Gavilan MP, Arjona M, Zurbano A, Formstecher E, Martinez-Morales JR, Bornens M, Rios RM. Alpha-catenin-dependent recruitment of the centrosomal protein CAP350 to adherens junctions allows epithelial cells to acquire a columnar shape.
PLoS Biol 2015;
13:e1002087. [PMID:
25764135 PMCID:
PMC4357431 DOI:
10.1371/journal.pbio.1002087]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/26/2015] [Indexed: 11/21/2022] Open
Abstract
Epithelial morphogenesis involves a dramatic reorganisation of the microtubule cytoskeleton. How this complex process is controlled at the molecular level is still largely unknown. Here, we report that the centrosomal microtubule (MT)-binding protein CAP350 localises at adherens junctions in epithelial cells. By two-hybrid screening, we identified a direct interaction of CAP350 with the adhesion protein α-catenin that was further confirmed by co-immunoprecipitation experiments. Block of epithelial cadherin (E-cadherin)-mediated cell-cell adhesion or α-catenin depletion prevented CAP350 localisation at cell-cell junctions. Knocking down junction-located CAP350 inhibited the establishment of an apico-basal array of microtubules and impaired the acquisition of columnar shape in Madin-Darby canine kidney II (MDCKII) cells grown as polarised epithelia. Furthermore, MDCKII cystogenesis was also defective in junctional CAP350-depleted cells. CAP350-depleted MDCKII cysts were smaller and contained either multiple lumens or no lumen. Membrane polarity was not affected, but cortical microtubule bundles did not properly form. Our results indicate that CAP350 may act as an adaptor between adherens junctions and microtubules, thus regulating epithelial differentiation and contributing to the definition of cell architecture. We also uncover a central role of α-catenin in global cytoskeleton remodelling, in which it acts not only on actin but also on MT reorganisation during epithelial morphogenesis.
In epithelial cells, the normally centrosomal protein CAP350 binds to α-catenin at adherens junctions and helps to establish the cells' parallel apico-basal microtubule array and columnar shape.
Epithelia cover all the surfaces of and the cavities throughout the body and serve as barriers between the organism and its external environment. Epithelial differentiation requires the coordination in space and time of several mechanisms that ultimately lead to the acquisition of distinctive epithelial features, including apical-basal polarity, specialised cell-cell junctions, and columnar shape. Epithelial differentiation also induces the reorganisation of three cytoskeletal networks: actin filaments, intermediate filaments, and microtubules. In simple epithelia, cadherins and their cytoplasmic binding partners catenins play a crucial role in connecting cell-cell junctions to the actin cytoskeleton. The cadherin extracellular domain forms adhesive contacts between adjacent cells, and their cytoplasmic tail indirectly binds the actin-binding protein α-catenin, thus linking cell-cell junctions to the underlying actin cytoskeleton. We report here an additional role of α-catenin in remodelling microtubules during epithelial differentiation. In most epithelial cells, microtubules are organised as parallel bundles aligned along the apico-basal axis and as apical and basal plasma membrane-associated networks. We demonstrate that the microtubule-binding protein CAP350, which is only localised at the centrosome in most cells, is also recruited at cell–cell junctions in epithelial cells through its binding to α-catenin. In the absence of junctional CAP350, microtubules are unable to reorganise in bundles, and cells do not acquire columnar shape. Our results suggest that recruitment of centrosomal proteins to cell-cell junctions could be a general mechanism to control microtubule reorganisation in neighbour cells during epithelial differentiation.
Collapse