1
|
Mei Y, Li K, Zhang Z, Li M, Yang H, Wang H, Huang X, Li X, Shi S, Yang H. miR-33b-3p Acts as a Tumor Suppressor by Targeting DOCK4 in Prostate Cancer. Front Oncol 2021; 11:740452. [PMID: 34804930 PMCID: PMC8595470 DOI: 10.3389/fonc.2021.740452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/18/2021] [Indexed: 11/28/2022] Open
Abstract
Despite that androgen-deprivation therapy results in long-lasting responses, the disease inevitably progresses to metastatic castration-resistant prostate cancer. In this study, we identified miR-33b-3p as a tumor suppressor in prostate cancer. miR-33b-3p was significantly reduced in prostate cancer tissues, and the low expression of miR-33b-3p was correlated with poor overall survival of prostate cancer patients. Overexpression of miR-33b-3p inhibited both migration and invasion of highly metastatic prostate cancer cells whereas inhibition of miR-33b-3p promoted those processes in lowly metastatic cells. The in vivo results demonstrate that miR-33b-3p suppresses metastasis of tail vein inoculated prostate cancer cells to lung and lymph nodes in mice. DOCK4 was validated as the direct target of miR-33b-3p. miR-33b-3p decreased the expression of DOCK4 and restoration of DOCK4 could rescue miR-33b-3p inhibition on cell migration and invasion. Moreover, downregulation of miR-33b-3p was induced by bortezomib, the clinically used proteasome inhibitor, and overexpression of miR-33b-3p enhanced the insufficient inhibition of bortezomib on migration and invasion as well as metastasis of prostate cancer cells. In summary, our findings demonstrate that miR-33b-3p suppresses metastasis by targeting DOCK4 in prostate cancer. Our results suggest that enhancing miR-33b-3p expression may provide a promising therapeutic strategy for overcoming that proteasome inhibitor’s poor efficacy against metastatic prostate cancer.
Collapse
Affiliation(s)
- Yu Mei
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhicheng Zhang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengmeng Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Hong Yang
- Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xuemei Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xinyuan Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shuhua Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
2
|
Semina EV, Rysenkova KD, Troyanovskiy KE, Shmakova AA, Rubina KA. MicroRNAs in Cancer: From Gene Expression Regulation to the Metastatic Niche Reprogramming. BIOCHEMISTRY (MOSCOW) 2021; 86:785-799. [PMID: 34284705 DOI: 10.1134/s0006297921070014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
By 2003, the Human Genome project had been completed; however, it turned out that 97% of genome sequences did not encode proteins. The explanation came later when it was found the untranslated DNA contain sequences for short microRNAs (miRNAs) and long noncoding RNAs that did not produce any mRNAs or tRNAs, but instead were involved in the regulation of gene expression. Initially identified in the cytoplasm, miRNAs have been found in all cell compartments, where their functions are not limited to the degradation of target mRNAs. miRNAs that are secreted into the extracellular space as components of exosomes or as complexes with proteins, participate in morphogenesis, regeneration, oncogenesis, metastasis, and chemoresistance of tumor cells. miRNAs play a dual role in oncogenesis: on one hand, they act as oncogene suppressors; on the other hand, they function as oncogenes themselves and inactivate oncosuppressors, stimulate tumor neoangiogenesis, and mediate immunosuppressive processes in the tumors, The review presents current concepts of the miRNA biogenesis and their functions in the cytoplasm and nucleus with special focus on the noncanonical mechanisms of gene regulation by miRNAs and involvement of miRNAs in oncogenesis, as well as the authors' opinion on the role of miRNAs in metastasis and formation of the premetastatic niche.
Collapse
Affiliation(s)
- Ekaterina V Semina
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia. .,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | - Karina D Rysenkova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| | | | - Anna A Shmakova
- National Cardiology Research Center, Ministry of Health of the Russian Federation, Moscow, 121552, Russia
| | - Kseniya A Rubina
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 119192, Russia
| |
Collapse
|
3
|
Farokhimanesh S, Forouzandeh Moghadam M, Ebrahimi M, Hashemi ZS. Metastasis Inhibition by Cell Type Specific Expression of BRMS1 Gene under The Regulation of miR200 Family Response Elements. CELL JOURNAL 2021; 23:225-237. [PMID: 34096224 PMCID: PMC8181311 DOI: 10.22074/cellj.2021.6988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/03/2019] [Indexed: 11/23/2022]
Abstract
Objective Specific expression of therapeutic genes in cancer therapy has been per used for many years. One of the
innovative strategies that have recently been introduced is employing miRNA response elements (MREs) of microRNAs
(whose expression are reduced or inhibited in cancerous cells) into the 3´UTR of the therapeutic genes for their specific
expression. Accordingly, MREs of anti-metastatic miRNA family have been used in 3´UTR of the metastasis suppressor
gene in the corresponding cells to evaluate the level of metastatic behavior. Material and Methods In this experimental study, 3´UTR of the ZEB1 gene with 592 bp length, encompassing multiple
MREs of miR-141, miR-429, miR-200b and miR-200c, was employed to replace BRMS1 3´UTR. The obtained vector
was then assessed in the context of MCF-10A, MDA-MB231 and MCF-7 cells. Results It was shown that the employed MREs are able to up-regulate BRMS expression in the metastatic MDA-
MB231 cells (almost 3.5-fold increase), while it was significantly reduced within tumorigenic/non-metastatic MCF-7
cells. Specific expression of BRMS1 in metastatic cells led to a significant reduction in their migratory and invasive
characteristics (about 65% and 55%, respectively). Two-tailed student’s t test was utilized for statistical analysis. Conclusion It was demonstrated that a chimeric vector containing BRMS1 which is regulated by miR-200 family
response element may represent a promising therapeutic tool. This is due to the capability of the chimeric vector for
cell type-specific expression of anti-metastatic genes with lowest side-effects. It consequently prohibits the invasive
characteristics of metastatic cells.
Collapse
Affiliation(s)
- Samila Farokhimanesh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.,Department of Biotechnology, Applied Biophotonics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahdi Forouzandeh Moghadam
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Marzieh Ebrahimi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Zahra Sadat Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Additive effect of metastamiR-193b and breast cancer metastasis suppressor 1 as an anti-metastatic strategy. Breast Cancer 2018; 26:215-228. [PMID: 30284194 DOI: 10.1007/s12282-018-0915-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND It has been reported that enhancing the cellular levels of miR-193b as well as breast cancer-metastasis-suppressor-1 (BRMS1) protein is associated with diminished metastatic characteristics in breast cancer. In view of these facts, as a new therapeutic intervention, we employed a restoration-based strategy using both miR-193b-3p mimic and optimized BRMS1 in the context of a chimeric construct. METHODS miR-193b-3p and BRMS1 genes were cloned and the resulting plasmids were transfected into the MDA-MB231, MCF-7 and MCF-10A cell lines. microRNA expression levels were assessed by rea time PCR using LNA-primer and protein expression was confirmed by western blot method. Then, apoptosis, MTT, colony formation and invasion assays were carried out. RESULTS The expression levels of miR-146a, miR-146b and miR-373 were up-regulated, while the miR-520c, miR-335 and miR-10b were down-regulated following the exogenous BRMS1 expression. The exogenous over-expression of BRMS1 was associated with higher amounts of endogenous miR-193b-3p expression and enabled more efficient targeting of the 3'UTR of uPA. Although, miR-193b-3p and BRMS1 are individually capable of suppressing breast cancer cell growth, migration and invasion abilities, their cistronic expression was capable of enhancing the ability to repress the breast cancer cells invasion. CONCLUSIONS Our results collectively indicated the existence of an additive anti-metastatic effect between miR-193b-3p and BRMS1. Moreover, it has been hypothesized that the exogenous expression of a protein can effect endogenous expression of non-relevant microRNA. Our findings provide new grounds for miR-restoration therapy applications as an amenable anti-metastatic strategy.
Collapse
|
5
|
Noruzi S, Azizian M, Mohammadi R, Hosseini SA, Rashidi B, Mohamadi Y, Nesaei A, Seiri P, Sahebkar A, Salarinia R, Aghdam AM, Mirzaei H. Micro-RNAs as critical regulators of matrix metalloproteinases in cancer. J Cell Biochem 2018; 119:8694-8712. [PMID: 30132957 DOI: 10.1002/jcb.27182] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 05/24/2018] [Indexed: 12/25/2022]
Abstract
Metastasis is known to be one of the important factors associated with cancer-related deaths worldwide. Several cellular and molecular targets are involved in the metastasis process. Among these targets, matrix metalloproteinases (MMPs) play central roles in promoting cancer metastasis. MMPs could contribute toward tumor growth, angiogenesis, migration, and invasion via degradation of the extracellular matrix and activation of pre-pro-growth factors. Therefore, identification of various cellular and molecular pathways that affect MMPs could contribute toward a better understanding of the metastatic pathways involved in various tumors. Micro-RNAs are important targets that could affect MMPs. Multiple lines of evidence have indicated that deregulation of various micro-RNAs, including miR-9, Let-7, miR-10b, and miR-15b, affects metastasis of tumor cells via targeting MMPs.
Collapse
Affiliation(s)
- Somaye Noruzi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Mitra Azizian
- Department of Clinical Biochemistry, Ftabaculty of Medicine, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Rezvan Mohammadi
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Seyede Atefe Hosseini
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yousef Mohamadi
- Department of Anatomy, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, Faculty of medicine, Qom University of Medical Sciences, Qom, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Parvaneh Seiri
- Department of Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Salarinia
- Department of Medical Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnourd, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Biomaterials, Tissue Engineering and Nanotechnology, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
6
|
Wu L, Bai X, Xie Y, Yang Z, Yang X, Lin J, Zhu C, Wang A, Zhang H, Miao R, Wu Y, Robson SC, Zhao Y, Sang X, Zhao H. MetastamiRs: A promising choice for antihepatocellular carcinoma nucleic acid drug development. Hepatol Res 2017; 47:80-94. [PMID: 27138942 DOI: 10.1111/hepr.12737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 04/18/2016] [Accepted: 04/29/2016] [Indexed: 12/23/2022]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer mortality worldwide, which can be explained at least in part by its propensity towards metastasis and the limited efficacy of adjuvant therapy. MetastamiRs are miRNAs that promote or suppress migration and metastasis of cancer cells, and their functional status is significantly correlated with HCC prognosis. Unlike targeted therapy, metastamiRs have the potential to target multiple genes and signaling pathways and dramatically suppress cancer metastasis. In this review, we discuss the regulatory role of metastamiRs in the HCC invasion-metastasis cascade. Moreover, Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis has shown that many extensively studied metastamiRs target several critical signaling pathways and these have remarkable therapeutic potential in HCC. The information reviewed here may assist in further anti-HCC miRNA drug screening and development.
Collapse
Affiliation(s)
- Liangcai Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xue Bai
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Xie
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai, China
| | - Xiaobo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianzhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengpei Zhu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anqiang Wang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haohai Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruoyu Miao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yan Wu
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Simon C Robson
- Liver Center and The Transplant Institute, Departments of Medicine and Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Brookline, Massachusetts, USA
| | - Yi Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Zhao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Center of Translational Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Welch D, Manton C, Hurst D. Breast Cancer Metastasis Suppressor 1 (BRMS1): Robust Biological and Pathological Data, But Still Enigmatic Mechanism of Action. Adv Cancer Res 2016; 132:111-37. [PMID: 27613131 DOI: 10.1016/bs.acr.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Metastasis requires coordinated expression of multiple genetic cassettes, often via epigenetic regulation of gene transcription. BRMS1 blocks metastasis, but not orthotopic tumor growth in multiple tumor types, presumably via SIN3 chromatin remodeling complexes. Although there is an abundance of strong data supporting BRMS1 as a metastasis suppressor, the mechanistic data directly connecting molecular pathways with inhibition of particular steps in metastasis are not well defined. In this review, the data for BRMS1-mediated metastasis suppression in multiple tumor types are discussed along with the steps in metastasis that are inhibited.
Collapse
|
8
|
Cho KH, Yu SL, Cho DY, Park CG, Lee HY. Breast cancer metastasis suppressor 1 (BRMS1) attenuates TGF-β1-induced breast cancer cell aggressiveness through downregulating HIF-1α expression. BMC Cancer 2015; 15:829. [PMID: 26520789 PMCID: PMC4628375 DOI: 10.1186/s12885-015-1864-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/27/2015] [Indexed: 11/25/2022] Open
Abstract
Background Cancer metastasis is a multi-step event including epithelial-to-mesenchymal transition (EMT). Breast cancer metastasis suppressor 1 (BRMS1) is a novel metastasis suppressor protein without anti-proliferating activity. However, a detailed underlying mechanism by which BRMS1 attenuates cancer cell EMT and invasion remained to be answered. In the present study, we report an additional mechanism by which BRMS1 attenuates Transforming growth factor-beta1 (TGF-β1)-induced breast cancer cell EMT and invasion. Methods Experimental analysis involving chromosome immunoprecipitation (ChIP) and luciferase reporter assays were used to validate hypoxia inducible factor-1alpha (HIF-1α) as a transcriptional regulator of TWIST1 and Snail. Quantitative RT-PCR was used to analyze transcript expression. Immunoblotting and immunofluorescence were used to analyze protein expression. Matrigel-coated in vitro invasion insert was used to analyze cancer cell invasion. Results BRMS1 strongly inhibited TGF-β1-induced breast cancer cell EMT and invasion. Unexpectedly, we observed that BRMS1 downregulates not only TWIST1 but also Snail expression, thereby inhibiting breast cancer cell invasion. In addition, we provide evidence that HIF-1α is required for Snail and TWIST1 expression. Further, BRMS1 reduced TGF-β1-induced HIF-1α transcript expression through inactivation of nuclear factor kappaB (NF-κB). Conclusion Collectively, the present study demonstrates a mechanical cascade of BRMS1 suppressing cancer cell invasion through downregulating HIF-1α transcript and consequently reducing Snail and TWIST1 expression.
Collapse
Affiliation(s)
- Kyung Hwa Cho
- Department of Pharmacology, Myunggok Medical Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| | - Seong-Lan Yu
- Department of Pharmacology, Myunggok Medical Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| | - Do Yeun Cho
- Department of Hematology & Oncology, Myunggok Medical Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| | - Chang Gyo Park
- Department of Pharmacology, Myunggok Medical Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| | - Hoi Young Lee
- Department of Pharmacology, Myunggok Medical Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea.
| |
Collapse
|
9
|
Loss of BRMS1 promotes a mesenchymal phenotype through NF-κB-dependent regulation of Twist1. Mol Cell Biol 2014; 35:303-17. [PMID: 25368381 DOI: 10.1128/mcb.00869-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is downregulated in non-small cell lung cancer (NSCLC), and its reduction correlates with disease progression. Herein, we investigate the mechanisms through which loss of the BRMS1 gene contributes to epithelial-to-mesenchymal transition (EMT). Using a short hairpin RNA (shRNA) system, we show that loss of BRMS1 promotes basal and transforming growth factor beta-induced EMT in NSCLC cells. NSCLC cells expressing BRMS1 shRNAs (BRMS1 knockdown [BRMS1(KD)]) display mesenchymal characteristics, including enhanced cell migration and differential regulation of the EMT markers. Mesenchymal phenotypes observed in BRMS1(KD) cells are dependent on RelA/p65, the transcriptionally active subunit of nuclear factor kappa B (NF-κB). In addition, chromatin immunoprecipitation analysis demonstrates that loss of BRMS1 increases Twist1 promoter occupancy of RelA/p65 K310-a key histone modification associated with increased transcription. Knockdown of Twist1 results in reversal of BRMS1(KD)-mediated EMT phenotypic changes. Moreover, in our animal model, BRMS1(KD)/Twist1(KD) double knockdown cells were less efficient in establishing lung tumors than BRMS1(KD) cells. Collectively, this study demonstrates that loss of BRMS1 promotes malignant phenotypes that are dependent on NF-κB-dependent regulation of Twist1. These observations offer fresh insight into the mechanisms through which BRMS1 regulates the development of metastases in NSCLC.
Collapse
|
10
|
Tsukerman P, Enk J, Mandelboim O. Metastamir-mediated immune evasion: miR-10b downregulates the stress-induced molecule MICB, hence avoid recognition by NKG2D receptor. Oncoimmunology 2014; 2:e22245. [PMID: 23479551 PMCID: PMC3583910 DOI: 10.4161/onci.22245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Metastases are responsible for more than 90% of cancer-related deaths. We have recently reported that miR-10b inhibits the expression of MICB, a stress-induced ligand of the activating natural killer (NK)-cell receptor NKG2D. Here, we discuss our findings, which link metastasis formation to immune evasion.
Collapse
Affiliation(s)
- Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology; The Hebrew University; The BioMedical Research Institute; Hadassah Medical School; Jerusalem, Israel
| | | | | |
Collapse
|
11
|
Edmonds MD, Eischen CM. Differences in miRNA expression in early stage lung adenocarcinomas that did and did not relapse. PLoS One 2014; 9:e101802. [PMID: 25028925 PMCID: PMC4100742 DOI: 10.1371/journal.pone.0101802] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 06/11/2014] [Indexed: 12/31/2022] Open
Abstract
Relapse of adenocarcinoma, the most common non-small cell lung cancer (NSCLC), is a major clinical challenge to improving survival. To gain insight into the early molecular events that contribute to lung adenocarcinoma relapse, and taking into consideration potential cell type specificity, we used stringent criteria for sample selection. We measured miRNA expression only from flash frozen stage I lung adenocarcinomas, excluding other NSCLC subtypes. We compared miRNA expression in lung adenocarcinomas that relapsed within two years to those that did not relapse within three years after surgical resection prior to adjuvant therapy. The most significant differences in mRNA expression for recurrent tumors compared to non-recurrent tumors were decreases in miR-106b*, -187, -205, -449b, -774* and increases in miR-151-3p, let-7b, miR-215, -520b, and -512-3p. A unique comparison between adjacent normal lung tissue from relapse and non-relapse groups revealed dramatically different miRNA expression, suggesting dysregulation of miRNA in the environment around the tumor. To assess patient-to-patient variability, miRNA levels in the tumors were normalized to levels in matched adjacent normal lung tissue. This analysis revealed a different set of significantly altered miRNA in tumors that recurred compared to tumors that did not. Together our analyses elucidated miRNA not previously linked to lung adenocarcinoma that likely have important roles in its development and progression. Our results also highlight the differences in miRNA expression in normal lung tissue in adenocarcinomas that do and do not recur. Most notably, our data identified those miRNA that distinguish early stage tumors likely to relapse prior to treatment and miRNA that could be further studied for use as biomarkers for prognosis, patient monitoring, and/or treatment decisions.
Collapse
Affiliation(s)
- Mick D. Edmonds
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Christine M. Eischen
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
12
|
Srivastava SK, Arora S, Singh S, Bhardwaj A, Averett C, Singh AP. MicroRNAs in pancreatic malignancy: progress and promises. Cancer Lett 2014; 347:167-74. [PMID: 24561061 DOI: 10.1016/j.canlet.2014.02.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/10/2014] [Accepted: 02/13/2014] [Indexed: 02/06/2023]
Abstract
Despite progress in recent years, pancreatic cancer still remains a major clinical challenge. Its incidence and mortality rates have been on consistent rise underscoring the critical need for novel diagnostic, prognostic and therapeutic tools for its effective management. Recent studies have demonstrated that microRNAs (miRNAs/miRs) are deregulated in a variety of malignancies, including pancreatic cancer, and play a significant role in the initiation, progression and metastasis. Furthermore, their vital involvement in the therapeutic resistance of cancer has also been established. Hence, there has been enormous interest worldwide in investigating the roles of miRNAs in pancreatic cancer pathogenesis and exploiting their utility for clinical benefit. In this review, we summarize current knowledge on the role of miRNAs in pancreatic cancer and discuss their potential use as diagnostic and prognostic biomarkers, and as novel targets for development of effective therapeutic strategies.
Collapse
Affiliation(s)
| | - Sumit Arora
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Seema Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Arun Bhardwaj
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Courey Averett
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - Ajay P Singh
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA; Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, USA.
| |
Collapse
|
13
|
Metastasis suppression by BRMS1 associated with SIN3 chromatin remodeling complexes. Cancer Metastasis Rev 2013; 31:641-51. [PMID: 22678236 DOI: 10.1007/s10555-012-9363-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Epigenetic regulation of gene transcription by histone modification and chromatin remodeling has been linked to many biological and pathological events including cancer metastasis. Breast cancer metastasis suppressor 1 (BRMS1) interacts with SIN3 chromatin remodeling complexes, and, upon forced expression in metastatic cells, a nearly complete suppression of metastasis is noted without preventing primary tumor growth. The data for BRMS1-mediated metastasis suppression and SIN3 interaction are clear; however, connecting the inhibition directly to the association of BRMS1 with SIN3 complexes is currently not well defined. Considering the recent advancements in developing epigenetic drugs for cancer therapy, an improved understanding of how the interactions between BRMS1 and SIN3 regulate the process of metastasis should lead to novel therapies specifically targeting the most deadly aspect of tumor progression. In this article, the data for BRMS1-mediated metastasis suppression are reviewed with a focus on how the SIN3 chromatin remodeling complexes may be functionally involved.
Collapse
|
14
|
The C-terminal putative nuclear localization sequence of breast cancer metastasis suppressor 1, BRMS1, is necessary for metastasis suppression. PLoS One 2013; 8:e55966. [PMID: 23390556 PMCID: PMC3563580 DOI: 10.1371/journal.pone.0055966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/04/2013] [Indexed: 12/19/2022] Open
Abstract
Breast cancer metastasis suppressor 1 (BRMS1) is a predominantly nuclear protein that suppresses metastasis in multiple human and murine carcinoma cell lines. BRMS1 interacts with several nuclear proteins including SIN3:HDAC chromatin remodeling complexes that are involved in repressing transcription. However, recent reports suggest BRMS1 may function in the cytoplasm. BRMS1 has two predicted nuclear localization sequences (NLS) that are located near the C-terminus (amino acids 198–205 and 238–244, NLS1 and NLS2 respectively). We hypothesized that nuclear localization sequences of BRMS1 were essential for BRMS1 mediated metastasis suppression. Replacement of NLS2 with NLS1 (BRMS1NLS1,1), truncation at 238 (BRMS1ΔNLS2), or switching the location of NLS1 and NLS2 (BRMS1NLS2,1) did not affect nuclear localization; but, replacement of NLS1 with NLS2 (BRMS1NLS2,2) or truncation at 197 (BRMS1ΔNLS which removes both NLS) promoted cytoplasmic localization. MDA-MB-231 human metastatic breast cancer cells transduced with BRMS1NLS1,1, BRMS1NLS2,2 or BRMS1NLS2,1 were evaluated for metastasis suppression in an experimental xenograft mouse model. Interestingly, while NLS2 was not necessary for nuclear localization, it was found to be important for metastasis suppression since BRMS1NLS2,2 suppressed metastasis by 85%. In contrast, BRMS1NLS2,1 and BRMS1NLS1,1 did not significantly suppress metastasis. Both BRMS1 and BRMS1NLS2,2 co-immunoprecipitated with SIN3A in the nucleus and cytoplasm; however, BRMS1NLS1,1 and BRMS1NLS2,1 were associated with SIN3A in the nucleus only. Moreover, BRMS1 and BRMS1NLS2,2, but not BRMS1NLS1,1 and BRMS1NLS2,1, down-regulated the pro-metastatic microRNA, miR-10b. Together, these data demonstrate an important role for NLS2 in the cytoplasm that is critical for metastasis suppression and is distinct from nuclear localization.
Collapse
|
15
|
Brognara E, Fabbri E, Aimi F, Manicardi A, Bianchi N, Finotti A, Breveglieri G, Borgatti M, Corradini R, Marchelli R, Gambari R. Peptide nucleic acids targeting miR-221 modulate p27Kip1 expression in breast cancer MDA-MB-231 cells. Int J Oncol 2012; 41:2119-27. [PMID: 22992757 DOI: 10.3892/ijo.2012.1632] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/08/2012] [Indexed: 01/02/2023] Open
Abstract
The activity of a peptide nucleic acid (PNA) targeting cancer-associated microRNA-221 is described. PNAs against miR-221 were designed in order to bind very efficiently to the target RNA strand and to undergo efficient uptake in the cells. A polyarginine-PNA conjugate targeted against miR-221 (Rpep-PNA-a221) showed both very high affinity for RNA and efficient cellular uptake without the addition of transfection reagents. Unmodified PNA with the same sequence displayed RNA binding, but cellular uptake was very poor. Consistently, only Rpep-PNA-a221 strongly inhibited miR-221. Targeting miR-221 by PNA resulted in i) lowering of the hybridization levels of miR-221 measured by RT-qPCR, ii) upregulation of p27Kip1 gene expression, measured by RT-qPCR and western blot analysis. The major conclusion of this study is that efficient delivery of anti‑miR PNA through a suitable peptide carrier (Rpep‑PNA-a221) leads to inhibition of miR-221 activity, altering the expression of miR-221-regulated functions in breast cancer cells.
Collapse
Affiliation(s)
- Eleonora Brognara
- BioPharmaNet, Department of Biochemistry and Molecular Biology, Ferrara University, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Gambari R, Fabbri E, Borgatti M, Lampronti I, Finotti A, Brognara E, Bianchi N, Manicardi A, Marchelli R, Corradini R. Targeting microRNAs involved in human diseases: a novel approach for modification of gene expression and drug development. Biochem Pharmacol 2011; 82:1416-29. [PMID: 21864506 DOI: 10.1016/j.bcp.2011.08.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/04/2011] [Accepted: 08/05/2011] [Indexed: 11/30/2022]
Abstract
The identification of all epigenetic modifications (i.e. DNA methylation, histone modifications and expression of noncoding RNAs such as microRNAs) involved in gene regulation is one of the major steps forward for understanding human biology in both normal and pathological conditions and for development of novel drugs. In this context, microRNAs play a pivotal role. This review article focuses on the involvement of microRNAs in the regulation of gene expression, on the possible role of microRNAs in the onset and development of human pathologies, and on the pharmacological alteration of the biological activity of microRNAs. RNA and DNA analogs, which can selectively target microRNAs using Watson-Crick base pairing schemes, provide a rational and efficient way to modulate gene expression. These compounds, termed antago-miR or anti-miR have been described in many examples in the recent literature and have proved to be able to perform regulatory as well as therapeutic functions. Among these, a still not fully exploited class is that of peptide nucleic acids (PNAs), promising tools for the inhibition of miRNA activity, with important applications in gene therapy and in drug development. PNAs targeting miR-122, miR-155 and miR-210 have already been developed and their biological effects studied both in vitro and in vivo.
Collapse
Affiliation(s)
- Roberto Gambari
- Laboratory for Development of Pharmacological and Pharmacogenomic Therapy of Thalassaemia, Biotechnology Center, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hurst DR, Welch DR. Metastasis suppressor genes at the interface between the environment and tumor cell growth. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:107-80. [PMID: 21199781 DOI: 10.1016/b978-0-12-385859-7.00003-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The molecular mechanisms and genetic programs required for cancer metastasis are sometimes overlapping, but components are clearly distinct from those promoting growth of a primary tumor. Every sequential, rate-limiting step in the sequence of events leading to metastasis requires coordinated expression of multiple genes, necessary signaling events, and favorable environmental conditions or the ability to escape negative selection pressures. Metastasis suppressors are molecules that inhibit the process of metastasis without preventing growth of the primary tumor. The cellular processes regulated by metastasis suppressors are diverse and function at every step in the metastatic cascade. As we gain knowledge into the molecular mechanisms of metastasis suppressors and cofactors with which they interact, we learn more about the process, including appreciation that some are potential targets for therapy of metastasis, the most lethal aspect of cancer. Until now, metastasis suppressors have been described largely by their function. With greater appreciation of their biochemical mechanisms of action, the importance of context is increasingly recognized especially since tumor cells exist in myriad microenvironments. In this chapter, we assemble the evidence that selected molecules are indeed suppressors of metastasis, collate the data defining the biochemical mechanisms of action, and glean insights regarding how metastasis suppressors regulate tumor cell communication to-from microenvironments.
Collapse
Affiliation(s)
- Douglas R Hurst
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
18
|
Cook LM, Hurst DR, Welch DR. Metastasis suppressors and the tumor microenvironment. Semin Cancer Biol 2010; 21:113-22. [PMID: 21168504 DOI: 10.1016/j.semcancer.2010.12.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/02/2010] [Indexed: 12/21/2022]
Abstract
The most lethal and debilitating attribute of cancer cells is their ability to metastasize. Throughout the process of metastasis, tumor cells interact with other tumor cells, host cells and a variety of molecules. Tumor cells are also faced with a number of insults, such as hemodynamic sheer pressure and immune selection. This brief review explores how metastasis suppressor proteins regulate interactions between tumor cells and the microenvironments in which tumor cells find themselves.
Collapse
Affiliation(s)
- Leah M Cook
- Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | |
Collapse
|