1
|
Ferragut Cardoso AP, Banerjee M, Nail AN, Lykoudi A, States JC. miRNA dysregulation is an emerging modulator of genomic instability. Semin Cancer Biol 2021; 76:120-131. [PMID: 33979676 PMCID: PMC8576067 DOI: 10.1016/j.semcancer.2021.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
Genomic instability consists of a range of genetic alterations within the genome that contributes to tumor heterogeneity and drug resistance. It is a well-established characteristic of most cancer cells. Genome instability induction results from defects in DNA damage surveillance mechanisms, mitotic checkpoints and DNA repair machinery. Accumulation of genetic alterations ultimately sets cells towards malignant transformation. Recent studies suggest that miRNAs are key players in mediating genome instability. miRNAs are a class of small RNAs expressed in most somatic tissues and are part of the epigenome. Importantly, in many cancers, miRNA expression is dysregulated. Consequently, this review examines the role of miRNA dysregulation as a causal step for induction of genome instability and subsequent carcinogenesis. We focus specifically on mechanistic studies assessing miRNA(s) and specific subtypes of genome instability or known modes of genome instability. In addition, we provide insight on the existing knowledge gaps within the field and possible ways to address them.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Angeliki Lykoudi
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
2
|
Schrader A, Meyer K, Walther N, Stolz A, Feist M, Hand E, von Bonin F, Evers M, Kohler C, Shirneshan K, Vockerodt M, Klapper W, Szczepanowski M, Murray PG, Bastians H, Trümper L, Spang R, Kube D. Identification of a new gene regulatory circuit involving B cell receptor activated signaling using a combined analysis of experimental, clinical and global gene expression data. Oncotarget 2018; 7:47061-47081. [PMID: 27166259 PMCID: PMC5216924 DOI: 10.18632/oncotarget.9219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/31/2016] [Indexed: 12/12/2022] Open
Abstract
To discover new regulatory pathways in B lymphoma cells, we performed a combined analysis of experimental, clinical and global gene expression data. We identified a specific cluster of genes that was coherently expressed in primary lymphoma samples and suppressed by activation of the B cell receptor (BCR) through αIgM treatment of lymphoma cells in vitro. This gene cluster, which we called BCR.1, includes numerous cell cycle regulators. A reduced expression of BCR.1 genes after BCR activation was observed in different cell lines and also in CD10+ germinal center B cells. We found that BCR activation led to a delayed entry to and progression of mitosis and defects in metaphase. Cytogenetic changes were detected upon long-term αIgM treatment. Furthermore, an inverse correlation of BCR.1 genes with c-Myc co-regulated genes in distinct groups of lymphoma patients was observed. Finally, we showed that the BCR.1 index discriminates activated B cell-like and germinal centre B cell-like diffuse large B cell lymphoma supporting the functional relevance of this new regulatory circuit and the power of guided clustering for biomarker discovery.
Collapse
Affiliation(s)
- Alexandra Schrader
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,Present address: Laboratory of Lymphocyte Signaling and Oncoproteome, Department I of Internal Medicine, University Hospital Cologne, Center for Integrated Oncology (CIO) Köln-Bonn, Cologne, Germany
| | - Katharina Meyer
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany
| | - Neele Walther
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Ailine Stolz
- Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Maren Feist
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF-Network Myc-Sys, Germany
| | - Elisabeth Hand
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,BMBF-Network HämatoSys, Germany
| | - Frederike von Bonin
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Maurits Evers
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany.,Current address: The John Curtin School of Medical Research the Australian National University Canberra, Australia
| | - Christian Kohler
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,BMBF-Network HämatoSys, Germany
| | - Katayoon Shirneshan
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Martina Vockerodt
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,School of Cancer Sciences, University of Birmingham, Birmingham, UK.,Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,Present address: Department of Anatomy, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany
| | - Wolfram Klapper
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany.,University-Hospital Schleswig-Holstein, Hematopathology Section and Lymph Node Registry Kiel, Kiel, Germany
| | - Monika Szczepanowski
- Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany.,University-Hospital Schleswig-Holstein, Hematopathology Section and Lymph Node Registry Kiel, Kiel, Germany
| | - Paul G Murray
- School of Cancer Sciences, University of Birmingham, Birmingham, UK
| | - Holger Bastians
- Goettingen Center for Molecular Biosciences (GZMB) and University Medical Center, Institute of Molecular Oncology, Section for Cellular Oncology, Göttingen, Germany
| | - Lorenz Trümper
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network Myc-Sys, Germany
| | - Rainer Spang
- Department of Statistical Bioinformatics, Institute for Functional Genomics, University of Regensburg, Regensburg, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany
| | - Dieter Kube
- Department of Haematology and Medical Oncology, University Medical Centre of the Georg-August University Göttingen, Göttingen, Germany.,GRK1034 of the Deutsche Forschungsgemeinschaft, Georg-August University Göttingen, Göttingen, Germany.,Network Molecular Mechanism of Malignant Lymphoma (MMML) of the Deutsche Krebshilfe, Germany.,BMBF-Network HämatoSys, Germany.,BMBF-Network Myc-Sys, Germany
| |
Collapse
|
3
|
Ding ZM, Huang CJ, Jiao XF, Wu D, Huo LJ. The role of TACC3 in mitotic spindle organization. Cytoskeleton (Hoboken) 2017; 74:369-378. [PMID: 28745816 DOI: 10.1002/cm.21388] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Revised: 07/04/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
TACC3 regulates spindle organization during mitosis and also regulates centrosome-mediated microtubule nucleation by affecting γ-Tubulin ring complexes. In addition, it interacts with different proteins (such as ch-TOG, clathrin and Aurora-A) to function in mitotic spindle assembly and stability. By forming the TACC3/ch-TOG complex, TACC3 acts as a plus end-tracking protein to promote microtubule elongation. The TACC3/ch-TOG/clathrin complex is formed to stabilize kinetochore fibers by crosslinking adjacent microtubules. Furthermore, the phosphorylation of TACC3 by Aurora-A is important for the formation of TACC3/ch-TOG/clathrin and its recruitment to kinetochore fibers. Recently, the aberrant expression of TACC3 in a variety of human cancers has been linked with mitotic defects. Thus, in this review, we will discuss our current understanding of the biological roles of TACC3 in mitotic spindle organization.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Garrido G, Vernos I. Non-centrosomal TPX2-Dependent Regulation of the Aurora A Kinase: Functional Implications for Healthy and Pathological Cell Division. Front Oncol 2016; 6:88. [PMID: 27148480 PMCID: PMC4831974 DOI: 10.3389/fonc.2016.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/09/2023] Open
Abstract
Aurora A has been extensively characterized as a centrosomal kinase with essential functions during cell division including centrosome maturation and separation and spindle assembly. However, Aurora A localization is not restricted to the centrosomes and compelling evidence support the existence of specific mechanisms of activation and functions for non-centrosomal Aurora A in the dividing cell. It has been now well established that spindle assembly involves an acentrosomal RanGTP-dependent pathway that triggers microtubule assembly and organization in the proximity of the chromosomes whether centrosomes are present or not. The mechanism involves the regulation of a number of NLS-containing proteins, generically called SAFS (Spindle Assembly Factors) that exert their functions upon release from karyopherins by RanGTP. One of them, the nuclear protein TPX2 interacts with and activates Aurora A upon release from importins by RanGTP. This basic mechanism triggers the activation of Aurora A in the proximity of the chromosomes potentially translating the RanGTP signaling gradient centered on the chromosome into an Aurora A phosphorylation network. Here, we will review our current knowledge on the RanGTP-dependent TPX2 activation of Aurora A away from centrosomes: from the mechanism of activation and its functional consequences on the kinase stability and regulation to its roles in spindle assembly and cell division. We will then focus on the substrates of the TPX2-activated Aurora A having a role in microtubule nucleation, stabilization, and organization. Finally, we will briefly discuss the implications of the use of Aurora A inhibitors in anti-tumor therapies in the light of its functional interaction with TPX2.
Collapse
Affiliation(s)
- Georgina Garrido
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Isabelle Vernos
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
5
|
Carvalhal S, Ribeiro SA, Arocena M, Kasciukovic T, Temme A, Koehler K, Huebner A, Griffis ER. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation. Mol Biol Cell 2015; 26:3424-38. [PMID: 26246606 PMCID: PMC4591688 DOI: 10.1091/mbc.e15-02-0113] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/24/2015] [Indexed: 12/17/2022] Open
Abstract
The nucleoporin ALADIN, which is mutated in patients with triple A syndrome, is necessary for proper spindle formation. Without ALADIN, active Aurora A moves away from centrosomes. The relocalization of active Aurora A leads to a redistribution of specific spindle assembly factors that make spindles less stable and slows their formation. The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome.
Collapse
Affiliation(s)
- Sara Carvalhal
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Susana Abreu Ribeiro
- Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543 Wellcome Trust Centre for Cell Biology, Institute of Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Miguel Arocena
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Taciana Kasciukovic
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Katrin Koehler
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Angela Huebner
- Department of Paediatrics, University Hospital Carl Gustav Carus, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Eric R Griffis
- Centre for Gene Regulation and Expression, University of Dundee, College of Life Sciences, Dundee DD1 5EH, United Kingdom Physiology Course, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
6
|
Komrskova P, Susor A, Malik R, Prochazkova B, Liskova L, Supolikova J, Hladky S, Kubelka M. Aurora kinase A is not involved in CPEB1 phosphorylation and cyclin B1 mRNA polyadenylation during meiotic maturation of porcine oocytes. PLoS One 2014; 9:e101222. [PMID: 24983972 PMCID: PMC4077738 DOI: 10.1371/journal.pone.0101222] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/04/2014] [Indexed: 11/18/2022] Open
Abstract
Regulation of mRNA translation by cytoplasmic polyadenylation is known to be important for oocyte maturation and further development. This process is generally controlled by phosphorylation of cytoplasmic polyadenylation element binding protein 1 (CPEB1). The aim of this study is to determine the role of Aurora kinase A in CPEB1 phosphorylation and the consequent CPEB1-dependent polyadenylation of maternal mRNAs during mammalian oocyte meiosis. For this purpose, we specifically inhibited Aurora kinase A with MLN8237 during meiotic maturation of porcine oocytes. Using poly(A)-test PCR method, we monitored the effect of Aurora kinase A inhibition on poly(A)-tail extension of long and short cyclin B1 encoding mRNAs as markers of CPEB1-dependent cytoplasmic polyadenylation. Our results show that inhibition of Aurora kinase A activity impairs neither cyclin B1 mRNA polyadenylation nor its translation and that Aurora kinase A is unlikely to be involved in CPEB1 activating phosphorylation.
Collapse
Affiliation(s)
- Pavla Komrskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Andrej Susor
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Radek Malik
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Barbora Prochazkova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Lucie Liskova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Jaroslava Supolikova
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Stepan Hladky
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
| | - Michal Kubelka
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Libechov, Czech Republic
- * E-mail:
| |
Collapse
|