charoensawan V, Brestovitsky A, Buning R, Ravarani C, Rhodes D, van Noort J, Jaeger KE, Wigge PA. Transcriptional Regulation of the Ambient Temperature Response by H2A.Z Nucleosomes and HSF1 Transcription Factors in Arabidopsis. MOLECULAR PLANT 2017; 10:1258-1273. [PMID: 28893714 PMCID: PMC6175055 DOI: 10.1016/j.molp.2017.08.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 05/18/2023]
Abstract
Temperature influences the distribution, range, and phenology of plants. The key transcriptional activators of heat shock response in eukaryotes, the heat shock factors (HSFs), have undergone large-scale gene amplification in plants. While HSFs are central in heat stress responses, their role in the response to ambient temperature changes is less well understood. We show here that the warm ambient temperature transcriptome is dependent upon the HSFA1 clade of Arabidopsis HSFs, which cause a rapid and dynamic eviction of H2A.Z nucleosomes at target genes. A transcriptional cascade results in the activation of multiple downstream stress-responsive transcription factors, triggering large-scale changes to the transcriptome in response to elevated temperature. H2A.Z nucleosomes are enriched at temperature-responsive genes at non-inducible temperature, and thus likely confer inducibility of gene expression and higher responsive dynamics. We propose that the antagonistic effects of H2A.Z and HSF1 provide a mechanism to activate gene expression rapidly and precisely in response to temperature, while preventing leaky transcription in the absence of an activation signal.
Collapse
Affiliation(s)
- Sandra Cortijo
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Varodom Charoensawan
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK; Department of Biochemistry, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi District, Bangkok 10400, Thailand; Integrative Computational BioScience (ICBS) Center, Mahidol University, 999 Phuttamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| | - Anna Brestovitsky
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Ruth Buning
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Charles Ravarani
- Medical Research Council Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Daniela Rhodes
- Medical Research Council Laboratory for Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; Institute of Structural Biology, Nanyang Technical University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - John van Noort
- Biological and Soft Matter Physics, Huygens-Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, the Netherlands
| | - Katja E Jaeger
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| | - Philip A Wigge
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK.
| |
Collapse
|
5
|
Charoensawan V, Martinho C, Wigge PA. "Hit-and-run": Transcription factors get caught in the act. Bioessays 2015; 37:748-54. [PMID: 26010075 DOI: 10.1002/bies.201400186] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A key challenge for understanding transcriptional regulation is being able to measure transcription factor (TF)-DNA binding events with sufficient spatial and temporal resolution; that is, when and where TFs occupy their cognate sites. A recent study by Para et al. has highlighted the dynamics underlying the activation of gene expression by a master regulator TF. This study provides concrete evidence for a long-standing hypothesis in biology, the "hit-and-run" mechanism, which was first proposed decades ago. That is, gene expression is dynamically controlled by a TF that transiently binds and activates a target gene, which might stay in a transcriptionally active state after the initial binding event has ended. Importantly, the experimental procedure introduced, TARGET, provides a useful way for identifying multiple target genes transiently bound by their regulators, which can be used in conjunction with other well-established methods to improve our understanding of transcriptional regulatory dynamics.
Collapse
Affiliation(s)
- Varodom Charoensawan
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK.,Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand.,Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Claudia Martinho
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Philip A Wigge
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| |
Collapse
|