1
|
Jangam SV, Briere LC, Jay KL, Andrews JC, Walker MA, Rodan LH, High FA, Yamamoto S, Sweetser DA, Wangler MF. A de novo missense variant in EZH1 associated with developmental delay exhibits functional deficits in Drosophila melanogaster. Genetics 2023; 224:iyad110. [PMID: 37314226 PMCID: PMC10411565 DOI: 10.1093/genetics/iyad110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
EZH1, a polycomb repressive complex-2 component, is involved in a myriad of cellular processes. EZH1 represses transcription of downstream target genes through histone 3 lysine27 (H3K27) trimethylation (H3K27me3). Genetic variants in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo missense variant in EZH1 through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and an analogous somatic or germline mutation in EZH2 has been reported in patients with B-cell lymphoma or Weaver syndrome, respectively. Human EZH1/2 are homologous to fly Enhancer of zeste (E(z)), an essential gene in Drosophila, and the affected residue (p.A678 in humans, p.A691 in flies) is conserved. To further study this variant, we obtained null alleles and generated transgenic flies expressing wildtype [E(z)WT] and the variant [E(z)A691G]. When expressed ubiquitously the variant rescues null-lethality similar to the wildtype. Overexpression of E(z)WT induces homeotic patterning defects but notably the E(z)A691G variant leads to dramatically stronger morphological phenotypes. We also note a dramatic loss of H3K27me2 and a corresponding increase in H3K27me3 in flies expressing E(z)A691G, suggesting this acts as a gain-of-function allele. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila.
Collapse
Affiliation(s)
- Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frances A High
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | | | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
2
|
Jangam S, Briere LC, Jay K, Andrews JC, Walker MA, Rodan LH, High FA, Yamamoto S, Sweetser DA, Wangler M. A de novo missense variant in EZH1 associated with developmental delay exhibits functional deficits in Drosophila melanogaster. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.31.23285113. [PMID: 36778246 PMCID: PMC9915809 DOI: 10.1101/2023.01.31.23285113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EZH1 ( Enhancer of Zeste, homolog 1) , a Polycomb Repressive Complex-2 (PRC2) component, is involved in a myriad of cellular processes through modifying histone 3 lysine27 (H3K27) residues. EZH1 represses transcription of downstream target genes through H3K27 trimethylation (H3K27me3). Genetic mutations in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo variant in EZH1 , p.Ala678Gly, through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and was the best candidate variant found in the exome. Human EZH1 / 2 are homologous to fly Enhancer of zeste E(z) , an essential gene in flies, and the residue (A678 in humans, A691 in Drosophila ) is conserved. To further study this variant, we obtained Drosophila null alleles and generated transgenic flies expressing wild-type (E(z) WT ) and the variant (E(z) A691G ) . The E(z) A691G variant led to hyper H3K27me3 while the E(z) WT did not, suggesting this is as a gain-of-function allele. When expressed under the tubulin promotor in vivo the variant rescued null-lethality similar to wild-type but the E(z) A691G flies exhibit bang sensitivity and shortened lifespan. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila . Biochemically this allele leads to increased H3K27me3 suggesting gain-of-function, but when expressed in adult flies the E(z) A691G has some characteristics of partial loss-of-function which may suggest it is a more complex allele in vivo .
Collapse
Affiliation(s)
- Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristy Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frances A High
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
3
|
Shokouhian M, Bagheri M, Poopak B, Chegeni R, Davari N, Saki N. Altering chromatin methylation patterns and the transcriptional network involved in regulation of hematopoietic stem cell fate. J Cell Physiol 2020; 235:6404-6423. [PMID: 32052445 DOI: 10.1002/jcp.29642] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are quiescent cells with self-renewal capacity and potential multilineage development. Various molecular regulatory mechanisms such as epigenetic modifications and transcription factor (TF) networks play crucial roles in establishing a balance between self-renewal and differentiation of HSCs. Histone/DNA methylations are important epigenetic modifications involved in transcriptional regulation of specific lineage HSCs via controlling chromatin structure and accessibility of DNA. Also, TFs contribute to either facilitation or inhibition of gene expression through binding to enhancer or promoter regions of DNA. As a result, epigenetic factors and TFs regulate the activation or repression of HSCs genes, playing a central role in normal hematopoiesis. Given the importance of histone/DNA methylation and TFs in gene expression regulation, their aberrations, including changes in HSCs-related methylation of histone/DNA and TFs (e.g., CCAAT-enhancer-binding protein α, phosphatase and tensin homolog deleted on the chromosome 10, Runt-related transcription factor 1, signal transducers and activators of transcription, and RAS family proteins) could disrupt HSCs fate. Herewith, we summarize how dysregulations in the expression of genes related to self-renewal, proliferation, and differentiation of HSCs caused by changes in epigenetic modifications and transcriptional networks lead to clonal expansion and leukemic transformation.
Collapse
Affiliation(s)
- Mohammad Shokouhian
- Department of Hematology and Blood Transfusion, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Marziye Bagheri
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behzad Poopak
- Department of Hematology, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rouzbeh Chegeni
- Michener Institute of Education at University Health Network, Toronto, Canada
| | - Nader Davari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Najmaldin Saki
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Abdalkader L, Oka T, Takata K, Sato H, Murakami I, Otte AP, Yoshino T. Aberrant differential expression of EZH1 and EZH2 in Polycomb repressive complex 2 among B- and T/NK-cell neoplasms. Pathology 2016; 48:467-82. [PMID: 27311868 DOI: 10.1016/j.pathol.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
The Polycomb repressive complex-2 members (EZH2, EED, SUZ12 and EZH1) are important regulators of haematopoiesis, cell cycle and differentiation. Over-expression of EZH2 has been linked to cancer metastases and poor prognosis. Detailed information on the expression of other members in normal and neoplastic lymphoid tissue remains to be elucidated. Immunohistochemical and immunofluorescent analyses of 156 samples from haematopoietic neoplasms patients and 27 haematopoietic cell lines were used. B-cell neoplasms showed a significant over-expression of EZH2, EED and SUZ12 in the aggressive subtypes compared to the indolent subtypes and normal tissue (p = 0.000-0.046) while expression of EZH1 was decreased in mantle cell lymphoma compared to normal tissue (p = 0.011). T/NK-cell neoplasms also showed significant over-expression of EZH2, EED and SUZ12 (p = 0.000-0.002) and decreased expression of EZH1 (p = 0.001) compared to normal cells. EZH2 and EZH1 have opposite expression patterns both in normal and neoplastic lymphoid tissues as well as an opposite relation to Ki-67. These results were supported by western blotting analyses. Immunofluorescent staining revealed a difference in the intracellular localisation of EZH1 compared to other members. These evidences suggest that EZH2 and EZH1 are important in the counter-balancing mechanisms controlling proliferation/resting of lymphoid cells. The disruption of the balanced EZH2/EZH1 ratio may play important roles in the pathogenesis of lymphomas.
Collapse
Affiliation(s)
- Lamia Abdalkader
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Takashi Oka
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Katsuyoshi Takata
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiaki Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ichiro Murakami
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Molecular Pathology, Tottori University Medical School, Japan
| | - Arie P Otte
- Department of Biochemistry Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
5
|
Mangialardi G, Spinetti G, Reni C, Madeddu P. Reactive oxygen species adversely impacts bone marrow microenvironment in diabetes. Antioxid Redox Signal 2014; 21:1620-33. [PMID: 25089632 PMCID: PMC4175424 DOI: 10.1089/ars.2014.5944] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Significance: Patients with diabetes mellitus suffer an excess of cardiovascular complications and recover worse from them as compared with their nondiabetic peers. It is well known that microangiopathy is the cause of renal damage, blindness, and heart attacks in patients with diabetes. This review highlights molecular deficits in stem cells and a supporting microenvironment, which can be traced back to oxidative stress and ultimately reduce stem cells therapeutic potential in diabetic patients. RECENT ADVANCES New research has shown that increased oxidative stress contributes to inducing microangiopathy in bone marrow (BM), the tissue contained inside the bones and the main source of stem cells. These precious cells not only replace old blood cells but also exert an important reparative function after acute injuries and heart attacks. CRITICAL ISSUES The starvation of BM as a consequence of microangiopathy can lead to a less efficient healing in diabetic patients with ischemic complications. Furthermore, stem cells from a patient's BM are the most used in regenerative medicine trials to mend hearts damaged by heart attacks. FUTURE DIRECTIONS A deeper understanding of redox signaling in BM stem cells will lead to new modalities for preserving local and systemic homeostasis and to more effective treatments of diabetic cardiovascular complications.
Collapse
Affiliation(s)
- Giuseppe Mangialardi
- 1 Regenerative Medicine Section, Bristol Heart Institute, School of Clinical Sciences, University of Bristol , Bristol, United Kingdom
| | | | | | | |
Collapse
|
6
|
Beerman I, Rossi DJ. Epigenetic regulation of hematopoietic stem cell aging. Exp Cell Res 2014; 329:192-9. [PMID: 25261778 DOI: 10.1016/j.yexcr.2014.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Accepted: 09/11/2014] [Indexed: 12/27/2022]
Abstract
Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks - DNA methylation and histone modifications - but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children׳s Hospital, MA 02116, USA.
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children׳s Hospital, MA 02116, USA
| |
Collapse
|
7
|
Tao H, Shi KH, Yang JJ, Huang C, Liu LP, Li J. Epigenetic regulation of cardiac fibrosis. Cell Signal 2013; 25:1932-8. [PMID: 23602934 DOI: 10.1016/j.cellsig.2013.03.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/01/2013] [Accepted: 03/28/2013] [Indexed: 02/05/2023]
Abstract
Cardiac fibrosis is characterized by excessive extracellular matrix accumulation that ultimately destroys tissue architecture and eventually abolishes normal function. In recent years, despite the underlying mechanisms of cardiac fibrosis are still unknown, numerous studies suggest that epigenetic modifications impact on the development of cardiac fibrosis. Epigenetic modifications control cell proliferation, differentiation, migration, and so on. Epigenetic modifications contain three main processes: DNA methylation, histone modifications, and silencing by microRNAs. We here outline the recent work pertaining to epigenetic changes in cardiac fibrosis. This review focuses on the epigenetic regulation of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui Tao
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | | | | | | | | | | |
Collapse
|