1
|
Koistinen H, Kovanen RM, Hollenberg MD, Dufour A, Radisky ES, Stenman UH, Batra J, Clements J, Hooper JD, Diamandis E, Schilling O, Rannikko A, Mirtti T. The roles of proteases in prostate cancer. IUBMB Life 2023; 75:493-513. [PMID: 36598826 PMCID: PMC10159896 DOI: 10.1002/iub.2700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/22/2022] [Indexed: 01/05/2023]
Abstract
Since the proposition of the pro-invasive activity of proteolytic enzymes over 70 years ago, several roles for proteases in cancer progression have been established. About half of the 473 active human proteases are expressed in the prostate and many of the most well-characterized members of this enzyme family are regulated by androgens, hormones essential for development of prostate cancer. Most notably, several kallikrein-related peptidases, including KLK3 (prostate-specific antigen, PSA), the most well-known prostate cancer marker, and type II transmembrane serine proteases, such as TMPRSS2 and matriptase, have been extensively studied and found to promote prostate cancer progression. Recent findings also suggest a critical role for proteases in the development of advanced and aggressive castration-resistant prostate cancer (CRPC). Perhaps the most intriguing evidence for this role comes from studies showing that the protease-activated transmembrane proteins, Notch and CDCP1, are associated with the development of CRPC. Here, we review the roles of proteases in prostate cancer, with a special focus on their regulation by androgens.
Collapse
Affiliation(s)
- Hannu Koistinen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Ruusu-Maaria Kovanen
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| | - Morley D Hollenberg
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Antoine Dufour
- Department of Physiology & Pharmacology and Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Evette S. Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, U.S.A
| | - Ulf-Håkan Stenman
- Department of Clinical Chemistry and Haematology, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, Finland
| | - Jyotsna Batra
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - Judith Clements
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
- Translational Research Institute, Queensland University of Technology, Brisbane, Australia
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Brisbane, Australia
| | - Eleftherios Diamandis
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Oliver Schilling
- Institute for Surgical Pathology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antti Rannikko
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Urology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Tuomas Mirtti
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, Finland
- Department of Pathology, HUS Diagnostic Centre, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
2
|
Zaragoza-Huesca D, Nieto-Olivares A, García-Molina F, Ricote G, Montenegro S, Sánchez-Cánovas M, Garrido-Rodríguez P, Peñas-Martínez J, Vicente V, Martínez F, Lozano ML, Carmona-Bayonas A, Martínez-Martínez I. Implication of Hepsin from Primary Tumor in the Prognosis of Colorectal Cancer Patients. Cancers (Basel) 2022; 14:cancers14133106. [PMID: 35804878 PMCID: PMC9264764 DOI: 10.3390/cancers14133106] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
Hepsin is a type II transmembrane serine protease whose deregulation promotes tumor invasion by proteolysis of the pericellular components. In colorectal cancer, the implication of hepsin is unknown. Consequently, we aimed to study the correlations between hepsin expression and different clinical-histopathological variables in 169 patients with localized colorectal cancer and 118 with metastases. Tissue microarrays were produced from samples at diagnosis of primary tumors and stained with an anti-hepsin antibody. Hepsin expression was correlated with clinical-histopathological variables by using the chi-square and Kruskal−Wallis tests, Kaplan−Meier and Aalen−Johansen estimators, and Cox and Fine and Gray multivariate models. In localized cancer patients, high-intensity hepsin staining was associated with reduced 5-year disease-free survival (p-value = 0.16). Medium and high intensity of hepsin expression versus low expression was associated with an increased risk of metastatic relapse (hazard ratio 2.83, p-value = 0.035 and hazard ratio 3.30, p-value = 0.012, respectively), being a better prognostic factor than classic histological variables. Additionally, in patients with localized tumor, 5-year thrombosis cumulative incidence increased with the increment of hepsin expression (p-value = 0.038). Medium and high intensities of hepsin with respect to low intensity were associated with an increase in thrombotic risk (hazard ratio 7.71, p-value = 0.043 and hazard ratio 9.02, p-value = 0.028, respectively). This relationship was independent of previous tumor relapse (p-value = 0.036). Among metastatic patients, low hepsin expression was associated with a low degree of tumor differentiation (p-value < 0.001) and with major metastatic dissemination (p-value = 0.023). Hepsin is a potential thrombotic and metastatic biomarker in patients with localized colorectal cancer. In metastatic patients, hepsin behaves in a paradoxical way with respect to differentiation and invasion processes.
Collapse
Affiliation(s)
- David Zaragoza-Huesca
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
| | - Andrés Nieto-Olivares
- Department of Pathology, Hospital General Universitario Morales Meseguer, 30008 Murcia, Spain;
| | - Francisco García-Molina
- Department of Pathology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain; (F.G.-M.); (F.M.)
| | - Guillermo Ricote
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
| | - Sofía Montenegro
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
| | - Manuel Sánchez-Cánovas
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
| | - Pedro Garrido-Rodríguez
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, U-765-CIBERER, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Julia Peñas-Martínez
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
| | - Vicente Vicente
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, U-765-CIBERER, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Francisco Martínez
- Department of Pathology, Hospital General Universitario Reina Sofía, 30003 Murcia, Spain; (F.G.-M.); (F.M.)
| | - María Luisa Lozano
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, U-765-CIBERER, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Alberto Carmona-Bayonas
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
- Correspondence: (A.C.-B.); (I.M.-M.); Tel.: +34-968-341-990 (A.C.-B. & I.M.-M.)
| | - Irene Martínez-Martínez
- Centro Regional de Hemodonación, Department of Haematology and Medical Oncology, Hospital General Universitario Morales Meseguer, University of Murcia, IMIB-Arrixaca, 30100 Murcia, Spain; (D.Z.-H.); (G.R.); (S.M.); (M.S.-C.); (P.G.-R.); (J.P.-M.); (V.V.); (M.L.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras, U-765-CIBERER, Instituto de Salud Carlos III, 28220 Madrid, Spain
- Correspondence: (A.C.-B.); (I.M.-M.); Tel.: +34-968-341-990 (A.C.-B. & I.M.-M.)
| |
Collapse
|
3
|
Excess hepsin proteolytic activity limits oncogenic signaling and induces ER stress and autophagy in prostate cancer cells. Cell Death Dis 2019; 10:601. [PMID: 31399560 PMCID: PMC6689070 DOI: 10.1038/s41419-019-1830-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/05/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
The serine protease hepsin is frequently overexpressed in human prostate cancer (PCa) and is associated with matrix degradation and PCa progression in mice. Curiously, low expression of hepsin is associated with poor survival in different cancer types, and transgenic overexpression of hepsin leads to loss of viability in various cancer cell lines. Here, by comparing isogenic transfectants of the PCa cell line PC-3 providing inducible overexpression of wild-type hepsin (HPN) vs. the protease-deficient mutant HPNS353A, we were able to attribute hepsin-mediated tumor-adverse effects to its excess proteolytic activity. A stem-like expression signature of surface markers and adhesion molecules, Notch intracellular domain release, and increased pericellular protease activity were associated with low expression levels of wild-type hepsin, but were partially lost in response to overexpression. Instead, overexpression of wild-type hepsin, but not of HPNS353A, induced relocalization of the protein to the cytoplasm, and increased autophagic flux in vitro as well as LC3B punctae frequency in tumor xenografts. Confocal microscopy revealed colocalization of wild-type hepsin with both LC3B punctae as well as with the autophagy cargo receptor p62/SQSTM1. Overexpression of wild type, but not protease-deficient hepsin induced expression and nuclear presence of CHOP, indicating activation of the unfolded protein response and ER-associated protein degradation (ERAD). Whereas inhibitors of ER stress and secretory protein trafficking slightly increased viability, combined inhibition of the ubiquitin-proteasome degradation pathway (by bortezomib) with either ER stress (by salubrinal) or autophagy (by bafilomycin A1) revealed a significant decrease of viability during overexpression of wild-type hepsin in PC-3 cells. Our results demonstrate that a precise control of Hepsin proteolytic activity is critical for PCa cell fate and suggest, that the interference with ERAD could be a promising therapeutic option, leading to induction of proteotoxicity in hepsin-overexpressing tumors.
Collapse
|
4
|
Abstract
PURPOSE Endometrial carcinoma is the sixth most common cancer in women worldwide and the most common invasive cancer of the female genital tract in developed countries. It is hoped that through a better understanding of the alterations implicated in endometrial cancer pathogenesis and prognosis, a more complete profile of risk factors and targeted therapy can be developed. Hepsin is a member of the type II transmembrane serine protease family. The importance of hepsin in prostate cancer has been demonstrated by several studies. However, the role of hepsin in endometrial carcinoma is yet to be identified. This study aimed to evaluate the immunohistochemical expression of hepsin in endometrial carcinoma, trying to explore its diagnostic and prognostic value. MATERIALS AND METHODS This retrospective study was conducted on 27 endometrial carcinoma and 18 endometrial hyperplasia cases. Immunohistochemical expression of hepsin was evaluated in tissue specimens and results were correlated with the available clinicopathlogic parameters. RESULTS Positive hepsin expression was seen in all (100%) carcinoma and 17/18 (94.44%) endometrial hyperplasia cases. The H-score of hepsin expression in endometrial carcinoma was significantly higher than that of hyperplasia cases (P=0.012). A significant negative association was found between hepsin expression in endometrial carcinoma cases regarding the grade and the size of tumors (P=0.018 and 0.008, respectively) as well as myometrial invasion (P=0.027). CONCLUSIONS Hepsin could play an important role in the pathogenesis and the early carcinogenesis of endometrial carcinoma and could serve as a prognostic biomarker in this tumor.
Collapse
|
5
|
Pelkonen M, Luostari K, Tengström M, Ahonen H, Berdel B, Kataja V, Soini Y, Kosma VM, Mannermaa A. Low expression levels of hepsin and TMPRSS3 are associated with poor breast cancer survival. BMC Cancer 2015; 15:431. [PMID: 26014348 PMCID: PMC4445813 DOI: 10.1186/s12885-015-1440-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 05/15/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepsin, (also called TMPRSS1) and TMPRSS3 are type II transmembrane serine proteases (TTSPs) that are involved in cancer progression. TTSPs can remodel extracellular matrix (ECM) and, when dysregulated, promote tumor progression and metastasis by inducing defects in basement membrane and ECM molecules. This study investigated whether the gene and protein expression levels of these TTSPs were associated with breast cancer characteristics or survival. METHODS Immunohistochemical staining was used to evaluate hepsin levels in 372 breast cancer samples and TMPRSS3 levels in 373 samples. TMPRSS1 mRNA expression was determined in 125 invasive and 16 benign breast tumor samples, and TMPRSS3 mRNA expression was determined in 167 invasive and 23 benign breast tumor samples. The gene and protein expression levels were analyzed for associations with breast cancer-specific survival and clinicopathological parameters. RESULTS Low TMPRSS1 and TMPRSS3 mRNA expression levels were independent prognostic factors for poor breast cancer survival during the 20-year follow-up (TMPRSS1, P = 0.023; HR, 2.065; 95 % CI, 1.106-3.856; TMPRSS3, P = 0.013; HR, 2.106; 95 % CI, 1.167-3.800). Low expression of the two genes at the mRNA and protein levels associated with poorer survival compared to high levels (log rank P-values 0.015-0.042). Low TMPRSS1 mRNA expression was also an independent marker of poor breast cancer prognosis in patients treated with radiotherapy (P = 0.034; HR, 2.344; 95 % CI, 1.065-5.160). Grade III tumors, large tumor size, and metastasis were associated with low mRNA and protein expression levels. CONCLUSIONS The results suggest that the TTSPs hepsin and TMPRSS3 may have similar biological functions in the molecular pathology of breast cancer. Low mRNA and protein expression levels of the studied TTSPs were prognostic markers of poor survival in breast cancer.
Collapse
Affiliation(s)
- Mikko Pelkonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Kaisa Luostari
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Maria Tengström
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Hermanni Ahonen
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Bozena Berdel
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Vesa Kataja
- Institute of Clinical Medicine, Oncology, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Ylermi Soini
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Veli-Matti Kosma
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| | - Arto Mannermaa
- Institute of Clinical Medicine, Pathology and Forensic Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Biocenter Kuopio and Cancer Center of Eastern Finland, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland. .,Imaging Center, Clinical Pathology, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland.
| |
Collapse
|
6
|
Zhang C, Zhang M, Wu Q, Peng J, Ruan Y, Gu J. Hepsin inhibits CDK11p58 IRES activity by suppressing unr expression and eIF-2α phosphorylation in prostate cancer. Cell Signal 2015; 27:789-97. [PMID: 25576733 DOI: 10.1016/j.cellsig.2014.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/31/2014] [Indexed: 11/29/2022]
Abstract
Hepsin is a type II transmembrane serine protease frequently overexpressed in prostate cancer (PCa). However, the role of hepsin in PCa remains unclear. In this study, we found that hepsin inhibited the internal ribosome entry site (IRES) activity and expression of CDK11p58, which is associated with cell cycle progression and pro-apoptotic signaling in PCa. Hepsin suppressed CDK11p58 IRES activity in PCa by modulating unr expression and eIF-2α phosphorylation. Further studies revealed that hepsin inhibited the expression of unr by directly binding to unr IRES element and suppressing its activity, and also repressed eIF-2α phosphorylation through down-regulating the expression and phosphorylation of general control non-derepressible-2 (GCN2). Taken together, our data suggest a novel role of hepsin in regulating CDK11p58 IRES activity, and imply that hepsin may act on the machinery of translation to modulate cell cycle progression and survival in PCa cells.
Collapse
Affiliation(s)
- Chunyi Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Mingming Zhang
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Qingyu Wu
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Jianhao Peng
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Yuanyuan Ruan
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| | - Jianxin Gu
- Gene Research Center, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Guo J, Li G, Tang J, Cao XB, Zhou QY, Fan ZJ, Zhu B, Pan XH. HLA-A2-restricted cytotoxic T lymphocyte epitopes from human hepsin as novel targets for prostate cancer immunotherapy. Scand J Immunol 2013; 78:248-57. [PMID: 23721092 DOI: 10.1111/sji.12083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/27/2013] [Indexed: 01/01/2023]
Abstract
Hepsin is a type II transmembrane serine protease that is overexpressed in prostate cancer, and it is associated with prostate cancer cellular migration and invasion. Therefore, HPN is a biomarker for prostate cancer. CD8(+) T cells play an important role in tumour immunity. This study predicted and identified HLA-A2-restricted cytotoxic T lymphocyte (CTL) epitopes in human hepsin protein. HLA-A2-restricted CTL epitopes were identified using the following four-step procedure: (1) a computer program generated predicted epitopes from the amino acid sequence of human hepsin; (2) an HLA-A2-binding assay detected the affinity of the predicted epitopes to the HLA-A2 molecule; (3) the primary T cell response against the predicted epitopes was stimulated in vitro; and (4) the induced CTLs towards different types of hepsin- or HLA-A2-expressing prostate cancer cells were detected. Five candidate peptides were identified. The effectors that were induced by human hepsin epitopes containing residues 229 to 237 (Hpn229; GLQLGVQAV), 268 to 276 (Hpn268; PLTEYIQPV) and 191 to 199 (Hpn199; SLLSGDWVL) effectively lysed LNCaP prostate cancer cells that were hepsin-positive and HLA-A2 matched. These peptide-specific CTLs did not lyse normal liver cells with low hepsin levels. Hpn229, Hpn268 and Hpn199 increased the frequency of IFN-γ-producing T cells compared with the negative peptide. These results suggest that the Hpn229, Hpn268 and Hpn199 epitopes are novel HLA-A2-restricted CTL epitopes that are capable of inducing hepsin-specific CTLs in vitro. Hpn229, Hpn268 and Hpn199 peptide-based vaccines may be useful for immunotherapy in patients with prostate cancer.
Collapse
Affiliation(s)
- J Guo
- The Research Center of Stem Cell, Tissue and Organ Engineering, Kunming General Hospital of PLA, Kunming, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Variants in the HEPSIN gene are associated with susceptibility to prostate cancer. Prostate Cancer Prostatic Dis 2012; 15:353-8. [PMID: 22665141 DOI: 10.1038/pcan.2012.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND HEPSIN (HPN) gene is one of the most consistently overexpressed genes in patients with prostate cancer; furthermore, there is some evidence supporting an association between HPN gene variants and the risk of developing prostate cancer. In this study, sequence variants in the HPN gene were investigated to determine whether they were associated with prostate cancer risk in a Korean study cohort. METHODS We evaluated the association of 17 single-nucleotide polymorphisms (SNPs) in the HPN gene with prostate cancer risk and clinical characteristics (Gleason score and tumor stage) in Korean men (240 case subjects and 223 control subjects) using unconditional logistic regression. RESULTS The statistical analysis suggested that three SNPs (rs45512696, rs2305745, rs2305747) were significantly associated with the risk of prostate cancer (odds ratio (OR)=2.22, P=0.04; OR=0.73, P=0.03; OR=0.76, P=0.05, respectively). CONCLUSIONS The results of this study suggest that, in Korean men, some polymorphisms in the HPN gene might be associated with the risk of developing prostate cancer.
Collapse
|
9
|
Matrix-dependent regulation of AKT in Hepsin-overexpressing PC3 prostate cancer cells. Neoplasia 2011; 13:579-89. [PMID: 21750652 DOI: 10.1593/neo.11294] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/27/2011] [Accepted: 04/29/2011] [Indexed: 01/08/2023] Open
Abstract
The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser(473), which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.
Collapse
|
10
|
Chen M, Chen LM, Lin CY, Chai KX. Hepsin activates prostasin and cleaves the extracellular domain of the epidermal growth factor receptor. Mol Cell Biochem 2010; 337:259-66. [PMID: 19911255 DOI: 10.1007/s11010-009-0307-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 10/29/2009] [Indexed: 12/25/2022]
Abstract
The epithelial extracellular serine protease activation cascade involves matriptase (PRSS14) and prostasin (PRSS8), capable of modulating epidermal growth factor receptor (EGFR) signaling. Matriptase activates prostasin by cleaving in the amino-terminal pro-peptide region of prostasin, presumably at the Arg residue of position 44 (R44) of the full-length human prostasin. Using an Arg-to-Ala mutant (R44A) human prostasin, we showed in this report that the cleavage of prostasin by matriptase is at Arg44. This prostasin proteolytic activation site is also cleaved by hepsin (TMPRSS1) to produce active prostasin capable of forming a covalent complex with protease nexin 1 (PN-1). An amino-terminal truncation of EGFR in the extracellular domain (ECD) was observed when the receptor was co-expressed with hepsin. Hepsin and matriptase appear to cleave the EGFR ECD at different sites, while the hepsin cleavage is not affected by active prostasin, which enhances the matriptase cleavage of EGFR. Using hepsin as the prostasin-activating protease in cells co-transfected with EGFR, we showed that active prostasin does not cleave the EGFR ECD directly in the cellular context. Purified active prostasin also does not cleave purified EGFR. Hepsin cleavage of EGFR is not dependent on receptor tyrosine phosphorylation, while the hepsin-cleaved EGFR is phosphorylated at Tyr1068 and no longer responsive to EGF stimulation. The cleavage of EGFR by hepsin does not result in increased phosphorylation of the downstream extracellular signal-regulated kinases (Erk1/2), an event inducible by the matriptase-prostasin cleavage of EGFR. The role of hepsin serine protease should be considered in future studies of epithelial biology concerning matriptase, prostasin, and EGFR.
Collapse
Affiliation(s)
- Mengqian Chen
- Department of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida College of Medicine, Orlando, FL 32816-2364, USA
| | | | | | | |
Collapse
|
11
|
Holt SK, Kwon EM, Lin DW, Ostrander EA, Stanford JL. Association of hepsin gene variants with prostate cancer risk and prognosis. Prostate 2010; 70:1012-9. [PMID: 20166135 PMCID: PMC2875316 DOI: 10.1002/pros.21135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Hepsin (HPN) is one of the most consistently overexpressed genes in prostate cancer and there is some evidence supporting an association between HPN gene variants and prostate cancer risk. We report results from a population-based case-control genetic association study for six tagging single nucleotide polymorphisms (tagSNPs) in the HPN gene. METHODS Prostate cancer risk was estimated using adjusted unconditional logistic regression in 1,401 incident prostate cancer cases diagnosed in 1993 through 1996 or 2002 through 2005 and 1,351 age-matched controls. Risks of disease recurrence/progression and prostate cancer-specific mortality were estimated using Cox proportional hazards (PH) regression in 437 cases with long-term follow-up. RESULTS There were 135 recurrence/progression events and 57 cases who died of prostate cancer. Contrary to some earlier studies, we found no evidence of altered risk of developing prostate cancer overall or when clinical measures of tumor aggressiveness were considered for any of the tagSNPs, assessed either individually or by haplotypes. There was no evidence of altered risks of tumor recurrence/progression or prostate cancer death associated with variants in the HPN gene. CONCLUSIONS Germline genetic variation of HPN does not seem to contribute to risk of prostate cancer or prognosis.
Collapse
Affiliation(s)
- Sarah K Holt
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | | | | | | | |
Collapse
|
12
|
Li W, Wang BE, Moran P, Lipari T, Ganesan R, Corpuz R, Ludlam MJC, Gogineni A, Koeppen H, Bunting S, Gao WQ, Kirchhofer D. Pegylated kunitz domain inhibitor suppresses hepsin-mediated invasive tumor growth and metastasis. Cancer Res 2009; 69:8395-402. [PMID: 19843851 DOI: 10.1158/0008-5472.can-09-1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transmembrane serine protease hepsin is one of the most highly upregulated genes in prostate cancer. Here, we investigated its tumor-promoting activity by use of a mouse orthotopic prostate cancer model. First, we compared the tumor growth of low hepsin-expressing LnCaP-17 cells with hepsin-overexpressing LnCaP-34 cells. After implantation of cells into the left anterior prostate lobe, LnCaP-34 tumors not only grew faster based on increased serum prostate-specific antigen levels but also metastasized to local lymph nodes and, most remarkably, invaded the contralateral side of the prostate at a rate of 100% compared with only 18% for LnCaP-17 tumors. The increased tumor growth was not due to nonspecific gene expression changes and was not predicted from the unaltered in vitro growth and invasion of LnCaP-34 cells. A likely explanation is that the in vivo effects of hepsin were mediated by specific hepsin substrates present in the tumor stroma. In a second study, mice bearing LnCaP-34 tumors were treated with a PEGylated form of Kunitz domain-1, a potent hepsin active site inhibitor derived from hepatocyte growth factor activator inhibitor-1 (K(i)(app) 0.30 +/- 0.02 nmol/L). Treatment of established tumors with PEGylated Kunitz domain-1 decreased contralateral prostate invasion (46% weight reduction) and lymph node metastasis (50% inhibition). Moreover, serum prostate-specific antigen level remained reduced during the entire treatment period, reaching a maximal reduction of 76% after 5 weeks of dosing. The findings show that hepsin promotes invasive prostate tumor growth and metastasis and suggest that active site-directed hepsin inhibition could be effective in prostate cancer therapy.
Collapse
Affiliation(s)
- Wei Li
- Department of Protein Engineering, Genentech, South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chevillet JR, Park GJ, Bedalov A, Simon JA, Vasioukhin VI. Identification and characterization of small-molecule inhibitors of hepsin. Mol Cancer Ther 2008; 7:3343-51. [PMID: 18852137 DOI: 10.1158/1535-7163.mct-08-0446] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepsin is a type II transmembrane serine protease overexpressed in the majority of human prostate cancers. We recently demonstrated that hepsin promotes prostate cancer progression and metastasis and thus represents a potential therapeutic target. Here we report the identification of novel small-molecule inhibitors of hepsin catalytic activity. We utilized purified human hepsin for high-throughput screening of established drug and chemical diversity libraries and identified sixteen inhibitory compounds with IC(50) values against hepsin ranging from 0.23-2.31 microM and relative selectivity of up to 86-fold or greater. Two compounds are orally administered drugs established for human use. Four compounds attenuated hepsin-dependent pericellular serine protease activity in a dose dependent manner with limited or no cytotoxicity to a range of cell types. These compounds may be used as leads to develop even more potent and specific inhibitors of hepsin to prevent prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- John R Chevillet
- Division of Human Biology, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue N. C3-168, Seattle, WA 98109-1024, USA
| | | | | | | | | |
Collapse
|
14
|
Tripathi M, Nandana S, Yamashita H, Ganesan R, Kirchhofer D, Quaranta V. Laminin-332 is a substrate for hepsin, a protease associated with prostate cancer progression. J Biol Chem 2008; 283:30576-84. [PMID: 18784072 PMCID: PMC2576550 DOI: 10.1074/jbc.m802312200] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 09/03/2008] [Indexed: 11/06/2022] Open
Abstract
Hepsin, a cell surface protease, is widely reported to be overexpressed in more than 90% of human prostate tumors. Hepsin expression correlates with tumor progression, making it a significant marker and target for prostate cancer. Recently, it was reported that in a prostate cancer mouse model, hepsin up-regulation in tumor tissue promotes progression and metastasis. The underlying mechanisms, however, remain largely uncharacterized. Hepsin transgenic mice displayed reduced laminin-332 (Ln-332) expression in prostate tumors. This is an intriguing cue, since proteolytic processing of extracellular matrix macromolecules, such as Ln-332, is believed to be involved in cancer progression, and Ln-332 expression is lost during human prostate cancer progression. In this study, we provide the first direct evidence that hepsin cleaves Ln-332. Cleavage is specific, since it is both inhibited in a dose-dependent manner by a hepsin inhibitor (Kunitz domain-1) and does not occur when catalytically inactive hepsin is used. By Western blotting and mass spectrometry, we determined that hepsin cleaves the beta3 chain of Ln-332. N-terminal sequencing identified the cleavage site at beta3 Arg(245), in a sequence context (SQLR(245) LQGSCFC) conserved among species and in remarkable agreement with reported consensus target sequences for hepsin activity. In vitro cell migration assays showed that hepsin-cleaved Ln-332 enhanced motility of DU145 prostate cancer cells, which was inhibited by Kunitz domain-1. Further, hepsin-overexpressing LNCaP prostate cancer cells also exhibited increased migration on Ln-332. Direct cleavage of Ln-332 may be one mechanism by which hepsin promotes prostate tumor progression and metastasis, possibly by up-regulating prostate cancer cell motility.
Collapse
Affiliation(s)
- Manisha Tripathi
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
15
|
Kelly KA, Setlur SR, Ross R, Anbazhagan R, Waterman P, Rubin MA, Weissleder R. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res 2008; 68:2286-91. [PMID: 18381435 DOI: 10.1158/0008-5472.can-07-1349] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early detection and diagnosis of prostate cancer is key to designing effective treatment strategies. Microarrays have resulted in the discovery of hepsin (HPN) as a biomarker for detection of prostate cancer. In this study, we explore the development of HPN imaging probes for detection of prostate cancer. We used phage display to isolate HPN binding peptides with 190 + 2.2 nmol/L affinity in monomeric form and high specificity. The identified peptides were able to detect human prostate cancer on tissue microarrays and in cell-based assays. HPN-targeted imaging agents were synthesized by conjugating multiple peptides to fluorescent nanoparticles to further improve avidity through multivalency and to improve pharmacokinetics. When injected into mouse xenograft models, HPN-targeted nanoparticles bound specifically to HPN-expressing LNCaP xenografts compared with non-HPN-expressing PC3 xenografts. HPN imaging may provide a new method for detection of prostate cancer.
Collapse
Affiliation(s)
- Kimberly A Kelly
- Center for Molecular Imaging Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Parr C, Sanders AJ, Davies G, Martin T, Lane J, Mason MD, Mansel RE, Jiang WG. Matriptase-2 Inhibits Breast Tumor Growth and Invasion and Correlates with Favorable Prognosis for Breast Cancer Patients. Clin Cancer Res 2007; 13:3568-76. [PMID: 17575220 DOI: 10.1158/1078-0432.ccr-06-2357] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The type II transmembrane serine proteases are cell surface proteolytic enzymes that mediate a diverse range of cellular functions, including tumor invasion and metastasis. Matriptase (matriptase-1) and matriptase-2 belong to the type II transmembrane serine protease family. Matriptase-1 is known to play a role in breast cancer progression, and elevated levels of matriptase-1 correlate with poor patient outcome. The role of matriptase-2 and its cellular function in cancer is unknown. This study aimed to provide new insights into the significance of matriptase-2 in cancer. EXPERIMENTAL DESIGN Matriptase-2 expression levels were assessed in a cohort of human breast cancer specimens (normal, n = 34; cancer, n = 95), in association with patient clinical variables, using both quantitative and qualitative analysis of the matriptase-2 transcript along with immunohistochemical techniques. Matriptase-2 was also experimentally overexpressed in the MDA-MB-231 human breast cancer cell line. The effects of matriptase-2 overexpression were examined through a series of in vitro and in vivo studies. RESULTS Here, we show that reduced matriptase-2 levels in breast cancer tissues correlate with an overall poor prognosis for the breast cancer patient. This study also reveals that matriptase-2 overexpression in breast cancer cells significantly suppressed tumorigenesis in CD1 athymic mice (P = 0.000003). Furthermore, we report that matriptase-2 overexpression dramatically reduced the invasive (P = 0.0001) and migratory properties (P = 0.01) of the breast cancer cells. CONCLUSIONS Matriptase-2 suppresses breast tumor development in vivo, displays prognostic value for breast cancer patients, inhibits both breast cancer cell invasion and motility in vitro, and may play a contrasting role to matriptase-1 in breast cancer.
Collapse
Affiliation(s)
- Christian Parr
- Metastasis and Angiogenesis Research Group, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Betsunoh H, Mukai S, Akiyama Y, Fukushima T, Minamiguchi N, Hasui Y, Osada Y, Kataoka H. Clinical relevance of hepsin and hepatocyte growth factor activator inhibitor type 2 expression in renal cell carcinoma. Cancer Sci 2007; 98:491-8. [PMID: 17309599 PMCID: PMC11160002 DOI: 10.1111/j.1349-7006.2007.00412.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cell surface proteolysis is important for the generation of bioactive proteins mediating tumor progression. Recent studies suggest that the membrane-anchored cell surface proteinases matriptase and hepsin have significant roles in tumors. We analyzed the expression and clinical relevance of matriptase and hepsin, and their inhibitors hepatocyte growth factor activator inhibitor type 1 (HAI-1) and type 2 (HAI-2) in 66 cases of conventional renal cell carcinomas (RCC). The mRNA level was evaluated in paired samples from tumor and non-tumorous renal tissues by real-time reverse transcription-polymerase chain reaction. As matriptase and hepsin potently activate the proform of hepatocyte growth factor (HGF), the expression of HGF and its receptor, c-Met, was also analyzed. Although upregulation of matriptase was observed occasionally in RCC, the expression level was not associated with prognostic parameters. Hepsin was downregulated in RCC, particularly in early stage disease, but upregulated in advanced stages. There was a trend of higher hepsin expression in RCC with distant metastasis, and Kaplan-Meier survival curves showed that high hepsin expression was associated with reduced overall survival (P<0.01, log-rank test). Moreover, multivariate analysis indicated that hepsin was an independent prognostic factor. Overexpression of HGF or c-Met also showed reduced overall survival. We also observed a tendency of low HAI-2 expression with reduced overall survival and a statistical association between high hepsin and low HAI-2 level. No associations were observed between matriptase and HAI-1 and HAI-2. Our findings suggest that the balance between hepsin and its inhibitor, HAI-2, may have prognostic value in RCC.
Collapse
Affiliation(s)
- Hironori Betsunoh
- Section of Oncopathology and Regenerative Biology, Department of Pathology, Faculty of Medicine, University of Miyazakim Miyazaki 889-1692, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Varadan V, Anastassiou D. Inference of disease-related molecular logic from systems-based microarray analysis. PLoS Comput Biol 2006; 2:e68. [PMID: 16789819 PMCID: PMC1479089 DOI: 10.1371/journal.pcbi.0020068] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2005] [Accepted: 05/04/2006] [Indexed: 12/23/2022] Open
Abstract
Computational analysis of gene expression data from microarrays has been useful for medical diagnosis and prognosis. The ability to analyze such data at the level of biological modules, rather than individual genes, has been recognized as important for improving our understanding of disease-related pathways. It has proved difficult, however, to infer pathways from microarray data by deriving modules of multiple synergistically interrelated genes, rather than individual genes. Here we propose a systems-based approach called Entropy Minimization and Boolean Parsimony (EMBP) that identifies, directly from gene expression data, modules of genes that are jointly associated with disease. Furthermore, the technique provides insight into the underlying biomolecular logic by inferring a logic function connecting the joint expression levels in a gene module with the outcome of disease. Coupled with biological knowledge, this information can be useful for identifying disease-related pathways, suggesting potential therapeutic approaches for interfering with the functions of such pathways. We present an example providing such gene modules associated with prostate cancer from publicly available gene expression data, and we successfully validate the results on additional independently derived data. Our results indicate a link between prostate cancer and cellular damage from oxidative stress combined with inhibition of apoptotic mechanisms normally triggered by such damage.
Collapse
Affiliation(s)
- Vinay Varadan
- Department of Electrical Engineering and Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York, United States of America
| | - Dimitris Anastassiou
- Department of Electrical Engineering and Center for Computational Biology and Bioinformatics (C2B2), Columbia University, New York, New York, United States of America
| |
Collapse
|
19
|
Herter S, Piper D, Aaron W, Gabriele T, Cutler G, Cao P, Bhatt A, Choe Y, Craik C, Walker N, Meininger D, Hoey T, Austin R. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J 2005; 390:125-36. [PMID: 15839837 PMCID: PMC1184568 DOI: 10.1042/bj20041955] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepsin is a membrane-anchored, trypsin-like serine protease with prominent expression in the human liver and tumours of the prostate and ovaries. To better understand the biological functions of hepsin, we identified macromolecular substrates employing a tetrapeptide PS-SCL (positional scanning-synthetic combinatorial library) screen that rapidly determines the P1-P4 substrate specificity. Hepsin exhibited strong preference at the P1 position for arginine over lysine, and favoured threonine, leucine or asparagine at the P2, glutamine or lysine at the P3, and proline or lysine at the P4 position. The relative activity of hepsin toward individual AMC (7-amino-4-methylcoumarin)-tetrapeptides was generally consistent with the overall peptide profiling results derived from the PC-SCL screen. The most active tetrapeptide substrate Ac (acetyl)-KQLR-AMC matched with the activation cleavage site of the hepatocyte growth factor precursor sc-HGF (single-chain HGF), KQLR downward arrowVVNG (where downward arrow denotes the cleavage site), as identified by a database analysis of trypsin-like precursors. X-ray crystallographic studies with KQLR chloromethylketone showed that the KQLR peptide fits well into the substrate-binding cleft of hepsin. This hepsin-processed HGF induced c-Met receptor tyrosine phosphorylation in SKOV-3 ovarian cancer cells, indicating that the hepsin-cleaved HGF is biologically active. Activation cleavage site mutants of sc-HGF with predicted non-preferred sequences, DPGR downward arrowVVNG or KQLQ downward arrowVVNG, were not processed, illustrating that the P4-P1 residues can be important determinants for substrate specificity. In addition to finding macromolecular hepsin substrates, the extracellular inhibitors of the HGF activator, HAI-1 and HAI-2, were potent inhibitors of hepsin activity (IC50 4+/-0.2 nM and 12+/-0.5 nM respectively). Together, our findings suggest that the HGF precursor is a potential in vivo substrate for hepsin in tumours, where hepsin expression is dysregulated and may influence tumorigenesis through inappropriate activation and/or regulation of HGF receptor (c-Met) functions.
Collapse
Affiliation(s)
- Sylvia Herter
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Derek E. Piper
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Wade Aaron
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Timothy Gabriele
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Gene Cutler
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Ping Cao
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Ami S. Bhatt
- †University of California San Francisco, Department of Pharmaceutical Chemistry, 600 16th Street, San Francisco, CA 94143, U.S.A
| | - Youngchool Choe
- †University of California San Francisco, Department of Pharmaceutical Chemistry, 600 16th Street, San Francisco, CA 94143, U.S.A
| | - Charles S. Craik
- †University of California San Francisco, Department of Pharmaceutical Chemistry, 600 16th Street, San Francisco, CA 94143, U.S.A
| | - Nigel Walker
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - David Meininger
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Timothy Hoey
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
| | - Richard J. Austin
- *Department of Biology, Amgen San Francisco, 1120 Veterans Boulevard, South San Francisco, CA 94080, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|