1
|
Flores BM, Uppalapati CK, Pascual AS, Vong A, Baatz MA, Harrison AM, Leyva KJ, Hull EE. Biological Effects of HDAC Inhibitors Vary with Zinc Binding Group: Differential Effects on Zinc Bioavailability, ROS Production, and R175H p53 Mutant Protein Reactivation. Biomolecules 2023; 13:1588. [PMID: 38002270 PMCID: PMC10669723 DOI: 10.3390/biom13111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
The coordination of zinc by histone deacetylase inhibitors (HDACi), altering the bioavailability of zinc to histone deacetylases (HDACs), is key to HDAC enzyme inhibition. However, the ability of zinc binding groups (ZBGs) to alter intracellular free Zn+2 levels, which may have far-reaching effects, has not been explored. Using two HDACis with different ZBGs, we documented shifts in intracellular free Zn+2 concentrations that correlate with subsequent ROS production. Next, we assayed refolding and reactivation of the R175H mutant p53 protein in vitro to provide greater biological context as the activity of this mutant depends on cellular zinc concentration. The data presented demonstrates the differential activity of HDACi in promoting R175H response element (RE) binding. After cells are treated with HDACi, there are differences in R175H mutant p53 refolding and reactivation, which may be related to treatments. Collectively, we show that HDACis with distinct ZBGs differentially impact the intracellular free Zn+2 concentration, ROS levels, and activity of R175H; therefore, HDACis may have significant activity independent of their ability to alter acetylation levels. Our results suggest a framework for reevaluating the role of zinc in the variable or off-target effects of HDACi, suggesting that the ZBGs of HDAC inhibitors may provide bioavailable zinc without the toxicity associated with zinc metallochaperones such as ZMC1.
Collapse
Affiliation(s)
- Brianna M. Flores
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA
| | - Chandana K. Uppalapati
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (C.K.U.); (K.J.L.)
| | - Agnes S. Pascual
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
| | - Alan Vong
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
| | - Margaux A. Baatz
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
| | - Alisha M. Harrison
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
| | - Kathryn J. Leyva
- Department of Microbiology & Immunology, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (C.K.U.); (K.J.L.)
| | - Elizabeth E. Hull
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, 19555 N 59th Avenue, Glendale, AZ 85308, USA; (B.M.F.); (A.S.P.); (M.A.B.)
| |
Collapse
|
2
|
Zhang Z, Zhang Y, Cai Y, Li D, He J, Feng Z, Xu Q. NAT10 regulates the LPS-induced inflammatory response via the NOX2-ROS-NF-κB pathway in macrophages. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119521. [PMID: 37307924 DOI: 10.1016/j.bbamcr.2023.119521] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Periodontitis is a chronic osteolytic inflammatory disease resulting from complex dynamic interactions among bacterial pathogens and the host immune response. Macrophages play a vital role in the pathogenesis of periodontitis by triggering periodontal inflammation and inducing periodontium destruction. N-Acetyltransferase 10 (NAT10) is an acetyltransferase that has been shown to catalyse N4-acetylcytidine (ac4C) mRNA modification and is related to cellular pathophysiological processes, including the inflammatory immune response. Nevertheless, whether NAT10 regulates the inflammatory response of macrophages in periodontitis remains unclear. In this study, the expression of NAT10 in macrophages was found to decrease during LPS-induced inflammation. NAT10 knockdown significantly reduced the generation of inflammatory factors, while NAT10 overexpression had the opposite effect. RNA sequencing revealed that the differentially expressed genes were enriched in the NF-κB signalling pathway and oxidative stress. Both the NF-κB inhibitor Bay11-7082 and the ROS scavenger N-acetyl-L-cysteine (NAC) could reverse the upregulation of inflammatory factors. NAC inhibited the phosphorylation of NF-κB, but Bay11-7082 had no effect on the production of ROS in NAT10-overexpressing cells, suggesting that NAT10 activated the LPS-induced NF-κB signalling pathway by regulating ROS generation. Furthermore, the expression and stability of Nox2 was promoted after NAT10 overexpression, indicating that Nox2 may be a potential target of NAT10. In vivo, the NAT10 inhibitor Remodelin reduced macrophage infiltration and bone resorption in ligature-induced periodontitis mice. In summary, these results showed that NAT10 accelerated LPS-induced inflammation via the NOX2-ROS-NF-κB pathway in macrophages and that its inhibitor Remodelin might be of potential therapeutic significance in periodontitis treatment.
Collapse
Affiliation(s)
- Zhanqi Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yiwen Zhang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Yongjie Cai
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Di Li
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Jinlin He
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
| | - Zhihui Feng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qiong Xu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
3
|
Rius-Pérez S. p53 at the crossroad between mitochondrial reactive oxygen species and necroptosis. Free Radic Biol Med 2023; 207:183-193. [PMID: 37481144 DOI: 10.1016/j.freeradbiomed.2023.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
p53 is a redox-sensitive transcription factor that can regulate multiple cell death programs through different signaling pathways. In this review, we assess the role of p53 in the regulation of necroptosis, a programmed form of lytic cell death highly involved in the pathophysiology of multiple diseases. In particular, we focus on the role of mitochondrial reactive oxygen species (mtROS) as essential contributors to modulate necroptosis execution through p53. The enhanced generation of mtROS during necroptosis is critical for the correct interaction between receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and 3 (RIPK3), two key components of the functional necrosome. p53 controls the occurrence of necroptosis by modulating the levels of mitochondrial H2O2 via peroxiredoxin 3 and sulfiredoxin. Furthermore, in response to increased levels of H2O2, p53 upregulates the long non-coding RNA necrosis-related factor, favoring the translation of RIPK1 and RIPK3. In parallel, a fraction of cytosolic p53 migrates into mitochondria, a process notably involved in necroptosis execution via its interaction with the mitochondrial permeability transition pore. In conclusion, p53 is located at the intersection between mtROS and the necroptosis machinery, making it a key protein to orchestrate redox signaling during necroptosis.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Burjasot, 46100, Valencia, Spain; Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
| |
Collapse
|
4
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Chuang YH, Lin CY, Lee JC, Lee CH, Liu CL, Huang SH, Lee JY, Lai WS, Yang JM. Identification of the HNSC88 Molecular Signature for Predicting Subtypes of Head and Neck Cancer. Int J Mol Sci 2023; 24:13068. [PMID: 37685875 PMCID: PMC10487792 DOI: 10.3390/ijms241713068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) exhibits genetic heterogeneity in etiologies, tumor sites, and biological processes, which significantly impact therapeutic strategies and prognosis. While the influence of human papillomavirus on clinical outcomes is established, the molecular subtypes determining additional treatment options for HNSC remain unclear and inconsistent. This study aims to identify distinct HNSC molecular subtypes to enhance diagnosis and prognosis accuracy. In this study, we collected three HNSC microarrays (n = 306) from the Gene Expression Omnibus (GEO), and HNSC RNA-Seq data (n = 566) from The Cancer Genome Atlas (TCGA) to identify differentially expressed genes (DEGs) and validate our results. Two scoring methods, representative score (RS) and perturbative score (PS), were developed for DEGs to summarize their possible activation functions and influence in tumorigenesis. Based on the RS and PS scoring, we selected candidate genes to cluster TCGA samples for the identification of molecular subtypes in HNSC. We have identified 289 up-regulated DEGs and selected 88 genes (called HNSC88) using the RS and PS scoring methods. Based on HNSC88 and TCGA samples, we determined three HNSC subtypes, including one HPV-associated subtype, and two HPV-negative subtypes. One of the HPV-negative subtypes showed a relationship to smoking behavior, while the other exhibited high expression in tumor immune response. The Kaplan-Meier method was used to compare overall survival among the three subtypes. The HPV-associated subtype showed a better prognosis compared to the other two HPV-negative subtypes (log rank, p = 0.0092 and 0.0001; hazard ratio, 1.36 and 1.39). Additionally, within the HPV-negative group, the smoking-related subgroup exhibited worse prognosis compared to the subgroup with high expression in immune response (log rank, p = 0.039; hazard ratio, 1.53). The HNSC88 not only enables the identification of HPV-associated subtypes, but also proposes two potential HPV-negative subtypes with distinct prognoses and molecular signatures. This study provides valuable strategies for summarizing the roles and influences of genes in tumorigenesis for identifying molecular signatures and subtypes of HNSC.
Collapse
Affiliation(s)
- Yi-Hsuan Chuang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chun-Yu Lin
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jih-Chin Lee
- Department of Otolaryngology—Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Hwa Lee
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110, Taiwan
- Ph.D. Program in Medicine Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Lin Liu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Sing-Han Huang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Jung-Yu Lee
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Sen Lai
- Department of Otolaryngology—Head and Neck Surgery, Taichung Armed Forces General Hospital, Taichung 404, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-Devices, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| |
Collapse
|
6
|
Hu W, Wu Z, Zhang M, Yu S, Zou X. Identification of ferroptosis-related genes in male mice with sepsis-induced acute lung injury based on transcriptome sequencing. BMC Pulm Med 2023; 23:133. [PMID: 37081490 PMCID: PMC10116744 DOI: 10.1186/s12890-023-02361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/14/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Sepsis can result in acute lung injury (ALI). Studies have shown that pharmacological inhibition of ferroptosis can treat ALI. However, the regulatory mechanisms of ferroptosis in sepsis-induced ALI remain unclear. METHODS Transcriptome sequencing was performed on lung tissue samples from 10 sepsis-induced mouse models of ALI and 10 control mice. After quality control measures, clean data were used to screen for differentially expressed genes (DEGs) between the groups. The DEGs were then overlapped with ferroptosis-related genes (FRGs) to obtain ferroptosis-related DEGs (FR-DEGs). Subsequently, least absolute shrinkage and selection operator (Lasso) and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) were used to obtain key genes. In addition, Ingenuity Pathway Analysis (IPA) was employed to explore the disease, function, and canonical pathways related to the key genes. Gene set enrichment analysis (GSEA) was used to investigate the functions of the key genes, and regulatory miRNAs of key genes were predicted using the NetworkAnalyst and StarBase databases. Finally, the expression of key genes was validated with the GSE165226 and GSE168796 datasets sourced from the Gene Expression Omnibus (GEO) database and using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS Thirty-three FR-DEGs were identified between 1843 DEGs and 259 FRGs. Three key genes, Ncf2, Steap3, and Gclc, were identified based on diagnostic models established by the two machine learning methods. They are mainly involved in infection, immunity, and apoptosis, including lymphatic system cell migration and lymphocyte and T cell responses. Additionally, the GSEA suggested that Ncf2 and Steap3 were similarly enriched in mRNA processing, response to peptides, and leukocyte differentiation. Furthermore, a key gene-miRNA network including 2 key genes (Steap3 and Gclc) and 122 miRNAs, and a gene-miRNA network with 1 key gene (Steap3) and 3 miRNAs were constructed using NetworkAnalyst and StarBase, respectively. Both databases predicted that mmu-miR-15a-5p was the target miRNA of Steap3. Finally, Ncf2 expression was validated using both datasets and qRT-PCR, and Steap3 was validated using GSE165226 and qRT-PCR. CONCLUSIONS This study identified two FR-DEGs (Ncf2 and Steap3) associated with sepsis-induced ALI via transcriptome analyses, as well as their functional and metabolic pathways.
Collapse
Affiliation(s)
- Wen Hu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Zhen Wu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Mei Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Shilin Yu
- Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Xiaohua Zou
- The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China.
| |
Collapse
|
7
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 199] [Impact Index Per Article: 99.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
8
|
Huang N, Zhang J, Kuang S, Li Z, Zhao H, Wu J, Liu M, Wang L. Role of NCF2 as a potential prognostic factor and immune infiltration indicator in hepatocellular carcinoma. Cancer Med 2023; 12:8991-9004. [PMID: 36680322 PMCID: PMC10134316 DOI: 10.1002/cam4.5597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related deaths globally. The tumor microenvironment (TME) plays a crucial role in the prognosis and treatment of HCC. Hence, it is important to exploit new biomarkers for survival surveillance and TME estimation of HCC. METHODS HCC samples data was collected from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database, and clinical samples were collected from our center. The TME of HCC were explored with ESTIMATE (Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data), ssGSEA (single sample Gene Sets Enrichment Analysis) and CIBERSORT algorithm. Differentially expressed genes were analyzed with functional enrichment analysis. Immunohistochemistry was implemented to validate the results. RESULTS Based on TCGA database, we found that Neutrophil Cytosolic Factor 2 (NCF2) was significantly associated with the prognosis of HCC patients, involved in immune-related biological processes of HCC and closely associated with some types of immunocompetent cells. The survival analysis based on NCF2 expression assessed by immunohistochemistry also confirmed that NCF2-positive group had a shorter relapse free survival (RFS) and overall survival (OS) than NCF2-negative group. Multivariate Cox regression revealed NCF2 expression level and lymphovascular space invasion (LVSI) were independent risk factors for HCC patients. Receiver operating characteristic curves showed that the combination of NCF2 and LVSI had higher predictive efficacy on the 1-year RFS rate and 5-year OS rate than each of them alone. Besides, the expression level of NCF2 was positively associated with M0 and M2 macrophages infiltration. Furthermore, NCF2 expression was positively correlated with CSF1, IL4, IL10, CD206, CD163, CSF1R and TGFβ1. CONCLUSION We proposed that higher NCF2 expression predicted an adverse prognosis and more M2 macrophages infiltration in HCC patients.
Collapse
Affiliation(s)
- Ning Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuwen Kuang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianxiong Wu
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mei Liu
- Laboratory of Cell and Molecular Biology & State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liming Wang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Galbraith M, Levine H, Onuchic JN, Jia D. Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer. iScience 2022; 26:105719. [PMID: 36582834 PMCID: PMC9792913 DOI: 10.1016/j.isci.2022.105719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis relies on an orchestration of traits driven by different interacting functional modules, including metabolism and epithelial-mesenchymal transition (EMT). During metastasis, cancer cells can acquire a hybrid metabolic phenotype (W/O) by increasing oxidative phosphorylation without compromising glycolysis and they can acquire a hybrid epithelial/mesenchymal (E/M) phenotype by engaging EMT. Both the W/O and E/M states are associated with high metastatic potentials, and many regulatory links coupling metabolism and EMT have been identified. Here, we investigate the coupled decision-making networks of metabolism and EMT. Their crosstalk can exhibit synergistic or antagonistic effects on the acquisition and stability of different coupled metabolism-EMT states. Strikingly, the aggressive E/M-W/O state can be enabled and stabilized by the crosstalk irrespective of these hybrid states' availability in individual metabolism or EMT modules. Our work emphasizes the mutual activation between metabolism and EMT, providing an important step toward understanding the multifaceted nature of cancer metastasis.
Collapse
Affiliation(s)
- Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA02115, USA,Corresponding author
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA,Department of Chemistry, Rice University, Houston, TX77005, USA,Department of Biosciences, Rice University, Houston, TX77005, USA,Corresponding author
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Corresponding author
| |
Collapse
|
10
|
Liu Y, Gu W. The complexity of p53-mediated metabolic regulation in tumor suppression. Semin Cancer Biol 2022; 85:4-32. [PMID: 33785447 PMCID: PMC8473587 DOI: 10.1016/j.semcancer.2021.03.010] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023]
Abstract
Although the classic activities of p53 including induction of cell-cycle arrest, senescence, and apoptosis are well accepted as critical barriers to cancer development, accumulating evidence suggests that loss of these classic activities is not sufficient to abrogate the tumor suppression activity of p53. Numerous studies suggest that metabolic regulation contributes to tumor suppression, but the mechanisms by which it does so are not completely understood. Cancer cells rewire cellular metabolism to meet the energetic and substrate demands of tumor development. It is well established that p53 suppresses glycolysis and promotes mitochondrial oxidative phosphorylation through a number of downstream targets against the Warburg effect. The role of p53-mediated metabolic regulation in tumor suppression is complexed by its function to promote both cell survival and cell death under different physiological settings. Indeed, p53 can regulate both pro-oxidant and antioxidant target genes for complete opposite effects. In this review, we will summarize the roles of p53 in the regulation of glucose, lipid, amino acid, nucleotide, iron metabolism, and ROS production. We will highlight the mechanisms underlying p53-mediated ferroptosis, AKT/mTOR signaling as well as autophagy and discuss the complexity of p53-metabolic regulation in tumor development.
Collapse
Affiliation(s)
- Yanqing Liu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA
| | - Wei Gu
- Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY, 10032, USA.
| |
Collapse
|
11
|
Zhou H, Jiang J, Chen X, Zhang Z. Differentially expressed genes and miRNAs in female osteoporosis patients. Medicine (Baltimore) 2022; 101:e29856. [PMID: 35839011 PMCID: PMC11132388 DOI: 10.1097/md.0000000000029856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022] Open
Abstract
Osteoporosis is characterized by lowing bone mineral density. This study aimed to investigate the genes, miRNAs, pathways, and miRNA-gene interaction pairs involved in the pathogenesis of female osteoporosis. The differentially expressed genes (DEGs, GSE62402), differentially expressed miRNAs (DEmiRNAs, GSE63446), and differentially methylated genes (GSE62588) between females with low- and high-hip bone mineral density were identified. Genes common to DEGs, differentially methylated genes, DEmiRNAs' targets, and osteoporosis-related genes were retained and used to construct the miRNA-mRNA-pathway regulatory network. The expression of hub nodes was validated in microarray datasets (genes in GSE56116 and miRNAs in GSE93883). Thirty-four DEmiRNAs and 179 DEGs with opposite expression-methylation profiles were identified. Functional enrichment analysis showed that DEGs were associated with pathways including "hsa00380:Tryptophan metabolism," "hsa04670:Leukocyte transendothelial migration," "hsa04630:Jak-STAT signaling pathway," and "hsa04062:Chemokine signaling pathway." The miRNA-mRNA-pathway network included 10 DEGs, 9 miRNAs, and 4 osteoporosis-related pathways. The miRNA-gene-pathway axes including hsa-miR-27b-5p/3p-IFNAR1-hsa04630, hsa-miR-30a-5p/3p-IFNAR1-hsa04630, hsa-miR-30a-5p/3p-ALDH2-hsa00380, and hsa-miR-194-5p/3p-NCF2-hsa04670 were included in the network. Microarray validation showed that IFNAR1, NCF2, and ALDH2 were upregulated, and hsa-miR-30a-3p/5p, hsa-miR-194-3p/5p, hsa-miR-27b-3p/5p, and hsa-miR-34a-3p were downregulated in osteoporotic samples compared with control. Axes including hsa-miR-27b/30a-IFNAR1-Jak-STAT signaling pathway, hsa-miR-30a-ALDH2-Tryptophan metabolism, and hsa-miR-194-NCF2-Leukocyte transendothelial migration were involved in osteoporosis pathogenesis.
Collapse
Affiliation(s)
- Hailong Zhou
- Department of Integrated Traditional Chinese and Western Medicine, the First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang Province, PR China
| | - Jianmin Jiang
- Department of Internal Medicine, the First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang Province, PR China
| | - Xiaohua Chen
- Department of Orthopaedics, the First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang Province, PR China
| | - Zhiwei Zhang
- Department of Orthopaedics, the First People’s Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
12
|
Association of p53 with Neurodegeneration in Parkinson's Disease. PARKINSON'S DISEASE 2022; 2022:6600944. [PMID: 35601652 PMCID: PMC9117072 DOI: 10.1155/2022/6600944] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 11/30/2022]
Abstract
p53 is a vital transcriptional protein implicated in regulating diverse cellular processes, including cell cycle arrest, DNA repair, mitochondrial metabolism, redox homeostasis, autophagy, senescence, and apoptosis. Recent studies have revealed that p53 levels and activity are substantially increased in affected neurons in cellular and animal models of Parkinson's disease (PD) as well as in the brains of PD patients. p53 activation in response to neurodegenerative stress is closely associated with the degeneration of dopaminergic neurons accompanied by mitochondrial dysfunction, reactive oxygen species (ROS) production, abnormal protein aggregation, and impairment of autophagy, and these pathogenic events have been implicated in the pathogenesis of PD. Pathogenic p53 integrates diverse cellular stresses and activate these downstream events to induce the degeneration of dopaminergic neurons; thus, it plays a crucial role in the pathogenesis of PD and appears to be a potential target for the treatment of the disease. We reviewed the current knowledge concerning p53-dependent neurodegeneration to better understand the underlying mechanisms and provide possible strategies for PD treatment by targeting p53.
Collapse
|
13
|
Xie Z, Lu G, Zhou R, Ma Y. Thiacloprid-induced hepatotoxicity in zebrafish: Activation of the extrinsic and intrinsic apoptosis pathways regulated by p53 signaling pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 246:106147. [PMID: 35349858 DOI: 10.1016/j.aquatox.2022.106147] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 03/20/2022] [Indexed: 05/21/2023]
Abstract
Thiacloprid (THCP) is one of the major neonicotinoid insecticides, and its wide use has led to high detection in various media of aquatic environment, posing potential risks to aquatic organisms. This study was focused on the phenotypic responses and mechanisms of toxicity in zebrafish (Danio rerio) upon treatment with waterborne THCP (0.4, 4 and 40 μM) for 21 days in vivo or 412.9 μM for 24 h in vitro. In vivo, we found that THCP induced severe oxidative stress, hepatic abnormalities, leakage of alanine aminotransferase and aspartate aminotransferase and apoptosis. The analysis of RNA-sequencing suggested the activation of the p53 signaling pathway under THCP exposure. The following in vitro study showed that THCP intoxication activated reactive oxygen species (ROS)-dependent p53 signaling pathway and induced hepatotoxicity in the zebrafish liver cells. The addition of p53 inhibitor pifithrin-α (10 μM) exerted protection against of THCP-induced hepatotoxicity by reducing oxidative stress and inhibiting the p53 signaling pathway and apoptosis. Moreover, gene expression analyses indicated that both the extrinsic and intrinsic apoptosis pathways were involved in apoptosis induced by p53 activation. Overall, our results suggest that activation of the p53 signaling pathway is an important mechanism of THCP-induced hepatotoxicity.
Collapse
Affiliation(s)
- Zhongtang Xie
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Ranran Zhou
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuchen Ma
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
14
|
Kraya AA, Maxwell KN, Eiva MA, Wubbenhorst B, Pluta J, Feldman M, Nayak A, Powell DJ, Domchek SM, Vonderheide RH, Nathanson KL. PTEN Loss and BRCA1 Promoter Hypermethylation Negatively Predict for Immunogenicity in BRCA-Deficient Ovarian Cancer. JCO Precis Oncol 2022; 6:e2100159. [PMID: 35201851 PMCID: PMC8982238 DOI: 10.1200/po.21.00159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/10/2021] [Accepted: 01/19/2022] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Ovarian cancers can exhibit a prominent immune infiltrate, but clinical trials have not demonstrated substantive response rates to immune checkpoint blockade monotherapy. We aimed to understand genomic features associated with immunogenicity in BRCA1/2 mutation-associated cancers. MATERIALS AND METHODS Using the Cancer Genome Atlas whole-exome sequencing, methylation, and expression data, we analyzed 66 ovarian cancers with either germline or somatic loss of BRCA1/2 and whole-exome sequencing, immunohistochemistry, and CyTOF in 20 ovarian cancers with germline BRCA1/2 pathogenic variants from Penn. RESULTS We found two groups of BRCA1/2 ovarian cancers differing in their immunogenicity: (1) 37 tumors significantly enriched for PTEN loss (11, 30%) and BRCA1 promoter-hypermethylated (10, 27%; P = .0016) and (2) PTEN wild-type (28 of 29 tumors) cancers, with the latter group having longer overall survival (OS; P = .0186, median OS not reached v median OS = 66.1 months). BRCA1/2-mutant PTEN loss and BRCA1 promoter-hypermethylated cancers were characterized by the decreased composition of lymphocytes estimated by gene expression (P = .0030), cytolytic index (P = .034), and cytokine expression but higher homologous recombination deficiency scores (P = .00013). Large-scale state transitions were the primary discriminating feature (P = .001); neither mutational burden nor neoantigen burden could explain differences in immunogenicity. In Penn tumors, PTEN loss and high homologous recombination deficiency cancers exhibited fewer CD3+ (P = .05), CD8+ (P = .012), and FOXP3+ (P = .0087) T cells; decreased PRF1 expression (P = .041); and lower immune costimulatory and inhibitory molecule expression. CONCLUSION Our study suggests that within ovarian cancers with genetic loss of BRCA1/2 are two subsets exhibiting differential immunogenicity, with lower levels associated with PTEN loss and BRCA hypermethylation. These genomic features of BRCA1/2-associated ovarian cancers may inform considerations around how to optimally deploy immune checkpoint inhibitors in the clinic.
Collapse
Affiliation(s)
- Adam A. Kraya
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Kara N. Maxwell
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Monika A. Eiva
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - John Pluta
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Michael Feldman
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Anupma Nayak
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Daniel J. Powell
- Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Susan M. Domchek
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Robert H. Vonderheide
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Katherine L. Nathanson
- Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Basser Center for BRCA and Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
15
|
Paggi CA, Dudakovic A, Fu Y, Garces CG, Hevesi M, Galeano Garces D, Dietz AB, van Wijnen AJ, Karperien M. Autophagy Is Involved in Mesenchymal Stem Cell Death in Coculture with Chondrocytes. Cartilage 2021; 13:969S-979S. [PMID: 32693629 PMCID: PMC8721613 DOI: 10.1177/1947603520941227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Cartilage formation is stimulated in mixtures of chondrocytes and human adipose-derived mesenchymal stromal cells (MSCs) both in vitro and in vivo. During coculture, human MSCs perish. The goal of this study is to elucidate the mechanism by which adipose tissue-derived MSC cell death occurs in the presence of chondrocytes. METHODS Human primary chondrocytes were cocultured with human MSCs derived from 3 donors. The cells were cultured in monoculture or coculture (20% chondrocytes and 80% MSCs) in pellets (200,000 cells/pellet) for 7 days in chondrocyte proliferation media in hypoxia (2% O2). RNA sequencing was performed to assess for differences in gene expression between monocultures or coculture. Immune fluorescence assays were performed to determine the presence of caspase-3, LC3B, and P62. RESULTS RNA sequencing revealed significant upregulation of >90 genes in the 3 cocultures when compared with monocultures. STRING analysis showed interconnections between >50 of these genes. Remarkably, 75% of these genes play a role in cell death pathways such as apoptosis and autophagy. Immunofluorescence shows a clear upregulation of the autophagic machinery with no substantial activation of the apoptotic pathway. CONCLUSION In cocultures of human MSCs with primary chondrocytes, autophagy is involved in the disappearance of MSCs. We propose that this sacrificial cell death may contribute to the trophic effects of MSCs on cartilage formation.
Collapse
Affiliation(s)
- Carlo Alberto Paggi
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA
| | - Yao Fu
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands
| | | | - Mario Hevesi
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA
| | | | - Allan B. Dietz
- Department of Laboratory Medicine and
Pathology, Mayo Clinic, Rochester, MN, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo
Clinic, Rochester, MN, USA,Department of Biochemistry and Molecular
Biology, Mayo Clinic, Rochester, MN, USA,Andre J. van Wijnen, Department of
Orthopedic Surgery, Mayo Clinic, 200 First Street SW, MedSci 3-69, Rochester, MN
5590, USA.
| | - Marcel Karperien
- Department of Developmental
BioEngineering, University of Twente, Enschede, Netherlands,Marcel Karperien, Department of
Developmental BioEngineering, University of Twente, 7522 NB, Enschede,
Netherlands.
| |
Collapse
|
16
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
17
|
Jewett CE, Pearson CG. Cancer biology: Messages in extracellular vesicles depend on centrosome number. Curr Biol 2021; 31:R337-R340. [PMID: 33848487 DOI: 10.1016/j.cub.2021.01.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Extra centrosomes are linked to cancer-associated errors in cell division, metastasis and signaling. A new study reveals that centrosome amplification disrupts lysosome function, leading to the release of small extracellular vesicles and to invasive activity in pancreatic cells.
Collapse
Affiliation(s)
- Cayla E Jewett
- Department of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Chad G Pearson
- Department of Cell and Developmental Biology, University of Colorado - Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
18
|
Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie 2021; 182:73-84. [PMID: 33444661 DOI: 10.1016/j.biochi.2020.12.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/09/2020] [Accepted: 12/28/2020] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is the 5th most common and 2nd deadliest cancer worldwide. HCC risk factors include alcohol induced liver cirrhosis, which prompts hepatic inflammation, cell necrosis, and fibrosis deposition. As 25% of HCC cases are associated with alcohol induced liver disease, understanding the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic responses are critical. This study utilized the Oncopig Cancer Model-a transgenic pig model that recapitulates human HCC through induced expression of KRASG12D and TP53R167H driver mutations-to investigate the molecular mechanisms underlying alcohol induced liver disease. Oncopigs (n = 5) underwent fibrosis induction via infusion of ethanol and ethiodized oil (1:3 v/v dosed at 0.75 mL/kg) into the hepatic arterial circulation. Eight-weeks post induction, liver tissue samples from fibrotic and age-matched control (n = 5) Oncopigs were collected for histological evaluation and transcriptional profiling. Increased hepatic inflammation and fibrosis was observed in fibrotic Oncopigs via pathological assessment. Transcriptional profiling (RNA-seq) resulted in the identification of 4387 differentially expressed genes between Oncopig fibrotic and control livers. GO term enrichment analysis identified pathway alterations associated with cirrhosis progression in humans, including cell proliferation, angiogenesis, extracellular matrix deposition, and oxidation-reduction. Key alterations include activation of hepatic stellate cells, increased matrix metalloproteinase production, and altered expression of ABC and SLC transporter genes involved in transport of anticancer drugs.These results demonstrate Oncopig liver fibrosis recapitulates transcriptional hallmarks of human cirrhosis, making the Oncopig an ideal model for studying the effects of the cirrhotic liver microenvironment on HCC tumor biology and therapeutic response.
Collapse
Affiliation(s)
- Alvi Yasmin
- Department of Radiology, University of Illinois at Chicago, United States
| | - Daniel P Regan
- Flint Animal Cancer Center, Colorado State University, United States
| | - Lawrence B Schook
- Department of Radiology, University of Illinois at Chicago, United States; Department of Animal Sciences, University of Illinois at Urbana-Champaign, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States
| | - Ron C Gaba
- Department of Radiology, University of Illinois at Chicago, United States
| | - Kyle M Schachtschneider
- Department of Radiology, University of Illinois at Chicago, United States; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, United States; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, United States.
| |
Collapse
|
19
|
Martínez MA, Úbeda A, Trillo MÁ. Role of NADPH oxidase in MAPK signaling activation by a 50 Hz magnetic field in human neuroblastoma cells. Electromagn Biol Med 2021; 40:103-116. [PMID: 33345643 DOI: 10.1080/15368378.2020.1851250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/01/2020] [Indexed: 12/30/2022]
Abstract
Our previous studies have shown that intermittent exposure to a 50-Hz, 100-µT sine wave magnetic field (MF) promotes human NB69 cell proliferation, mediated by activation of the epidermal growth factor receptor (EGFR) and pathways MAPK-ERK1/2 and p38; being the effects on proliferation and p38 activation blocked by the chelator N-acetylcysteine. The present work investigates the MF effects on free radical (FR) production, and the potential involvement of NADPH oxidase, the main source of reactive oxygen species (ROS), in the MF-induced activation of MAPK pathways. To this end, the field effects on MAPK-ERK1/2, -p38 and -JNK activation in the presence or absence of the NADPH oxidase inhibitor, diphenyleneiodonium chloride (DPI), as well as the expression of the p67phox subunit, were analyzed. The results revealed that field exposure increases FR production and induces early, transient expression of the cytosolic component of the NADPH oxidase, p67phox. Also, the MF-induced activation of the MAPK-JNK pathway, but not that of -ERK1/2 or -p38 pathways, was prevented in the presence of the DPI, which has been shown to significantly reduce p67phox expression. These data, together with those from previous studies, identify various, FR-dependent or -independent mechanisms, involved in the MF-induced proliferative response mediated by MAPK signaling activation.
Collapse
Affiliation(s)
| | - Alejandro Úbeda
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| | - María Ángeles Trillo
- Servicio BEM, Dept. Investigación, Hosp, Univ. Ramón Y Cajal- IRYCIS , Madrid, Spain
| |
Collapse
|
20
|
Almoiliqy M, Wen J, Xu B, Sun YC, Lian MQ, Li YL, Qaed E, Al-Azab M, Chen DP, Shopit A, Wang L, Sun PY, Lin Y. Cinnamaldehyde protects against rat intestinal ischemia/reperfusion injuries by synergistic inhibition of NF-κB and p53. Acta Pharmacol Sin 2020; 41:1208-1222. [PMID: 32238887 PMCID: PMC7609352 DOI: 10.1038/s41401-020-0359-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/02/2020] [Indexed: 12/12/2022] Open
Abstract
Our preliminary study shows that cinnamaldehyde (CA) could protect against intestinal ischemia/reperfusion (I/R) injuries, in which p53 and NF-κB p65 play a synergistic role. In this study, we conducted in vivo and in vitro experiments to verify this proposal. SD rats were pretreated with CA (10 or 40 mg · kg−1 · d−1, ig) for 3 days, then subjected to 1 h mesenteric ischemia followed by 2 h reperfusion. CA pretreatment dose-dependently ameliorated morphological damage and reduced inflammation evidenced by decreased TNF-α, IL-1β, and IL-6 levels and MPO activity in I/R-treated intestinal tissues. CA pretreatment also attenuated oxidative stress through restoring SOD, GSH, LDH, and MDA levels in I/R-treated intestinal tissues. Furthermore, CA pretreatment significantly reduced the expression of inflammation/apoptosis-related NF-κB p65, IKKβ, IK-α, and NF-κB p50, and downregulated apoptotic protein expression including p53, Bax, caspase-9 and caspase-3, and restoring Bcl-2, in I/R-treated intestinal tissues. We pretreated IEC-6 cells in vitro with CA for 24 h, followed by 4 h hypoxia and 3 h reoxygenation (H/R) incubation. Pretreatment with CA (3.125, 6.25, and 12.5 μmol · L−1) significantly reversed H/R-induced reduction of IEC-6 cell viability. CA pretreatment significantly suppressed oxidative stress, NF-κB activation and apoptosis in H/R-treated IEC-6 cells. Moreover, CA pretreatment significantly reversed mitochondrial dysfunction in H/R-treated IEC-6 cells. CA pretreatment inhibited the nuclear translocation of p53 and NF-κB p65 in H/R-treated IEC-6 cells. Double knockdown or overexpression of p53 and NF-κB p65 caused a synergistic reduction or elevation of p53 compared with knockdown or overexpression of p53 or NF-κB p65 alone. In H/R-treated IEC-6 cells with double knockdown or overexpression of NF-κB p65 and p53, CA pretreatment caused neither further decrease nor increase of NF-κB p65 or p53 expression, suggesting that CA-induced synergistic inhibition on both NF-κB and p53 played a key role in ameliorating intestinal I/R injuries. Finally, we used immunoprecipitation assay to demonstrate an interaction between p53 and NF-κB p65, showing the basis for CA-induced synergistic inhibition. Our results provide valuable information for further studies.
Collapse
|
21
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 DOI: 10.1016/jxcell.2020.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 05/28/2023]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
22
|
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell 2020; 38:167-197. [PMID: 32649885 PMCID: PMC7439808 DOI: 10.1016/j.ccell.2020.06.001] [Citation(s) in RCA: 1308] [Impact Index Per Article: 261.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/29/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
Contingent upon concentration, reactive oxygen species (ROS) influence cancer evolution in apparently contradictory ways, either initiating/stimulating tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death. To accommodate high ROS levels, tumor cells modify sulfur-based metabolism, NADPH generation, and the activity of antioxidant transcription factors. During initiation, genetic changes enable cell survival under high ROS levels by activating antioxidant transcription factors or increasing NADPH via the pentose phosphate pathway (PPP). During progression and metastasis, tumor cells adapt to oxidative stress by increasing NADPH in various ways, including activation of AMPK, the PPP, and reductive glutamine and folate metabolism.
Collapse
Affiliation(s)
- John D Hayes
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland.
| | - Albena T Dinkova-Kostova
- Division of Cellular Medicine, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK, Scotland; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth D Tew
- Department of Cell and Molecular Pharmacology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
23
|
Zhao Z, Sun W, Guo Z, Zhang J, Yu H, Liu B. Mechanisms of lncRNA/microRNA interactions in angiogenesis. Life Sci 2020; 254:116900. [DOI: 10.1016/j.lfs.2019.116900] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/09/2019] [Accepted: 09/20/2019] [Indexed: 12/12/2022]
|
24
|
Lacroix M, Riscal R, Arena G, Linares LK, Le Cam L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol Metab 2020; 33:2-22. [PMID: 31685430 PMCID: PMC7056927 DOI: 10.1016/j.molmet.2019.10.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 10/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The TP53 gene is one of the most commonly inactivated tumor suppressors in human cancers. p53 functions during cancer progression have been linked to a variety of transcriptional and non-transcriptional activities that lead to the tight control of cell proliferation, senescence, DNA repair, and cell death. However, converging evidence indicates that p53 also plays a major role in metabolism in both normal and cancer cells. SCOPE OF REVIEW We provide an overview of the current knowledge on the metabolic activities of wild type (WT) p53 and highlight some of the mechanisms by which p53 contributes to whole body energy homeostasis. We will also pinpoint some evidences suggesting that deregulation of p53-associated metabolic activities leads to human pathologies beyond cancer, including obesity, diabetes, liver, and cardiovascular diseases. MAJOR CONCLUSIONS p53 is activated when cells are metabolically challenged but the origin, duration, and intensity of these stresses will dictate the outcome of the p53 response. p53 plays pivotal roles both upstream and downstream of several key metabolic regulators and is involved in multiple feedback-loops that ensure proper cellular homeostasis. The physiological roles of p53 in metabolism involve complex mechanisms of regulation implicating both cell autonomous effects as well as autocrine loops. However, the mechanisms by which p53 coordinates metabolism at the organismal level remain poorly understood. Perturbations of p53-regulated metabolic activities contribute to various metabolic disorders and are pivotal during cancer progression.
Collapse
Affiliation(s)
- Matthieu Lacroix
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giuseppe Arena
- Gustave Roussy Cancer Campus, INSERM U1030, Villejuif, France
| | - Laetitia Karine Linares
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France
| | - Laurent Le Cam
- Institut de Recherche en Cancérologie de Montpellier, INSERM, Université de Montpellier, Institut Régional du Cancer de Montpellier, Montpellier, France; Equipe labélisée Ligue Contre le Cancer, France.
| |
Collapse
|
25
|
Functional Role of p53 in the Regulation of Chemical-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6039769. [PMID: 32190175 PMCID: PMC7066401 DOI: 10.1155/2020/6039769] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/12/2022]
Abstract
The nuclear transcription factor p53, discovered in 1979, has a broad range of biological functions, primarily the regulation of apoptosis, the cell cycle, and DNA repair. In addition to these canonical functions, a growing body of evidence suggests that p53 plays an important role in regulating intracellular redox homeostasis through transcriptional and nontranscriptional mechanisms. Oxidative stress induction and p53 activation are common responses to chemical exposure and are suggested to play critical roles in chemical-induced toxicity. The activation of p53 can exert either prooxidant or antioxidant activity, depending on the context. In this review, we discuss the functional role of p53 in regulating chemical-induced oxidative stress, summarize the potential signaling pathways involved in p53's regulation of chemically mediated oxidative stress, and propose issues that should be addressed in future studies to improve understanding of the relationship between p53 and chemical-induced oxidative stress.
Collapse
|
26
|
Ma C, Zhuang Z, Su Q, He J, Li H. Curcumin Has Anti-Proliferative and Pro-Apoptotic Effects on Tongue Cancer in vitro: A Study with Bioinformatics Analysis and in vitro Experiments. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:509-518. [PMID: 32099333 PMCID: PMC7007779 DOI: 10.2147/dddt.s237830] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022]
Abstract
Purpose This study focused on the mechanism underlying the therapeutic effect of curcumin against tongue cancer (TC). Methods Target genes of TC and curcumin were identified, respectively. Three datasets of TC from Gene Expression Omnibus were included, and then the differentially expressed genes were collected. After combing the data from The Cancer Genome Atlas, bioinformatics analyses were performed to investigate hub genes in terms of the functions and correlations. The proliferation and migration of TC cells were evaluated with CCK-8 assay and scratch wound healing assay, respectively. Cell apoptosis was evaluated by TUNEL assay, flow cytometry and Western blot. Cell cycle was determined by flow cytometry. Results In this study, 15 hub genes were identified (TK1, TDRD3, TAGLN2, RNASEH2A, PDE2A, NCF2, MAP3K3, GPX3, GPD1L, GBP1, ENO1, CAT, ALDH6A1, AGPS and ACACB). They were mainly enriched in oxygen-related processes, such as oxidation-reduction process, reactive oxygen species metabolic process, hydrogen peroxide catabolic process, oxidoreductase activity and Peroxisome-related pathway. The expression levels of hub gene mRNAs were positively correlated with each other's expression levels. None of the hub genes was correlated with prognosis (P > 0.05). Curcumin significantly inhibited CAL 27 cell proliferation and migration (P < 0.05), but significantly promoted cell apoptosis (P < 0.05). Conclusion Curcumin has potential therapeutic effect on treating TC by suppressing cell proliferation and migration, as well as promoting apoptosis through modulating oxygen-related signaling pathways.
Collapse
Affiliation(s)
- Chao Ma
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zongming Zhuang
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qisheng Su
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Jianfeng He
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Haoyu Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
27
|
Cellular Stress Responses in Radiotherapy. Cells 2019; 8:cells8091105. [PMID: 31540530 PMCID: PMC6769573 DOI: 10.3390/cells8091105] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Radiotherapy is one of the major cancer treatment strategies. Exposure to penetrating radiation causes cellular stress, directly or indirectly, due to the generation of reactive oxygen species, DNA damage, and subcellular organelle damage and autophagy. These radiation-induced damage responses cooperatively contribute to cancer cell death, but paradoxically, radiotherapy also causes the activation of damage-repair and survival signaling to alleviate radiation-induced cytotoxic effects in a small percentage of cancer cells, and these activations are responsible for tumor radio-resistance. The present study describes the molecular mechanisms responsible for radiation-induced cellular stress response and radioresistance, and the therapeutic approaches used to overcome radioresistance.
Collapse
|
28
|
Vo NTK, Shahid M, Seymour CB, Mothersill CE. Effects of Dose Rate on the Reproductive Cell Death and Early Mitochondrial Membrane Potential in Different Human Epithelium-Derived Cells Exposed to Gamma Rays. Dose Response 2019; 17:1559325819852508. [PMID: 31210757 PMCID: PMC6545662 DOI: 10.1177/1559325819852508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Dose rate is one of the most varied experimental parameters in radiation biology research. In this study, effects of dose rates on the radiation responses of 2 different types of human epithelium-derived cells, immortalized keratinocytes (HaCaT), and colorectal cancer cells (HCT116 p53+/+ and HCT116 p53-/-) were systematically studied. Cells were γ-irradiated at one of the 4 dose rates (24.6, 109, 564, and 1168 mGy/min) to a total dose of 0.5 to 2 Gy. Clonogenic survival and mitochondrial membrane potential (MMP) were measured to assess the levels of reproductive cell death and damage to mitochondrial physiology, respectively. It was found that clonogenic survival was similar at all 4 tested dose rates in the 3 cell lines. The loss of MMP occurred at all tested dose rates in all 3 cell lines except for one case where the MMP increased in HCT116 p53+/+cells after exposure to 0.5 Gy at 24.6 mGy/min. In HCT116 cells, the loss of MMP was the most severe at high dose/dose rate combination exposure and when p53 was expressed. In contrast, no effect in dose rate was observed with HaCaT cells as the reduction level of MMP was similar at the tested dose rates.
Collapse
Affiliation(s)
- Nguyen T K Vo
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Marwan Shahid
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Colin B Seymour
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
29
|
Li W, Middha M, Bicak M, Sjoberg DD, Vertosick E, Dahlin A, Häggström C, Hallmans G, Rönn AC, Stattin P, Melander O, Ulmert D, Lilja H, Klein RJ. Genome-wide Scan Identifies Role for AOX1 in Prostate Cancer Survival. Eur Urol 2018; 74:710-719. [PMID: 30289108 PMCID: PMC6287611 DOI: 10.1016/j.eururo.2018.06.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 06/13/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Most men diagnosed with prostate cancer have low-risk cancers. How to predict prostate cancer progression at the time of diagnosis remains challenging. OBJECTIVE To identify single nucleotide polymorphisms (SNPs) associated with death from prostate cancer. DESIGN, SETTING, AND PARTICIPANTS Blood samples from 11 506 men in Sweden were collected during 1991-1996. Of these, 1053 men were diagnosed with prostate cancer and 245 died from the disease. Stage and grade at diagnosis and outcome information were obtained, and DNA from all cases was genotyped. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS A total of 6 126 633 SNPs were tested for association with prostate-cancer-specific survival time using a Cox proportional hazard model, adjusted for age, stage, and grade at diagnosis. A value of 1×10-6 was used as suggestive significance threshold. Positive candidate SNPs were tested for association with gene expression using expression quantitative trait locus analysis. RESULTS AND LIMITATIONS We found 12 SNPs at seven independent loci associated with prostate-cancer-specific survival time. One of 6 126 633 SNPs tested reached genome-wide significance (p<5×10-8) and replicated in an independent cohort: rs73055188 (p=5.27×10-9, per-allele hazard ratio [HR]=2.27, 95% confidence interval [CI] 1.72-2.98) in the AOX1 gene. A second SNP reached a suggestive level of significance (p<1×10-6) and replicated in an independent cohort: rs2702185 (p=7.1×10-7, per-allele HR=2.55, 95% CI=1.76-3.69) in the SMG7 gene. The SNP rs73055188 is correlated with AOX1 expression levels, which is associated with biochemical recurrence of prostate cancer in independent cohorts. This association is yet to be validated in other ethnic groups. CONCLUSIONS The SNP rs73055188 at the AOX1 locus is associated with prostate-cancer-specific survival time, and AOX1 gene expression level is correlated with biochemical recurrence of prostate cancer. PATIENT SUMMARY We identify two genetic markers that are associated with prostate-cancer-specific survival time.
Collapse
Affiliation(s)
- Weiqiang Li
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Mridu Middha
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Mesude Bicak
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| | - Daniel D. Sjoberg
- Department of Epidemiology and Biostatistics, Memorial
Sloan Kettering Cancer Center, New York, NY USA
| | - Emily Vertosick
- Department of Epidemiology and Biostatistics, Memorial
Sloan Kettering Cancer Center, New York, NY USA
| | - Anders Dahlin
- Department of Clinical Sciences, Malmö, Lund
University, Malmö, Sweden
| | | | - Göran Hallmans
- Department of Public Health and Clinical Medicine,
Nutritional Research, Umeå University, Umeå, Sweden
| | - Ann-Charlotte Rönn
- Clinical Research Center, Karolinska University Hospital,
Huddinge, Sweden
| | - Pär Stattin
- Department of Surgical Sciences, Uppsala University,
Uppsala, Sweden
| | - Olle Melander
- Department of Clinical Sciences, Malmö, Lund
University, Malmö, Sweden
| | - David Ulmert
- Molecular Pharmacology Program, Sloan Kettering Institute,
New York, NY USA
| | - Hans Lilja
- Departments of Laboratory Medicine, Surgery, and Medicine,
Memorial Sloan Kettering Cancer Center, New York, NY USA; Nuffield Department of
Surgical Sciences, University of Oxford, Oxford, UK; Department of Translational
Medicine, Lund University, Malmö, Sweden
| | - Robert J. Klein
- Icahn Institute for Genomics and Multiscale Biology and
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount
Sinai, New York, NY USA
| |
Collapse
|
30
|
p53 as a double-edged sword in the progression of non-alcoholic fatty liver disease. Life Sci 2018; 215:64-72. [DOI: 10.1016/j.lfs.2018.10.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/17/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
|
31
|
Arnandis T, Monteiro P, Adams SD, Bridgeman VL, Rajeeve V, Gadaleta E, Marzec J, Chelala C, Malanchi I, Cutillas PR, Godinho SA. Oxidative Stress in Cells with Extra Centrosomes Drives Non-Cell-Autonomous Invasion. Dev Cell 2018; 47:409-424.e9. [PMID: 30458137 PMCID: PMC6251975 DOI: 10.1016/j.devcel.2018.10.026] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/10/2018] [Accepted: 10/23/2018] [Indexed: 01/07/2023]
Abstract
Centrosomal abnormalities, in particular centrosome amplification, are recurrent features of human tumors. Enforced centrosome amplification in vivo plays a role in tumor initiation and progression. However, centrosome amplification occurs only in a subset of cancer cells, and thus, partly due to this heterogeneity, the contribution of centrosome amplification to tumors is unknown. Here, we show that supernumerary centrosomes induce a paracrine-signaling axis via the secretion of proteins, including interleukin-8 (IL-8), which leads to non-cell-autonomous invasion in 3D mammary organoids and zebrafish models. This extra centrosomes-associated secretory phenotype (ECASP) promotes invasion of human mammary cells via HER2 signaling activation. Further, we demonstrate that centrosome amplification induces an early oxidative stress response via increased NOX-generated reactive oxygen species (ROS), which in turn mediates secretion of pro-invasive factors. The discovery that cells with extra centrosomes can manipulate the surrounding cells highlights unexpected and far-reaching consequences of these abnormalities in cancer.
Collapse
Affiliation(s)
- Teresa Arnandis
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Pedro Monteiro
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sophie D Adams
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | | | - Vinothini Rajeeve
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Emanuela Gadaleta
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Jacek Marzec
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Claude Chelala
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Ilaria Malanchi
- Tumour Host Interaction Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Pedro R Cutillas
- Integrative Cell Signalling and Proteomics, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Susana A Godinho
- Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
32
|
LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene 2018; 37:2660-2675. [PMID: 29483646 PMCID: PMC5955863 DOI: 10.1038/s41388-018-0162-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 12/25/2017] [Accepted: 01/08/2018] [Indexed: 12/27/2022]
Abstract
Dysregulation of non-coding RNAs, including miRNAs and lncRNAs has been reported to play vital roles in gastric cancer (GC) carcinogenesis, but the mechanism involved is largely unknown. Using the cancer genome atlas (TCGA) data set and bioinformatics analyses, we identified miR-532-5p as a potential tumor suppressor in GC, and found that lncRNA LINC01410 might be a negative regulator of miR-532-5p. We then conducted a series of in vivo and in vitro assays to explore the effect of LINC01410 on miR-532-5p-mediated GC malignancy and the underlying mechanism involved. MiR-532-5p overexpression inhibited GC metastasis and angiogenesis in vitro and in vivo, whereas miR-532-5p silencing had the opposite effect. Further study showed that miR-532-5p attenuated NF-κB signaling by directly inhibiting NCF2 expression, while miR-532-5p silencing in GC enhanced NF-κB activity. Furthermore, we demonstrated miR-532-5p down-regulation was caused by aberrantly high expression of LINC01410 in GC. Mechanistically, overexpression of LINC01410 promoted GC angiogenesis and metastasis by binding to and suppressing miR-532-5p, which resulted in up-regulation of NCF2 and sustained NF-κB pathway activation. Interestingly, NCF2 could in turn increase the promoter activity and expression of LINC01410 via NF-κB, thus forming a positive feedback loop that drives the malignant behavior of GC. Finally, high expression of LINC01410, along with low expression of miR-532-5p, was associated with poor survival outcome in GC patients. Our studies uncover a mechanism for constitutive LINC1410-miR-532-5p-NCF2-NF-κB feedback loop activation in GC, and consequently, as a potential therapeutic target in GC treatment.
Collapse
|
33
|
Violi F, Loffredo L, Carnevale R, Pignatelli P, Pastori D. Atherothrombosis and Oxidative Stress: Mechanisms and Management in Elderly. Antioxid Redox Signal 2017; 27:1083-1124. [PMID: 28816059 DOI: 10.1089/ars.2016.6963] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE The incidence of cardiovascular events (CVEs) increases with age, representing the main cause of death in an elderly population. Aging is associated with overproduction of reactive oxygen species (ROS), which may affect clotting and platelet activation, and impair endothelial function, thus predisposing elderly patients to thrombotic complications. Recent Advances: There is increasing evidence to suggest that aging is associated with an imbalance between oxidative stress and antioxidant status. Thus, upregulation of ROS-producing enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and myeloperoxidase, along with downregulation of antioxidant enzymes, such as superoxide dismutase and glutathione peroxidase, occurs during aging. This imbalance may predispose to thrombosis by enhancing platelet and clotting activation and eliciting endothelial dysfunction. Recently, gut-derived products, such as trimethylamine N-oxide (TMAO) and lipopolysaccharide, are emerging as novel atherosclerotic risk factors, and gut microbiota composition has been shown to change by aging, and may concur with the increased cardiovascular risk in the elderly. CRITICAL ISSUES Antioxidant treatment is ineffective in patients at risk or with cardiovascular disease. Further, anti-thrombotic treatment seems to work less in the elderly population. FUTURE DIRECTIONS Interventional trials with antioxidants targeting enzymes implicated in aging-related atherothrombosis are warranted to explore whether modulation of redox status is effective in lowering CVEs in the elderly. Antioxid. Redox Signal. 27, 1083-1124.
Collapse
Affiliation(s)
- Francesco Violi
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Lorenzo Loffredo
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Roberto Carnevale
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy .,2 Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome , Latina, Italy
| | - Pasquale Pignatelli
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| | - Daniele Pastori
- 1 I Clinica Medica, Department of Internal Medicine and Medical Specialties, Sapienza University of Rome , Roma, Italy
| |
Collapse
|
34
|
NOX2, NOX4, and mitochondrial-derived reactive oxygen species contribute to angiopoietin-1 signaling and angiogenic responses in endothelial cells. Vascul Pharmacol 2017; 92:22-32. [DOI: 10.1016/j.vph.2017.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 03/13/2017] [Accepted: 03/18/2017] [Indexed: 11/17/2022]
|
35
|
Redox Homeostasis and Cellular Antioxidant Systems: Crucial Players in Cancer Growth and Therapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6235641. [PMID: 27418953 PMCID: PMC4932173 DOI: 10.1155/2016/6235641] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/18/2016] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) and their products are components of cell signaling pathways and play important roles in cellular physiology and pathophysiology. Under physiological conditions, cells control ROS levels by the use of scavenging systems such as superoxide dismutases, peroxiredoxins, and glutathione that balance ROS generation and elimination. Under oxidative stress conditions, excessive ROS can damage cellular proteins, lipids, and DNA, leading to cell damage that may contribute to carcinogenesis. Several studies have shown that cancer cells display an adaptive response to oxidative stress by increasing expression of antioxidant enzymes and molecules. As a double-edged sword, ROS influence signaling pathways determining beneficial or detrimental outcomes in cancer therapy. In this review, we address the role of redox homeostasis in cancer growth and therapy and examine the current literature regarding the redox regulatory systems that become upregulated in cancer and their role in promoting tumor progression and resistance to chemotherapy.
Collapse
|
36
|
Wang X, Hai C. Novel insights into redox system and the mechanism of redox regulation. Mol Biol Rep 2016; 43:607-28. [DOI: 10.1007/s11033-016-4022-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
|
37
|
Abstract
Reactive oxygen species (ROS) and oxidative stress have long been linked to aging and diseases prominent in the elderly such as hypertension, atherosclerosis, diabetes and atrial fibrillation (AF). NADPH oxidases (Nox) are a major source of ROS in the vasculature and are key players in mediating redox signalling under physiological and pathophysiological conditions. In this review, we focus on the Nox-mediated ROS signalling pathways involved in the regulation of 'longevity genes' and recapitulate their role in age-associated vascular changes and in the development of age-related cardiovascular diseases (CVDs). This review is predicated on burgeoning knowledge that Nox-derived ROS propagate tightly regulated yet varied signalling pathways, which, at the cellular level, may lead to diminished repair, the aging process and predisposition to CVDs. In addition, we briefly describe emerging Nox therapies and their potential in improving the health of the elderly population.
Collapse
|
38
|
Sánchez-Hidalgo AC, Muñoz MF, Herrera AJ, Espinosa-Oliva AM, Stowell R, Ayala A, Machado A, Venero JL, de Pablos RM. Chronic stress alters the expression levels of longevity-related genes in the rat hippocampus. Neurochem Int 2016; 97:181-92. [PMID: 27120255 DOI: 10.1016/j.neuint.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 02/02/2023]
Abstract
The molecular mechanisms underlying the negative effects of psychological stress on cellular stress during aging and neurodegenerative diseases are poorly understood. The main objective of this study was to test the effect of chronic psychological stress, and the consequent increase of circulating glucocorticoids, on several hippocampal genes involved in longevity. Sirtuin-1, p53, thioredoxin-interacting protein, and heat shock protein 70 were studied at the mRNA and protein levels in stressed and non-stressed animals. Stress treatment for 10 days decreased sirtuin-1 and heat shock protein 70 levels, but increased levels of p53, thioredoxin-interacting protein and the NADPH oxidase enzyme. Examination of protein expression following two months of stress treatment indicated that sirtuin-1 remained depressed. In contrast, an increase was observed for thioredoxin-interacting protein, heat shock protein 70, p53 and the NADPH oxidase enzyme. The effect of stress was reversed by mifepristone, a glucocorticoid receptor antagonist. These data suggest that chronic stress could contribute to aging in the hippocampus.
Collapse
Affiliation(s)
- Ana C Sánchez-Hidalgo
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla and Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Mario F Muñoz
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Antonio J Herrera
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Ana M Espinosa-Oliva
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Rianne Stowell
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Box 603, Rochester, NY 14642, USA
| | - Antonio Ayala
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Alberto Machado
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - José L Venero
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
| | - Rocío M de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain; Instituto de Biomedicina de Sevilla (IBiS)-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
39
|
Jin H, Yin S, Song X, Zhang E, Fan L, Hu H. p53 activation contributes to patulin-induced nephrotoxicity via modulation of reactive oxygen species generation. Sci Rep 2016; 6:24455. [PMID: 27071452 PMCID: PMC4829895 DOI: 10.1038/srep24455] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/29/2016] [Indexed: 11/09/2022] Open
Abstract
Patulin is a major mycotoxin found in fungal contaminated fruits and their derivative products. Previous studies showed that patulin was able to induce increase of reactive oxygen species (ROS) generation and oxidative stress was suggested to play a pivotal role in patulin-induced multiple toxic signaling. The objective of the present study was to investigate the functional role of p53 in patulin-induced oxidative stress. Our study demonstrated that higher levels of ROS generation and DNA damage were induced in wild-type p53 cell lines than that found in either knockdown or knockout p53 cell lines in response to patulin exposure, suggesting p53 activation contributed to patulin-induced ROS generation. Mechanistically, we revealed that the pro-oxidant role of p53 in response to patulin was attributed to its ability to suppress catalase activity through up-regulation of PIG3. Moreover, these in vitro findings were further validated in the p53 wild-type/knockout mouse model. To the best of our knowledge, this is the first report addressing the functional role of p53 in patulin-induced oxidative stress. The findings of the present study provided novel insights into understanding mechanisms behind oxidative stress in response to patulin exposure.
Collapse
Affiliation(s)
- Huan Jin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Shutao Yin
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Xinhua Song
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Enxiang Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No17 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Lihong Fan
- College of Veterinary Medicine, China Agricultural University, No2 Yunamingyuan West Road, Haidian District, Beijing 100193, China
| | - Hongbo Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No17 Qinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
40
|
Lin ZY, Kuo CH, Wu DC, Chuang WL. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J Med Sci 2016; 32:68-73. [PMID: 26944324 DOI: 10.1016/j.kjms.2015.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 11/28/2015] [Accepted: 12/21/2015] [Indexed: 02/08/2023] Open
Abstract
Colchicine is a very cheap microtubule destabilizer. Because microtubules are an ideal target for anticancer drugs, the purpose of this study was to investigate whether clinically acceptable colchicine concentrations have anticancer effects on gastric cancer cells, and its possible anticancer mechanisms. Two human gastric cancer cell lines (i.e., AGS and NCI-N87) were investigated by proliferative assay, microarray, quantitative reverse transcriptase-polymerase chain reaction, and a nude mice study using clinically acceptable colchicine concentrations (2 ng/mL and 6 ng/mL for in vitro tests and 0.07 mg colchicine/kg/d for in vivo tests). Our results showed that colchicine had the same inhibitory effects on the proliferation of both cell lines. The antiproliferative effects of colchicine on both cell lines were achieved only at the concentration of 6 ng/mL (p < 0.0001). In both cell lines, 18 genes were consistently upregulated and 10 genes were consistently downregulated by 6 ng/mL colchicine, compared with 2 ng/mL colchicine. Among these genes, only the upregulated DUSP1 gene may contribute to the antiproliferative effects of colchicine on gastric cancer cells. The nude mice (BALB/c-nu) experiment showed that colchicine-treated mice after 14 days of treatment had lower increased tumor volume ratios (p = 0.0199) and tumor growth rates (p = 0.024) than the control mice. In conclusion, colchicine has potential for the palliative treatment of gastric cancer. However, the anticancer effects are achieved only at high clinically acceptable colchicine concentrations. Monitoring the colchicine plasma concentration is mandatory if this drug is applied for the palliative treatment of gastric cancer.
Collapse
Affiliation(s)
- Zu-Yau Lin
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Chao-Hung Kuo
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Wan-Long Chuang
- Division of Hepatobiliary Medicine, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan; Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
41
|
Cefalù S, Lena AM, Vojtesek B, Musarò A, Rossi A, Melino G, Candi E. TAp63gamma is required for the late stages of myogenesis. Cell Cycle 2015; 14:894-901. [PMID: 25790093 DOI: 10.4161/15384101.2014.988021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
p53 family members, p63 and p73, play a role in controlling early stage of myogenic differentiation. We demonstrated that TAp63gamma, unlike the other p53 family members, is markedly up-regulated during myogenic differentiation in murine C2C7 cell line. We also found that myotubes formation was inhibited upon TAp63gamma knock-down, as also indicated by atrophyic myotubes and reduction of myoblasts fusion index. Analysis of TAp63gamma-dependend transcripts identified several target genes involved in skeletal muscle contractility energy metabolism, myogenesis and skeletal muscle autocrine signaling. These results indicate that TAp63gamma is a late marker of myogenic differentiation and, by controlling different sub-sets of target genes, it possibly contributes to muscle growth, remodeling, functional differentiation and tissue homeostasis.
Collapse
Affiliation(s)
- S Cefalù
- a Istututo Dermopatico dell'Immacolata ; IDI-IRCCS ; Rome , Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Ozer U, Barbour KW, Clinton SA, Berger FG. Oxidative Stress and Response to Thymidylate Synthase-Targeted Antimetabolites. Mol Pharmacol 2015; 88:970-81. [PMID: 26443810 DOI: 10.1124/mol.115.099614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/05/2015] [Indexed: 01/09/2023] Open
Abstract
Thymidylate synthase (TYMS; EC 2.1.1.15) catalyzes the reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP) by N(5),N(10)-methyhlenetetrahydrofolate, forming dTMP for the maintenance of DNA replication and repair. Inhibitors of TYMS have been widely used in the treatment of neoplastic disease. A number of fluoropyrimidine and folate analogs have been developed that lead to inhibition of the enzyme, resulting in dTMP deficiency and cell death. In the current study, we have examined the role of oxidative stress in response to TYMS inhibitors. We observed that intracellular reactive oxygen species (ROS) concentrations are induced by these inhibitors and promote apoptosis. Activation of the enzyme NADPH oxidase (NOX), which catalyzes one-electron reduction of O2 to generate superoxide (O2 (●-)), is a significant source of increased ROS levels in drug-treated cells. However, gene expression profiling revealed a number of other redox-related genes that may contribute to ROS generation. TYMS inhibitors also induce a protective response, including activation of the transcription factor nuclear factor E2-related factor 2 (NRF2), a critical mediator of defense against oxidative and electrophilic stress. Our results show that exposure to TYMS inhibitors induces oxidative stress that leads to cell death, while simultaneously generating a protective response that may underlie resistance against such death.
Collapse
Affiliation(s)
- Ufuk Ozer
- Department of Biological Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Karen W Barbour
- Department of Biological Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Sarah A Clinton
- Department of Biological Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| | - Franklin G Berger
- Department of Biological Sciences, and Center for Colon Cancer Research, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
43
|
Chou J, Hsu JT, Bainter W, Al-Attiyah R, Al-Herz W, Geha RS. A novel mutation in NCF2 associated with autoimmune disease and a solitary late-onset infection. Clin Immunol 2015; 161:128-30. [PMID: 26272171 DOI: 10.1016/j.clim.2015.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 08/08/2015] [Indexed: 10/23/2022]
Abstract
Chronic granulomatous disease (CGD) is typically characterized by recurrent infections, granulomatous disease, and an increased susceptibility to autoimmune disease. We report a novel homozygous mutation in NCF2 that permits residual expression of an alternatively spliced variant in a patient with duodenitis and systemic lupus erythematosus (SLE), followed by a late-onset, single pulmonary infection in the setting of immunosuppressive medications. This report highlights the importance of considering CGD in patients who present initially exclusively with autoimmune disease.
Collapse
Affiliation(s)
- Janet Chou
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Joyce T Hsu
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Wayne Bainter
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Raja'a Al-Attiyah
- Department of Microbiology, Faculty of Medicine, Kuwait University, Kuwait
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait
| | - Raif S Geha
- Division of Immunology, Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
44
|
Latina A, Viticchiè G, Lena AM, Piro MC, Annicchiarico-Petruzzelli M, Melino G, Candi E. ΔNp63 targets cytoglobin to inhibit oxidative stress-induced apoptosis in keratinocytes and lung cancer. Oncogene 2015; 35:1493-503. [PMID: 26096935 DOI: 10.1038/onc.2015.222] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/17/2015] [Accepted: 03/08/2015] [Indexed: 12/13/2022]
Abstract
During physiological aerobic metabolism, the epidermis undergoes significant oxidative stress as a result of the production of reactive oxygen species (ROS). To maintain a balanced oxidative state, cells have developed protective antioxidant systems, and preliminary studies suggest that the transcriptional factor p63 is involved in cellular oxidative defence. Supporting this hypothesis, the ΔNp63α isoform of p63 is expressed at high levels in the proliferative basal layer of the epidermis. Here we identify the CYGB gene as a novel transcriptional target of ΔNp63 that is involved in maintaining epidermal oxidative defence. The CYGB gene encodes cytoglobin, a member of the globin protein family, which facilitates the diffusion of oxygen through tissues and acts as a scavenger for nitric oxide or other ROS. By performing promoter activity assays and chromatin immunoprecipitation, reverse transcriptase quantitative PCR and western blotting analyses, we confirm the direct regulation of CYGB by ΔNp63α. We also demonstrate that CYGB has a protective role in proliferating keratinocytes grown under normal conditions, as well as in cells treated with exogenous hydrogen peroxide. These results indicate that ΔNp63, through its target CYGB has an important role in the cellular antioxidant system and protects keratinocytes from oxidative stress-induced apoptosis. The ΔNp63-CYGB axis is also present in lung and breast cancer cell lines, indicating that CYGB-mediated ROS-scavenging activity may also have a role in epithelial tumours. In human lung cancer data sets, the p63-CYGB interaction significantly predicts reduction of patient survival.
Collapse
Affiliation(s)
- A Latina
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - G Viticchiè
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - A M Lena
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | - M C Piro
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy
| | | | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,Medical Research Council Toxicology Unit, Leicester, UK
| | - E Candi
- Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', Rome, Italy.,IDI-IRCCS, Biochemistry Laboratory, Rome, Italy
| |
Collapse
|
45
|
Moretti D, Del Bello B, Allavena G, Corti A, Signorini C, Maellaro E. Calpain-3 impairs cell proliferation and stimulates oxidative stress-mediated cell death in melanoma cells. PLoS One 2015; 10:e0117258. [PMID: 25658320 PMCID: PMC4319969 DOI: 10.1371/journal.pone.0117258] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/19/2014] [Indexed: 11/18/2022] Open
Abstract
Calpain-3 is an intracellular cysteine protease, belonging to Calpain superfamily and predominantly expressed in skeletal muscle. In human melanoma cell lines and biopsies, we previously identified two novel splicing variants (hMp78 and hMp84) of Calpain-3 gene (CAPN3), which have a significant lower expression in vertical growth phase melanomas and, even lower, in metastases, compared to benign nevi. In the present study, in order to investigate the pathophysiological role played by the longer Calpain-3 variant, hMp84, in melanoma cells, we over-expressed it in A375 and HT-144 cells. In A375 cells, the enforced expression of hMp84 induces p53 stabilization, and modulates the expression of a few p53- and oxidative stress-related genes. Consistently, hMp84 increases the intracellular production of ROS (Reactive Oxygen Species), which lead to oxidative modification of phospholipids (formation of F2-isoprostanes) and DNA damage. Such events culminate in an adverse cell fate, as indicated by the decrease of cell proliferation and by cell death. To a different extent, either the antioxidant N-acetyl-cysteine or the p53 inhibitor, Pifithrin-α, recover cell viability and decrease ROS formation. Similarly to A375 cells, hMp84 over-expression causes inhibition of cell proliferation, cell death, and increase of both ROS levels and F2-isoprostanes also in HT-144 cells. However, in these cells no p53 accumulation occurs. In both cell lines, no significant change of cell proliferation and cell damage is observed in cells over-expressing the mutant hMp84C42S devoid of its enzymatic activity, suggesting that the catalytic activity of hMp84 is required for its detrimental effects. Since a more aggressive phenotype is expected to benefit from down-regulation of mechanisms impairing cell growth and survival, we envisage that Calpain-3 down-regulation can be regarded as a novel mechanism contributing to melanoma progression.
Collapse
Affiliation(s)
- Daniele Moretti
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Istituto Toscano Tumori (ITT), Firenze, Italy
| | - Barbara Del Bello
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Istituto Toscano Tumori (ITT), Firenze, Italy
| | - Giulia Allavena
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Istituto Toscano Tumori (ITT), Firenze, Italy
| | - Alessandro Corti
- Department of Translational Research and New Technologies in Medicine and Surgery, Medical School, University of Pisa, Pisa, Italy
- Istituto Toscano Tumori (ITT), Firenze, Italy
| | - Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Emilia Maellaro
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
- Istituto Toscano Tumori (ITT), Firenze, Italy
- * E-mail:
| |
Collapse
|
46
|
Budanov AV. The role of tumor suppressor p53 in the antioxidant defense and metabolism. Subcell Biochem 2014; 85:337-58. [PMID: 25201203 DOI: 10.1007/978-94-017-9211-0_18] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor suppressor p53 is inactivated in most cancers and the critical role of p53 in the suppression of carcinogenesis has been confirmed in many mouse models. The protein product of the tumor suppressor p53 gene works as a transcriptional regulator, activating expression of numerous genes involved in cell death, cell cycle arrest, senescence, DNA-repair and many other processes. In spite of the multiple efforts to characterize the functions of p53, the mechanisms of tumor suppression by p53 are still elusive. Recently, new activities of p53 such as regulation of reactive oxygen species (ROS) and metabolism have been described and the p53-regulated genes responsible for these functions have been identified. Metabolic derangements and accumulation of ROS are features of carcinogenesis, supporting the idea that many tumor suppressive effects of p53 can be mediated by regulation of metabolism and/or ROS. Mutations in the p53 gene can not only inactivate wild type function of p53 but also endow p53 with new functions such as activation of new metabolic pathways contributing to carcinogenesis. Understanding the metabolic and antioxidant functions of p53 allows us to develop approaches to restore p53 function in cancers, where p53 is inactivated, in other to ensure the best outcome of anti-cancer treatment.
Collapse
Affiliation(s)
- Andrei V Budanov
- Department of Neurosurgery & Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA,
| |
Collapse
|
47
|
Fazilaty H, Mehdipour P. Genetics of breast cancer bone metastasis: a sequential multistep pattern. Clin Exp Metastasis 2014; 31:595-612. [PMID: 24493024 DOI: 10.1007/s10585-014-9642-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/26/2014] [Indexed: 02/05/2023]
Abstract
Bone metastasis accounts for the vast majority of breast cancer (BC) metastases, and is related to a high rate of morbidity and mortality. A number of seminal studies have uncovered gene expression signatures involved in BC development and bone metastasis; each of them points at a distinct step of the 'invasion-metastasis cascade'. In this review, we provide most recently discovered functions of sets of genes that are selected from widely accepted gene signatures that are implicate in BC progression and bone metastasis. We propose a possible sequential pattern of gene expression that may lead a benign primary breast tumor to get aggressiveness and progress toward bone metastasis. A panel of genes which primarily deal with features like DNA replication, survival, proliferation, then, angiogenesis, migration, and invasion has been identified. TGF-β, FGF, NFκB, WNT, PI3K, and JAK-STAT signaling pathways, as the key pathways involved in breast cancer development and metastasis, are evidently regulated by several genes in all three signatures. Epithelial to mesenchymal transition that is also an important mechanism in cancer stem cell generation and metastasis is evidently regulated by these genes. This review provides a comprehensive insight regarding breast cancer bone metastasis that may lead to a better understanding of the disease and take step toward better treatments.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Pour Sina Street, P.O. Box: 14176-13151, Keshavarz Boulevard, Tehran, Iran
| | | |
Collapse
|
48
|
Abstract
p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.
Collapse
Affiliation(s)
- Kathryn T Bieging
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| | - Stephano Spano Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| | - Laura D Attardi
- 1] Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA. [2] Department of Genetics, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
49
|
Abstract
The function of p53 is best understood in response to genotoxic stress, but increasing evidence suggests that p53 also plays a key role in the regulation of metabolic homeostasis. p53 and its family members directly influence various metabolic pathways, enabling cells to respond to metabolic stress. These functions are likely to be important for restraining the development of cancer but could also have a profound effect on the development of metabolic diseases, including diabetes. A better understanding of the metabolic functions of p53 family members may aid in the identification of therapeutic targets and reveal novel uses for p53-modulating drugs.
Collapse
|
50
|
Chillemi G, Davidovich P, D'Abramo M, Mametnabiev T, Garabadzhiu AV, Desideri A, Melino G. Molecular dynamics of the full-length p53 monomer. Cell Cycle 2013; 12:3098-108. [PMID: 23974096 DOI: 10.4161/cc.26162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The p53 protein is frequently mutated in a very large proportion of human tumors, where it seems to acquire gain-of-function activity that facilitates tumor onset and progression. A possible mechanism is the ability of mutant p53 proteins to physically interact with other proteins, including members of the same family, namely p63 and p73, inactivating their function. Assuming that this interaction might occurs at the level of the monomer, to investigate the molecular basis for this interaction, here, we sample the structural flexibility of the wild-type p53 monomeric protein. The results show a strong stability up to 850 ns in the DNA binding domain, with major flexibility in the N-terminal transactivations domains (TAD1 and TAD2) as well as in the C-terminal region (tetramerization domain). Several stable hydrogen bonds have been detected between N-terminal or C-terminal and DNA binding domain, and also between N-terminal and C-terminal. Essential dynamics analysis highlights strongly correlated movements involving TAD1 and the proline-rich region in the N-terminal domain, the tetramerization region in the C-terminal domain; Lys120 in the DNA binding region. The herein presented model is a starting point for further investigation of the whole protein tetramer as well as of its mutants.
Collapse
|