1
|
Tan Y, Song Q. Research trends and hotspots on the links between caveolin and cancer: bibliometric and visual analysis from 2003 to 2022. Front Pharmacol 2023; 14:1237456. [PMID: 37576808 PMCID: PMC10416243 DOI: 10.3389/fphar.2023.1237456] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/21/2023] [Indexed: 08/15/2023] Open
Abstract
Introduction: Extensive studies indicated that caveolin is a key regulator in multiple cellular processes. Recently, growing evidence demonstrated that caveolin is critically involved in tumor progression. Since no relevant bibliometric study has been published, we performed a bibliometric and visual analysis to depict the knowledge framework of research related to the involvement of caveolin in cancer. Methods: Relevant studies published in English during 2003-2022 were obtained from the Web of Science Core Collection database. Three programs (VOSviewer, CiteSpace, and R-bibliometrix) and the website of bibliometrics (http://bibliometric.com/) were applied to construct networks based on the analysis of countries, institutions, authors, journals, references, and keywords. Results: A total of 2,463 documents were extracted and identified. The United States had the greatest number of publications and total citations, and Thomas Jefferson University was the most productive institution. Michael P. Lisanti was the most influential scholar in this research domain. Cell Cycle was the journal with the most publications on this subject. The most local-cited document was the article titled "Caveolin-1 in oncogenic transformation, cancer, and metastasis." A comprehensive analysis has been conducted based on keywords and cited references. Initially, the research frontiers were predominantly "signal transduction", "human breast cancer," "oncogenically transformed cells," "tumor suppressor gene," and "fibroblasts." While in recent years, the research emphasis has shifted to "tumor microenvironment," "epithelial mesenchymal transition," "nanoparticles," and "stem cells." Conclusion: Taken together, our bibliometric analysis shows that caveolin continues to be of interest in cancer research. The hotspots and research frontiers have evolved from the regulation of cancer signaling, to potential targets of cancer therapy and novel techniques. These results can provide a data-based reference for the guidance of future research.
Collapse
Affiliation(s)
- Yaqian Tan
- Department of Pharmacy, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qi Song
- Department of Pharmacy, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
2
|
Chen Y, Zhang X, Yang H, Liang T, Bai X. The "Self-eating" of cancer-associated fibroblast: A potential target for cancer. Biomed Pharmacother 2023; 163:114762. [PMID: 37100015 DOI: 10.1016/j.biopha.2023.114762] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaozhen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hanshen Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| | - Xueli Bai
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Nwosu ZC, Song MG, di Magliano MP, Lyssiotis CA, Kim SE. Nutrient transporters: connecting cancer metabolism to therapeutic opportunities. Oncogene 2023; 42:711-724. [PMID: 36739364 PMCID: PMC10266237 DOI: 10.1038/s41388-023-02593-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/08/2023] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
Cancer cells rely on certain extracellular nutrients to sustain their metabolism and growth. Solute carrier (SLC) transporters enable cells to acquire extracellular nutrients or shuttle intracellular nutrients across organelles. However, the function of many SLC transporters in cancer is unknown. Determining the key SLC transporters promoting cancer growth could reveal important therapeutic opportunities. Here we summarize recent findings and knowledge gaps on SLC transporters in cancer. We highlight existing inhibitors for studying these transporters, clinical trials on treating cancer by blocking transporters, and compensatory transporters used by cancer cells to evade treatment. We propose targeting transporters simultaneously or in combination with targeted therapy or immunotherapy as alternative strategies for effective cancer therapy.
Collapse
Affiliation(s)
- Zeribe Chike Nwosu
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Mun Gu Song
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | | | - Costas A Lyssiotis
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Sung Eun Kim
- Department of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
- Department of Integrated Biomedical and Life Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
du Plessis M, Davis TA, Olivier DW, de Villiers WJS, Engelbrecht AM. A functional role for Serum Amyloid A in the molecular regulation of autophagy in breast cancer. Front Oncol 2022; 12:1000925. [PMID: 36248994 PMCID: PMC9562844 DOI: 10.3389/fonc.2022.1000925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
It has been established that the acute phase protein, Serum amyloid A (SAA), which is usually synthesized by the liver, is also synthesized by cancer cells and cancer-associated cells in the tumor microenvironment. SAA also activates modulators of autophagy, such as the PI3K/Akt and MAPK signaling pathways. However, the role of SAA in autophagy in breast cancer still remains to be elucidated. The aim of this study was to investigate the role of SAA in the regulation of signaling pathways and autophagy in in vitro and in vivo models of breast cancer. The MDA-MB-231 and MCF7 cell lines were transiently transfected to overexpress SAA1. A tumor-bearing SAA1/2 knockout mouse model was also utilized in this study. SAA1 overexpression activated ERK signaling in the MDA-MB-231 cells, downregulated the PI3K pathway protein, PKB/Akt, in the MCF7 cell line, while SAA1/2 knockout also inhibited Akt. Furthermore, SAA1 overexpression in vitro downregulated autophagy, while the expression of SQSTM1/p62 was increased in the MCF7 cells, and SAA1/2 knockout induced autophagy in vivo. SAA overexpression in the MDA-MB-231 and MCF7 cells resulted in an increase in cell viability and increased the expression of the proliferation marker, MCM2, in the MCF7 cells. Furthermore, knockout of SAA1/2 resulted in an altered inflammatory profile, evident in the decrease of plasma IL-1β, IL-6 and IL-10, while increasing the plasma levels of MCP-1 and TNF-α. Lastly, SAA1/2 knockout promoted resistance to apoptosis and necrosis through the regulation of autophagy. SAA thus regulates autophagy in breast cancer cells to promote tumorigenesis.
Collapse
Affiliation(s)
- Manisha du Plessis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- *Correspondence: Manisha du Plessis,
| | - Tanja Andrea Davis
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Daniel Wilhelm Olivier
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Willem Johan Simon de Villiers
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
5
|
Hu D, Li Z, Zheng B, Lin X, Pan Y, Gong P, Zhuo W, Hu Y, Chen C, Chen L, Zhou J, Wang L. Cancer-associated fibroblasts in breast cancer: Challenges and opportunities. Cancer Commun (Lond) 2022; 42:401-434. [PMID: 35481621 PMCID: PMC9118050 DOI: 10.1002/cac2.12291] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/06/2022] [Accepted: 04/07/2022] [Indexed: 12/13/2022] Open
Abstract
The tumor microenvironment is proposed to contribute substantially to the progression of cancers, including breast cancer. Cancer-associated fibroblasts (CAFs) are the most abundant components of the tumor microenvironment. Studies have revealed that CAFs in breast cancer originate from several types of cells and promote breast cancer malignancy by secreting factors, generating exosomes, releasing nutrients, reshaping the extracellular matrix, and suppressing the function of immune cells. CAFs are also becoming therapeutic targets for breast cancer due to their specific distribution in tumors and their unique biomarkers. Agents interrupting the effect of CAFs on surrounding cells have been developed and applied in clinical trials. Here, we reviewed studies examining the heterogeneity of CAFs in breast cancer and expression patterns of CAF markers in different subtypes of breast cancer. We hope that summarizing CAF-related studies from a historical perspective will help to accelerate the development of CAF-targeted therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Dengdi Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Zhaoqing Li
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Bin Zheng
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Xixi Lin
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yuehong Pan
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Peirong Gong
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Wenying Zhuo
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China.,Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Yujie Hu
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, Zhejiang, 315300, P. R. China
| | - Cong Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Lini Chen
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Jichun Zhou
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| | - Linbo Wang
- Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine (Key Laboratory of Cancer Prevention and Intervention, Ministry of Education), Hangzhou, Zhejiang, 310016, P. R. China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, Zhejiang, 310016, P. R. China
| |
Collapse
|
6
|
Brena D, Huang MB, Bond V. Extracellular vesicle-mediated transport: Reprogramming a tumor microenvironment conducive with breast cancer progression and metastasis. Transl Oncol 2021; 15:101286. [PMID: 34839106 PMCID: PMC8636863 DOI: 10.1016/j.tranon.2021.101286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles’ (EVs) role in breast tumor microenvironment and pre-metastatic niche development. Breast cancer EV-mediated transmission of pro-metastatic and drug-resistant phenotypes. Precision medicine with EVs as biomarkers and delivery vehicles for drug and anticancer genetic material.
Breast cancer metastatic progression to critical secondary sites is the second leading cause of cancer-related mortality in women. While existing therapies are highly effective in combating primary tumors, metastatic disease is generally deemed incurable with a median survival of only 2, 3 years. Extensive efforts have focused on identifying metastatic contributory targets for therapeutic antagonism and prevention to improve patient survivability. Excessive breast cancer release of extracellular vesicles (EVs), whose contents stimulate a metastatic phenotype, represents a promising target. Complex breast cancer intercellular communication networks are based on EV transport and transference of molecular information is in bulk resulting in complete reprogramming events within recipient cells. Other breast cancer cells can acquire aggressive phenotypes, endothelial cells can be induced to undergo tubule formation, and immune cells can be neutralized. Recent advancements continue to implicate the critical role EVs play in cultivating a tumor microenvironment tailored to cancer proliferation, metastasis, immune evasion, and conference of drug resistance. This literature review serves to frame the role of EV transport in breast cancer progression and metastasis. The following five sections will be addressed: (1) Intercellular communication in developing a tumor microenvironment & pre-metastatic niche. (2) Induction of the epithelial-to-mesenchymal transition (EMT). (3). Immune suppression & evasion. (4) Transmission of drug resistance mechanisms. (5) Precision medicine: clinical applications of EVs.
Collapse
Affiliation(s)
- Dara Brena
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| | - Ming-Bo Huang
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States.
| | - Vincent Bond
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA 30310, United States
| |
Collapse
|
7
|
Chandra Jena B, Sarkar S, Rout L, Mandal M. The transformation of cancer-associated fibroblasts: Current perspectives on the role of TGF-β in CAF mediated tumor progression and therapeutic resistance. Cancer Lett 2021; 520:222-232. [PMID: 34363903 DOI: 10.1016/j.canlet.2021.08.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/16/2021] [Accepted: 08/01/2021] [Indexed: 12/12/2022]
Abstract
Over the last few years, the Transforming growth factor- β (TGF-β) has been significantly considered as an effective and ubiquitous mediator of cell growth. The cytokine, TGF-β is being increasingly recognized as the most potent inducer of cancer cell initiation, differentiation, migration as well as progression through both the SMAD-dependent and independent pathways. There is growing evidence that supports the role of secretory cytokine TGF-β as a crucial mediator of tumor-stroma crosstalk. Contextually, the CAFs are the prominent component of tumor stroma that helps in tumor progression and onset of chemoresistance. The interplay between the CAFs and the tumor cells through the paracrine signals is facilitated by cytokine TGF-β to induce the malignant progression. Here in this review, we have dissected the most recent advancements in understanding the mechanisms of TGF-β induced CAF activation, their multiple origins, and most importantly their role in conferring chemoresistance. Considering the pivotal role of TGF-β in tumor perogression and associated stemness, it is one the proven clinical targets We have also included the clinical trials going on, targeting the TGF-β and CAFs crosstalk with the tumor cells. Ultimately, we have underscored some of the outstanding issues that must be deciphered with utmost importance to unravel the successful strategies of anti-cancer therapies.
Collapse
Affiliation(s)
- Bikash Chandra Jena
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Siddik Sarkar
- CSIR-Indian Institue of Chemical Biology, Translational Research Unit of Excellence, Kolkata, West Bengal, India
| | - Lipsa Rout
- Department of Chemistry, Institute of Technical Education and Research, Siksha'O'Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India.
| |
Collapse
|
8
|
du Plessis M, Davis T, Loos B, Pretorius E, de Villiers WJS, Engelbrecht AM. Molecular regulation of autophagy in a pro-inflammatory tumour microenvironment: New insight into the role of serum amyloid A. Cytokine Growth Factor Rev 2021; 59:71-83. [PMID: 33727011 DOI: 10.1016/j.cytogfr.2021.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023]
Abstract
Chronic inflammation, systemic or local, plays a vital role in tumour progression and metastasis. Dysregulation of key physiological processes such as autophagy elicit unfavourable immune responses to induce chronic inflammation. Cytokines, growth factors and acute phase proteins present in the tumour microenvironment regulate inflammatory responses and alter crosstalk between various signalling pathways involved in the progression of cancer. Serum amyloid A (SAA) is a key acute phase protein secreted by the liver during the acute phase response (APR) following infection or injury. However, cancer and cancer-associated cells produce SAA, which when present in high levels in the tumour microenvironment contributes to cancer initiation, progression and metastasis. SAA can activate several signalling pathways such as the PI3K and MAPK pathways, which are also known modulators of the intracellular degradation process, autophagy. Autophagy can be regarded as having a double edged sword effect in cancer. Its dysregulation can induce malignant transformation through metabolic stress which manifests as oxidative stress, endoplasmic reticulum (ER) stress and DNA damage. On the other hand, autophagy can promote cancer survival during metabolic stress, hypoxia and senescence. Autophagy has been utilised to promote the efficiency of chemotherapeutic agents and can either be inhibited or induced to improve treatment outcomes. This review aims to address the known mechanisms that regulate autophagy as well as illustrating the role of SAA in modulating these pathways and its clinical implications for cancer therapy.
Collapse
Affiliation(s)
- M du Plessis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa.
| | - T Davis
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - B Loos
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - E Pretorius
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa
| | - W J S de Villiers
- African Cancer Institute (ACI), Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| | - A M Engelbrecht
- Department of Physiological Sciences, University of Stellenbosch, Stellenbosch, South Africa; Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg Campus, South Africa
| |
Collapse
|
9
|
Kasprzak A. The Role of Tumor Microenvironment Cells in Colorectal Cancer (CRC) Cachexia. Int J Mol Sci 2021; 22:ijms22041565. [PMID: 33557173 PMCID: PMC7913937 DOI: 10.3390/ijms22041565] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer cachexia (CC) is a multifactorial syndrome in patients with advanced cancer characterized by weight loss via skeletal-muscle and adipose-tissue atrophy, catabolic activity, and systemic inflammation. CC is correlated with functional impairment, reduced therapeutic responsiveness, and poor prognosis, and is a major cause of death in cancer patients. In colorectal cancer (CRC), cachexia affects around 50–61% of patients, but remains overlooked, understudied, and uncured. The mechanisms driving CC are not fully understood but are related, at least in part, to the local and systemic immune response to the tumor. Accumulating evidence demonstrates a significant role of tumor microenvironment (TME) cells (e.g., macrophages, neutrophils, and fibroblasts) in both cancer progression and tumor-induced cachexia, through the production of multiple procachectic factors. The most important role in CRC-associated cachexia is played by pro-inflammatory cytokines, including the tumor necrosis factor α (TNFα), originally known as cachectin, Interleukin (IL)-1, IL-6, and certain chemokines (e.g., IL-8). Heterogeneous CRC cells themselves also produce numerous cytokines (including chemokines), as well as novel factors called “cachexokines”. The tumor microenvironment (TME) contributes to systemic inflammation and increased oxidative stress and fibrosis. This review summarizes the current knowledge on the role of TME cellular components in CRC-associated cachexia, as well as discusses the potential role of selected mediators secreted by colorectal cancer cells in cooperation with tumor-associated immune and non-immune cells of tumor microenvironment in inducing or potentiating cancer cachexia. This knowledge serves to aid the understanding of the mechanisms of this process, as well as prevent its consequences.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
| |
Collapse
|
10
|
Gonçalves RDC, Freire PP, Coletti D, Seelaender M. Tumor Microenvironment Autophagic Processes and Cachexia: The Missing Link? Front Oncol 2021; 10:617109. [PMID: 33604297 PMCID: PMC7884816 DOI: 10.3389/fonc.2020.617109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Cachexia is a syndrome that affects the entire organism and presents a variable plethora of symptoms in patients, always associated with continuous and involuntary degradation of skeletal muscle mass and function loss. In cancer, this syndrome occurs in 50% of all patients, while prevalence increases to 80% as the disease worsens, reducing quality of life, treatment tolerance, therapeutic response, and survival. Both chronic systemic inflammation and immunosuppression, paradoxically, correspond to important features in cachexia patients. Systemic inflammation in cachexia is fueled by the interaction between tumor and peripheral tissues with significant involvement of infiltrating immune cells, both in the peripheral tissues and in the tumor itself. Autophagy, as a process of regulating cellular metabolism and homeostasis, can interfere with the metabolic profile in the tumor microenvironment. Under a scenario of balanced autophagy in the tumor microenvironment, the infiltrating immune cells control cytokine production and secretion. On the other hand, when autophagy is unbalanced or dysfunctional within the tumor microenvironment, there is an impairment in the regulation of immune cell’s inflammatory phenotype. The inflammatory phenotype upregulates metabolic consumption and cytokine production, not only in the tumor microenvironment but also in other tissues and organs of the host. We propose that cachexia-related chronic inflammation can be, at least, partly associated with the failure of autophagic processes in tumor cells. Autophagy endangers tumor cell viability by producing immunogenic tumor antigens, thus eliciting the immune response necessary to counteract tumor progression, while preventing the establishment of inflammation, a hallmark of cachexia. Comprehensive understanding of this complex functional dichotomy may enhance cancer treatment response and prevent/mitigate cancer cachexia. This review summarizes the recent available literature regarding the role of autophagy within the tumor microenvironment and the consequences eliciting the development of cancer cachexia.
Collapse
Affiliation(s)
- Renata de Castro Gonçalves
- Cancer Metabolism Research Group, Department of Surgery, LIM26-HC, Faculdade de Medicina, and Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dario Coletti
- Sorbonne Université, CNRS UMR 8256, Inserm U1164, Biological Adaptation and Aging (B2A), Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Rome, Italy
| | - Marilia Seelaender
- Cancer Metabolism Research Group, Department of Surgery, LIM26-HC, Faculdade de Medicina, and Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
The metabolic importance of the glutaminase II pathway in normal and cancerous cells. Anal Biochem 2020; 644:114083. [PMID: 33352190 DOI: 10.1016/j.ab.2020.114083] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/08/2023]
Abstract
In rapidly dividing cells, including many cancer cells, l-glutamine is a major energy source. Utilization of glutamine is usually depicted as: l-glutamine → l-glutamate (catalyzed by glutaminase isozymes; GLS1 and GLS2), followed by l-glutamate → α-ketoglutarate [catalyzed by glutamate-linked aminotransferases or by glutamate dehydrogenase (GDH)]. α-Ketoglutarate is a major anaplerotic component of the tricarboxylic acid (TCA) cycle. However, the glutaminase II pathway also converts l-glutamine to α-ketoglutarate. This pathway consists of a glutamine transaminase coupled to ω-amidase [Net reaction: l-Glutamine + α-keto acid + H2O → α-ketoglutarate + l-amino acid + NH4+]. This review focuses on the biological importance of the glutaminase II pathway, especially in relation to metabolism of cancer cells. Our studies suggest a component enzyme of the glutaminase II pathway, ω-amidase, is utilized by tumor cells to provide anaplerotic carbon. Inhibitors of GLS1 are currently in clinical trials as anti-cancer agents. However, this treatment will not prevent the glutaminase II pathway from providing anaplerotic carbon derived from glutamine. Specific inhibitors of ω-amidase, perhaps in combination with a GLS1 inhibitor, may provide greater therapeutic efficacy.
Collapse
|
12
|
Liu J, Liang H, Khilji S, Li H, Song D, Chen C, Wang X, Zhang Y, Zhao N, Li X, Gao A. Moxidectin induces Cytostatic Autophagic Cell Death of Glioma Cells through inhibiting the AKT/mTOR Signalling Pathway. J Cancer 2020; 11:5802-5811. [PMID: 32913473 PMCID: PMC7477456 DOI: 10.7150/jca.46697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Moxidectin (MOX), a broad-spectrum antiparasitic drug, has been characterized as a potential anti-glioma agent. The main objective of this study was to explore autophagy induced by MOX in glioma U251 and C6 cells, and the deep underlying molecular mechanisms. In addition, the effects of autophagy on apoptosis in glioma cells were tested. Autophagy was measured by transmission electron microscopy (TEM), immunofluorescence, western blot and immunohistochemistry. Cell viability was detected with MTT and colony formation assay. The apoptosis rate was measured by flow cytometry and terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL). Additonally, autophagy inhibition was achieved by using 3-Methyladenine (3-MA) and chloroquine (CQ). U251-derived xenografts were established for examination of MOX-induced autophagy on glioma in vivo. Firstly, our research found that MOX stimulated autophagy of glioma cells in a dose-dependent manner. Secondly, we found that MOX induced autophagy by inhibiting the AKT/mTOR signalling pathway. Thirdly, inhibition of autophagy could reduce apoptosis in MOX-treated glioma cells. Finally, MOX induced autophagy, and autophagy increased the apoptosis effect of MOX on U251 in vivo. In conclusion, our data provide evidence that MOX can induce autophagy in glioma cells, and autophagy could increase MOX-induced apoptosis through inhibiting the AKT/mTOR signalling pathway. These findings provided a new prospect for the application of MOX and a novel targeted therapy for the treatment of gliomas.
Collapse
Affiliation(s)
- Jingjing Liu
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning, China
| | - Hongsheng Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Saadia Khilji
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Haitao Li
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dandan Song
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Chen Chen
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoxing Wang
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yiwei Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Zhao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xina Li
- Department of Pharmacy, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Aili Gao
- School of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
13
|
Agarwal S, Maekawa T. Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102270. [PMID: 32702467 DOI: 10.1016/j.nano.2020.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most destructive type of malignant brain tumor in humans due to cancer relapse. Latest studies have indicated that cancer cells are more reliant on autophagy for survival than non-cancer cells. Autophagy is entitled as programmed cell death type II and studies imply that it is a comeback of cancer cells to innumerable anti-cancer therapies. To diminish the adverse consequences of chemotherapeutics, numerous herbs of natural origin have been retained in cancer treatments. Additionally, autophagy induction occurs via their tumor suppressive actions that could cause cell senescence and increase apoptosis-independent cell death. However, most of the drugs have poor solubility and thus nano drug delivery systems possess excessive potential to improve the aqueous solubility and bioavailability of encapsulated drugs. There is a pronounced need for more therapies for glioblastoma treatment and hereby, the fundamental mechanisms of natural autophagy modulators in glioblastoma are prudently reviewed in this article.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan.
| | - Toru Maekawa
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
14
|
Dave DT, Patel BM. Mitochondrial Metabolism in Cancer Cachexia: Novel Drug Target. Curr Drug Metab 2020; 20:1141-1153. [PMID: 31418657 DOI: 10.2174/1389200220666190816162658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cancer cachexia is a metabolic syndrome prevalent in the majority of the advanced cancers and is associated with complications such as anorexia, early satiety, weakness, anaemia, and edema, thereby reducing performance and impairing quality of life. Skeletal muscle wasting is a characteristic feature of cancer-cachexia and mitochondria is responsible for regulating total protein turnover in skeletal muscle tissue. METHODS We carried out exhaustive search for cancer cachexia and role of mitochondria in the same in various databases. All the relevant articles were gathered and the pertinent information was extracted out and compiled which was further structured into different sub-sections. RESULTS Various findings on the mitochondrial alterations in connection to its disturbed normal physiology in various models of cancer-cachexia have been recently reported, suggesting a significant role of the organelle in the pathogenesis of the complications involved in the disorder. It has also been reported that reduced mitochondrial oxidative capacity is due to reduced mitochondrial biogenesis as well as altered balance between fusion and fission protein activities. Moreover, autophagy in mitochondria (termed as mitophagy) is reported to play an important role in cancer cachexia. CONCLUSION The present review aims to put forth the changes occurring in mitochondria and hence explore possible targets which can be exploited in cancer-induced cachexia for treatment of such a debilitating condition.
Collapse
Affiliation(s)
- Dhwani T Dave
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| | - Bhoomika M Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad 382481, Gujarat, India
| |
Collapse
|
15
|
Daskalakis K, Alexandraki KI, Kloukina I, Kassi E, Felekouras E, Xingi E, Pagakis SN, Tsolakis AV, Andreakos E, Kaltsas G, Kambas K. Increased autophagy/mitophagy levels in primary tumours of patients with pancreatic neuroendocrine neoplasms. Endocrine 2020; 68:438-447. [PMID: 32114655 PMCID: PMC7266843 DOI: 10.1007/s12020-020-02228-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/11/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND/AIMS We assessed the levels of autophagy and mitophagy, that are linked to cancer development and drug resistance, in well differentiated pancreatic neuroendocrine neoplasms (PanNENs) and correlated them with clinico-pathological parameters. METHODS Fluorescent immunostaining for the autophagy markers LC3Β and p62/or LAMP1 was performed on 22 PanNENs and 11 controls of normal pancreatic tissues and validated through Western blotting. Autophagy quantitative scoring was generated for LC3B-positive puncta and analysed in relation to clinico-pathological parameters. TOMM20/LC3B qualitative assessment of mitophagy levels was undertaken by fluorescent immunostaining. The presence of autophagy/mitophagy was validated by transmission electron microscopy. RESULTS Autophagy levels (LC3B-positive puncta/cell) were discriminative for normal vs. NEN pancreatic tissue (p = 0.007). A significant association was observed between autophagy levels and tumour grade (Ki67 < 3% vs. Ki67 ≥ 3%; p = 0.021), but not functionality (p = 0.266) size (cut-off of 20 mm; p = 0.808), local invasion (p = 0.481), lymph node- (p = 0.849) and distant metastases (p = 0.699). Qualitative assessment of TOMM20/LC3B demonstrated strong mitophagy levels in PanNENs by fluorescent immunostaining as compared with normal tissue. Transmission electron microscopy revealed enhanced autophagy and mitophagy in PanNEN tissue. Response to molecular targeted therapies in metastatic cases (n = 4) did not reveal any patterns of association to autophagy levels. CONCLUSIONS Increased autophagy levels are present in primary tumours of patients with PanNENs and are partially attributed to upregulated mitophagy. Grade was the only clinico-pathological parameter associated with autophagy scores.
Collapse
Affiliation(s)
- Kosmas Daskalakis
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece.
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - Krystallenia I Alexandraki
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ismini Kloukina
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Evanthia Kassi
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Felekouras
- First Department of Surgery, Laikon General Hospital, University of Athens Medical School, Athens, Greece
| | - Evangelia Xingi
- Microscopy Unit, Hellenic Pasteur Institute, Vas. Sofias 127, Athens, 11521, Greece
| | - Stamatis N Pagakis
- Biological Imaging Unit, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Apostolos V Tsolakis
- Department of Oncology and Pathology, Karolinska Institute, Solna R8:04, Stockholm, 17177, Sweden
| | - Evangelos Andreakos
- Laboratory of Immunobiology, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 11527, Athens, Greece
| | - Gregory Kaltsas
- 1st Department of Propaupedic Internal Medicine, Endocrine Oncology Unit, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Kambas
- Laboratory of Molecular Genetics, Department of Immunology, Hellenic Pasteur Institute, Athens, Greece
| |
Collapse
|
16
|
Gong Y, Yang Y, Tian S, Chen H. Different Role of Caveolin-1 Gene in the Progression of Gynecological Tumors. Asian Pac J Cancer Prev 2019; 20:3259-3268. [PMID: 31759347 PMCID: PMC7062999 DOI: 10.31557/apjcp.2019.20.11.3259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Indexed: 12/13/2022] Open
Abstract
Caveolin-1 (Cav-1), an integral membrane protein, is a principal component of caveolae and has been reported to play a promoting or inhibiting role in cancer progression. Gynecologic tumor is a group of tumors that affect the tissue and organs of the female reproductive system, especially cervical cancer. Cervical cancer, as one of the most common cancers, severely affects female health in developing countries in particular because of its high morbidity and mortality. This review summarizes some mechanisms of Cav-1 in the development and progression of gynecological tumors. The role of Cav-1 in tumorigenesis, including dysregulation of cell cycle, apoptosis and autophagy, adhesion, invasion, and metastasis, such as the formation of invadopodia and matrix metalloproteinase degradation are presented in detail. In addition, Cav-1 modulates autophagy and the formation of invadopodia and target regulated by miRNAs to affect tumor progress. Taken together, we find that, no matter Cav-1 expression in the tumor or stromal cells , Cav-1 has paradoxical role in different types of gynecological tumors in vivo or in vitro and even in the same tumor from the same organ.
Collapse
Affiliation(s)
- Yan Gong
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Yuhan Yang
- Department of Pathology, School of Basic Medical Science, Wuhan University, Wuhan, P. R. China
| | - Sufang Tian
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| | - Honglei Chen
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, P. R. China
| |
Collapse
|
17
|
Prodigiosin stimulates endoplasmic reticulum stress and induces autophagic cell death in glioblastoma cells. Apoptosis 2019; 23:314-328. [PMID: 29721785 DOI: 10.1007/s10495-018-1456-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prodigiosin, a secondary metabolite isolated from marine Vibrio sp., has antimicrobial and anticancer properties. This study investigated the cell death mechanism of prodigiosin in glioblastoma. Glioblastoma multiforme (GBM) is an aggressive primary cancer of the central nervous system. Despite treatment, or standard therapy, the median survival of glioblastoma patients is about 14.6 month. The results of the present study clearly showed that prodigiosin significantly reduced the cell viability and neurosphere formation ability of U87MG and GBM8401 human glioblastoma cell lines. Moreover, prodigiosin with fluorescence signals was detected in the endoplasmic reticulum and found to induce excessive levels of autophagy. These findings were confirmed by observation of LC3 puncta formation and acridine orange staining. Furthermore, prodigiosin caused cell death by activating the JNK pathway and decreasing the AKT/mTOR pathway in glioblastoma cells. Moreover, we found that the autophagy inhibitor 3-methyladenine reversed prodigiosin induced autophagic cell death. These findings of this study suggest that prodigiosin induces autophagic cell death and apoptosis in glioblastoma cells.
Collapse
|
18
|
Pharmacologic treatment with CPI-613 and PS48 decreases mitochondrial membrane potential and increases quantity of autolysosomes in porcine fibroblasts. Sci Rep 2019; 9:9417. [PMID: 31263141 PMCID: PMC6603033 DOI: 10.1038/s41598-019-45850-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 06/14/2019] [Indexed: 12/01/2022] Open
Abstract
A metabolic phenomenon known as the Warburg effect has been characterized in certain cancerous cells, embryonic stem cells, and other rapidly proliferative cell types. Previously, our attempts to induce a Warburg-like state pharmaceutically via CPI-613 and PS48 treatment did augment metabolite production and gene expression; however, this treatment demonstrated a Reverse Warburg effect phenotype observed in cancer-associated stroma. In the current study, we inquired whether the mitochondria were affected by the aforementioned pharmaceutical treatment as observed in cancerous stromal fibroblasts. While the pharmaceutical agents decreased mitochondrial membrane potential in porcine fetal fibroblasts, the number and size of mitochondria were similar, as was the overall cell size. Moreover, the fibroblasts that were treated with CPI-613 and PS48 for a week had increased numbers of large autolysosome vesicles. This coincided with increased intensity of LysoTracker staining in treated cells as observed by flow cytometry. Treated fibroblasts thus may utilize changes in metabolism and autophagy to mitigate the damage of treatment with pharmaceutical agents. These findings shed light on how these pharmaceutical agents interact and how treated cells augment metabolism to sustain viability.
Collapse
|
19
|
Luis C, Duarte F, Faria I, Jarak I, Oliveira PF, Alves MG, Soares R, Fernandes R. Warburg Effect Inversion: Adiposity shifts central primary metabolism in MCF-7 breast cancer cells. Life Sci 2019; 223:38-46. [PMID: 30862570 DOI: 10.1016/j.lfs.2019.03.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/22/2022]
Abstract
AIMS Obesity is a complex health disorder and a trigger to many diseases like Diabetes mellitus (DM) and breast cancer (BrCa), both leading causes of morbidity and mortality worldwide. Also evidence demonstrates that abnormal glucose metabolism termed 'the Warburg effect' in cancer cell is closely associated with malignant phenotypes and promote the aggressiveness of several types of cancer, including BrCa. In this study, we evaluated the breast cancer cell metabolism in normoglycemia, hyperglycemia and in an obesity condition in order to clarify the potential underlined mechanisms that link these disorders. MATERIALS AND METHODS MCF-7 cells were exposed to low and high glucose levels, the latter either in the presence of 3T3-L1 adipocyte conditioned medium (CM), thus mimicking the adiposity observed in obese patients. Cell viability, migration, proliferation, cytotoxicity and cell death assays were performed under the different culture conditions. Hormonal and lipid profile were also characterized by biochemical assays and primary metabolism was determined by Nuclear Magnetic Resonance (NMR)-based metabolomics. RESULTS Our results show an increased aggressiveness in the condition mimicking diabetogenic obesity with an altered energy/lipid metabolism. Interestingly in the experimental obesity-mimicking status, lipids and amino acids were expended while glucose was produced by tumor cells from lactate. These findings reveal a shift on tumor cells metabolism that is opposite to 'the Warburg effect'. CONCLUSIONS Overall, this experimentally obesity-mimicking condition not only revealed an increased tumor proliferation and aggressiveness but also disclosed a new mechanism of cancer metabolism, the 'Warburg Effect Inversion'.
Collapse
Affiliation(s)
- Carla Luis
- School of Health, Polytechnic of Porto (ESS/P.PORTO), Porto, Portugal; Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal
| | - Fernanda Duarte
- School of Health, Polytechnic of Porto (ESS/P.PORTO), Porto, Portugal; CoreLab, Hospital Centre of Porto University (CHUP), Porto, Portugal
| | - Isabel Faria
- School of Health, Polytechnic of Porto (ESS/P.PORTO), Porto, Portugal
| | - Ivana Jarak
- Department of Life Sciences, Faculty of Sciences and Technology, Centre for Functional Ecology (CFE), University of Coimbra, Coimbra; Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Pedro F Oliveira
- Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal; Department of Genetics, Faculty of Medicine, University of Porto, Portugal
| | - Marco G Alves
- Laboratory of Cell Biology, Unit for Multidisciplinary Research in Biomedicine (UMIB), Department of Microscopy, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Raquel Soares
- Biochemistry Unit, Department of Biomedicine, Faculty of Medicine, University of Porto (FMUP), Porto, Portugal; Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal
| | - Rúben Fernandes
- School of Health, Polytechnic of Porto (ESS/P.PORTO), Porto, Portugal; Instituto de Inovação e Investigação em Saúde (I3S), University of Porto, Portugal; Faculty of Medicine, University of Santiago de Compostela, Galiza, Spain.
| |
Collapse
|
20
|
Masso-Welch P, Girald Berlingeri S, King-Lyons ND, Mandell L, Hu J, Greene CJ, Federowicz M, Cao P, Connell TD, Heakal Y. LT-IIc, A Bacterial Type II Heat-Labile Enterotoxin, Induces Specific Lethality in Triple Negative Breast Cancer Cells by Modulation of Autophagy and Induction of Apoptosis and Necroptosis. Int J Mol Sci 2018; 20:ijms20010085. [PMID: 30587795 PMCID: PMC6337683 DOI: 10.3390/ijms20010085] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 12/24/2022] Open
Abstract
Triple negative breast cancer (TNBC) remains a serious health problem with poor prognosis and limited therapeutic options. To discover novel approaches to treat TNBC, we screened cholera toxin (CT) and the members of the bacterial type II heat-labile enterotoxin family (LT-IIa, LT-IIb, and LT-IIc) for cytotoxicity in TNBC cells. Only LT-IIc significantly reduced viability of the TNBC cell lines BT549 and MDA-MB-231 (IC50 = 82.32 nM). LT-IIc had no significant cytotoxic effect on MCF10A (IC50 = 2600 nM), a non-tumorigenic breast epithelial cell line, and minimal effects on MCF7 and T47D, ER+ cells, or SKBR-3 cells, HER2+ cells. LT-IIc stimulated autophagy through inhibition of the mTOR pathway, while simultaneously inhibiting autophagic progression, as seen by accumulation of LC3B-II and p62. Morphologically, LT-IIc induced the formation of enlarged LAMP2+ autolysosomes, which was blocked by co-treatment with bafilomycin A1. LT-IIc induced apoptosis as demonstrated by the increase in caspase 3/7 activity and Annexin V staining. Co-treatment with necrostatin-1, however, demonstrated that the lethal response of LT-IIc is elicited, in part, by concomitant induction of necroptosis. Knockdown of ATG-5 failed to rescue LT-IIc-induced cytotoxicity, suggesting LT-IIc can exert its cytotoxic effects downstream or independently of autophagophore initiation. Collectively, these experiments demonstrate that LT-IIc acts bifunctionally, inducing autophagy, while simultaneously blocking autolysosomal progression in TNBC cells, inducing a specific cytotoxicity in this breast cancer subtype.
Collapse
Affiliation(s)
- Patricia Masso-Welch
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | - Sofia Girald Berlingeri
- Department of Biotechnical and Clinical Laboratory Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Natalie D King-Lyons
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Lorrie Mandell
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - John Hu
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Christopher J Greene
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Matthew Federowicz
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Peter Cao
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| | - Terry D Connell
- Department of Microbiology and Immunology and the Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, The University at Buffalo, 955 Main Street, Buffalo, NY 14203, USA.
| | - Yasser Heakal
- Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D'Youville College, 320 Porter Avenue, Buffalo, NY 14201, USA.
| |
Collapse
|
21
|
Huang J, Diaz-Meco MT, Moscat J. The macroenviromental control of cancer metabolism by p62. Cell Cycle 2018; 17:2110-2121. [PMID: 30198373 DOI: 10.1080/15384101.2018.1520566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, but most studies focus on the molecular alterations in cancer cells and much less is known on the role of cancer metabolism, from a holistic perspective, for tumor initiation and progression. Increasing epidemiological evidence highlights the tremendous impact that cancer progression has on the host metabolism, especially in cachexia. However, how this benefits the tumor still is not completely understood. Here we review current studies on fatty acid oxidation in tumor cells as a potential therapeutic target in cancer, and how the redistribution of lipids from fat reservoirs to the cancer cell in the micro- and macro-environment impacts tumorigenesis by helping the tumor fulfill its energetic demands at the expense of fat. In this context, we also discuss the critical role of the signaling adaptor p62/Sequestosome 1(SQSTM1) in adipocytes in mediating tumor-induced fat reprograming and the feedback of adipose tissue on tumor aggressiveness via osteopontin and its potential implications in obesity-promoted cancer and fat cachexia. Collectively these studies highlight the importance of the symbiotic collaboration between adipose tissue and tumor to modulate the cancer metabolic fitness.
Collapse
Affiliation(s)
- Jianfeng Huang
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| | - Maria T Diaz-Meco
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| | - Jorge Moscat
- a Cancer Metabolism and Signaling Networks Program , Sanford Burnham Prebys Medical Discovery Institute , La Jolla , CA , USA
| |
Collapse
|
22
|
Li S, Xu HX, Wu CT, Wang WQ, Jin W, Gao HL, Li H, Zhang SR, Xu JZ, Qi ZH, Ni QX, Yu XJ, Liu L. Angiogenesis in pancreatic cancer: current research status and clinical implications. Angiogenesis 2018; 22:15-36. [PMID: 30168025 DOI: 10.1007/s10456-018-9645-2] [Citation(s) in RCA: 178] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/20/2018] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer is one of the most lethal malignancies worldwide. Although the standard of care in pancreatic cancer has improved, prognoses for patients remain poor with a 5-year survival rate of < 5%. Angiogenesis, namely, the formation of new blood vessels from pre-existing vessels, is an important event in tumor growth and hematogenous metastasis. It is a dynamic and complex process involving multiple mechanisms and is regulated by various molecules. Inhibition of angiogenesis has been an established therapeutic strategy for many solid tumors. However, clinical outcomes are far from satisfying for pancreatic cancer patients receiving anti-angiogenic therapies. In this review, we summarize the current status of angiogenesis in pancreatic cancer research and explore the reasons for the poor efficacy of anti-angiogenic therapies, aiming to identify some potential therapeutic targets that may enhance the effectiveness of anti-angiogenic treatments.
Collapse
Affiliation(s)
- Shuo Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hua-Xiang Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Chun-Tao Wu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wen-Quan Wang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Wei Jin
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - He-Li Gao
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Hao Li
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Shi-Rong Zhang
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Jin-Zhi Xu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Zi-Hao Qi
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Quan-Xing Ni
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Xian-Jun Yu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Liang Liu
- Department of Pancreatic & Hepatobiliary Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Cancer Institute, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
23
|
Gkikas I, Palikaras K, Tavernarakis N. The Role of Mitophagy in Innate Immunity. Front Immunol 2018; 9:1283. [PMID: 29951054 PMCID: PMC6008576 DOI: 10.3389/fimmu.2018.01283] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are cellular organelles essential for multiple biological processes, including energy production, metabolites biosynthesis, cell death, and immunological responses among others. Recent advances in the field of immunology research reveal the pivotal role of energy metabolism in innate immune cells fate and function. Therefore, the maintenance of mitochondrial network integrity and activity is a prerequisite for immune system homeostasis. Mitochondrial selective autophagy, known as mitophagy, surveils mitochondrial population eliminating superfluous and/or impaired organelles and mediating cellular survival and viability in response to injury/trauma and infection. Defective removal of damaged mitochondria leads to hyperactivation of inflammatory signaling pathways and subsequently to chronic systemic inflammation and development of inflammatory diseases. Here, we review the molecular mechanisms of mitophagy and highlight its critical role in the innate immune system homeostasis.
Collapse
Affiliation(s)
- Ilias Gkikas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Biology, University of Crete, Heraklion, Greece
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Greece.,Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
24
|
Abstract
Doxorubicin (DOX), also known as adriamycin, is a DNA topoisomerase II inhibitor and belongs to the family of anthracycline anticancer drugs. DOX is used for the treatment of a wide variety of cancer types. However, resistance among cancer cells has emerged as a major barrier to effective treatment using DOX. Currently, the role of autophagy in cancer resistance to DOX and the mechanisms involved have become one of the areas of intense investigation. More and more preclinical data are being obtained on reversing DOX resistance through modulation of autophagy as one of the promising therapeutic strategies. This review summarizes the recent advances in autophagy-targeting therapies that overcome DOX resistance from in-vitro studies to animal models for exploration of novel delivery systems. In-depth understanding of the mechanisms of autophagy regulation in relation to DOX resistance and development of molecularly targeted autophagy-modulating agents will provide a promising therapeutic strategy for overcoming DOX resistance in cancer treatment.
Collapse
|
25
|
Chi KH, Wang YS, Huang YC, Chiang HC, Chi MS, Chi CH, Wang HE, Kao SJ. Simultaneous activation and inhibition of autophagy sensitizes cancer cells to chemotherapy. Oncotarget 2018; 7:58075-58088. [PMID: 27486756 PMCID: PMC5295413 DOI: 10.18632/oncotarget.10873] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022] Open
Abstract
While combined chemotherapy (CT) with an autophagy inducer and an autophagy inhibitor appears paradoxical, it may provide a more effective perturbation of autophagy pathways. We used two dissimilar cell lines to test the hypothesis that autophagy is the common denominator of cell fate after CT. HA22T cells are characterized by CT-induced apoptosis and use autophagy to prevent cell death, while Huh7.5.1 cells exhibit sustained autophagic morphology after CT. Combined CT and rapamycin treatment resulted in a better combination index (CI) in Huh7.5.1 cells than combined CT and chloroquine, while the reverse was true in HA22T cells. The combination of 3 drugs (triplet drug treatment) had the best CI. After triplet drug treatment, HA22T cells switched from protective autophagy to mitochondrial membrane permeabilization and endoplasmic reticulum stress response-induced apoptosis, while Huh7.5.1 cells intensified autophagic lethality. Most importantly, both cell lines showed activation of Akt after CT, while the triplet combination blocked Akt activation through inhibition of phospholipid lipase D activity. This novel finding warrants further investigation as a broad chemosensitization strategy.
Collapse
Affiliation(s)
- Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Department of Research and Development, JohnPro Biotech Inc., Taipei, Taiwan
| | - Yi-Chun Huang
- Department of Research and Development, JohnPro Biotech Inc., Taipei, Taiwan
| | - Hsin-Chien Chiang
- Department of Research and Development, JohnPro Biotech Inc., Taipei, Taiwan
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chau-Hwa Chi
- Institute of Veterinary Clinical Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Shang-Jyh Kao
- Division of Pulmonary Medicine, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
26
|
Russo M, Russo GL. Autophagy inducers in cancer. Biochem Pharmacol 2018; 153:51-61. [PMID: 29438677 DOI: 10.1016/j.bcp.2018.02.007] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/07/2018] [Indexed: 12/19/2022]
Abstract
Autophagy is a complex, physiological process devoted to degrade and recycle cellular components. Proteins and organelles are first phagocytized by autophagosomes, then digested in lysosomes, and finally recycled to be utilized again during cellular metabolism. Moreover, autophagy holds an important role in the physiopathology of several diseases. In cancer, excellent works demonstrated the dual functions of autophagy in tumour biology: autophagy activation can promote cancer cells survival (protective autophagy), or contribute to cancer cell death (cytotoxic/nonprotective autophagy). A better understanding of the dichotomy roles of autophagy in cancer biology can help to identify or design new drugs able to induce/enhance (or block) autophagic flux. These features will necessary be tissue-dependent and confined to a specific time of treatment. The intent of this review is to focus on the different potentialities of autophagy inducers in cancer prevention versus therapy in order to elicit a desirable clinical response. Few promising synthetic and natural compounds have been identified and the pros and cons of their role in autophagy regulation is reviewed here. In the complex framework of autophagy modulation, "connecting the dots" is not a simple work and the lack of clinical studies further complicates the scenario, but the final goal to obtain clinically relevant autophagy inducers can reveal an unexpected landscape.
Collapse
Affiliation(s)
- Maria Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Gian Luigi Russo
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy.
| |
Collapse
|
27
|
Hsu SPC, Kuo JS, Chiang HC, Wang HE, Wang YS, Huang CC, Huang YC, Chi MS, Mehta MP, Chi KH. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells. Oncotarget 2018; 9:6883-6896. [PMID: 29467937 PMCID: PMC5805523 DOI: 10.18632/oncotarget.23855] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo. Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.
Collapse
Affiliation(s)
- Sanford P C Hsu
- Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - John S Kuo
- Department of Neurological Surgery, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | - Hsin-Ell Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | | | - Kwan-Hwa Chi
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan.,Miami Cancer Institute, Miami, FL, USA
| |
Collapse
|
28
|
Li XQ, Liu JT, Fan LL, Liu Y, Cheng L, Wang F, Yu HQ, Gao J, Wei W, Wang H, Sun GP. Exosomes derived from gefitinib-treated EGFR-mutant lung cancer cells alter cisplatin sensitivity via up-regulating autophagy. Oncotarget 2017; 7:24585-95. [PMID: 27029054 PMCID: PMC5029725 DOI: 10.18632/oncotarget.8358] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 03/06/2016] [Indexed: 12/21/2022] Open
Abstract
Several clinical trials indicate that concurrent administration of tyrosine kinase inhibitors (TKIs, such as gefitinib or erlotinib) with chemotherapy agents fails to improve overall survival in advanced non-small cell lung cancer (NSCLC) patients. However, the precise mechanisms underlying the antagonistic effects remain unclear. In the present study, we investigated the role of exosomes in the antagonistic effects of concurrent administration of chemotherapy and TKIs. Exosomes derived from gefitinib-treated PC9 cells (Exo-GF) decreased the antitumor effects of cisplatin, while exosomes derived from cisplatin-treated PC9 cells (Exo-DDP) did not significantly affect the antitumor effects of gefitinib. Additionally, inhibition of exosome secretion by GW4869 resulted in a modest synergistic effect when cisplatin and gefitinib were co-administered. Furthermore, Exo-GF co-incubation with cisplatin increased autophagic activity and reduced apoptosis, as demonstrated by an upregulation of LC3-II and Bcl-2 protein levels and downregulation of p62 and Bax protein levels. Thus, the antagonistic effects of gefitinib and cisplatin were mainly attributed to Exo-GF, which resulted in upregulated autophagy and increased cisplatin resistance. These results suggest that inhibition of exosome secretion may be a helpful strategy to overcome the antagonistic effects when TKIs and chemotherapeutic agents are co-administered. Before administering chemotherapy, introducing a washout period to completely eliminate TKI-related exosomes, may be a better procedure for administering chemotherapy and TKIs.
Collapse
Affiliation(s)
- Xiao-Qiu Li
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jia-Tao Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.,Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lu-Lu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yu Liu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Liang Cheng
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Fang Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Han-Qing Yu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jian Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Wei Wei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guo-Ping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
29
|
Abdel-Aziz AK, Abdel-Naim AB, Shouman S, Minucci S, Elgendy M. From Resistance to Sensitivity: Insights and Implications of Biphasic Modulation of Autophagy by Sunitinib. Front Pharmacol 2017; 8:718. [PMID: 29066973 PMCID: PMC5641351 DOI: 10.3389/fphar.2017.00718] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Sunitinib, a multityrosine kinase inhibitor, is currently the standard first-line therapy in metastatic renal cell carcinoma (mRCC) and is also used in treating patients with pancreatic neuroendocrine and imatinib-resistant gastrointestinal stromal tumors (GIST). Nevertheless, most patients eventually relapse secondary to intrinsic or acquired sunitinib resistance. Autophagy has been reported to contribute to both chemo-sensitivity and -resistance. However, over the last few years, controversial regulatory effects of sunitinib on autophagy have been reported. Since gaining insights into the underlying molecular insights and clinical implications is indispensible for achieving optimum therapeutic response, this minireview article sheds light on the role of a network of prosurvival signaling pathways recently identified as key mediators of sunitinib resistance with established and emerging functions as autophagy regulators. Furthermore, we underscore putative prognostic biomarkers of sunitinib responsiveness that could guide clinicians toward patient stratification and more individualized therapy. Importantly, innovative therapeutic strategies/approaches to overcome sunitinib resistance both evaluated in preclinical studies and perspective clinical trials are discussed which could ultimately be translated to better clinical outcome.
Collapse
Affiliation(s)
- Amal Kamal Abdel-Aziz
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Samia Shouman
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biosciences, University of Milan, Milan, Italy
| | - Mohamed Elgendy
- Max F. Perutz Laboratories, Department of Microbiology and Immunobiology, University of Vienna, Vienna, Austria
| |
Collapse
|
30
|
Yang PW, Hsieh MS, Chang YH, Huang PM, Lee JM. Genetic polymorphisms of ATG5 predict survival and recurrence in patients with early-stage esophageal squamous cell carcinoma. Oncotarget 2017; 8:91494-91504. [PMID: 29207660 PMCID: PMC5710940 DOI: 10.18632/oncotarget.20793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/27/2017] [Indexed: 01/08/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a deadly disease with high risk of tumor recurrence even among patients with an early pathologic stage of tumor. In the current study, we investigate the association between 20 SNPs of the ATG5 gene and prognosis of patients with early-stage ESCC. A total of 305 patients diagnosed with early-stage ESCC were enrolled in the study and randomly assigned to a training set (n=93) or replication set (n=212). The genotypes of candidate SNPs (single nucleotide polymorphisms) within ATG5 were analyzed and correlated with the prognosis of ESCC patients. We repeatedly demonstrated that 3 SNPs in ATG5, rs1322178, rs3804329, and rs671116, were significantly correlated with the prognosis of patients with early-stage ESCC (HR[95 % CI]=2.01[1.19-3.40], p=0.009 for ATG5: rs1322178; HR[95 % CI]=1.88 [1.08-3.26], p=0.025 for ATG5:rs3804329; HR[95 % CI]=1.73[1.24-2.42], p=0.001 for ATG5:rs671116, in combined group). Both rs1322178 and rs3804329 can predict early distant metastasis of patients. Furthermore, increased expression of ATG5 was observed in ESCC tumor tissue as compared to adjacent normal tissue. Moreover, higher levels of ATG5 expression in both normal and tumor tissues exhibited a trend to correlate with poor prognosis of patients. However, the expression of ATG5 did not correlate with these 3 relevant prognostic SNPs. We concluded that hereditary genetic polymorphisms and gene expression of ATG5 can serve as prognostic predictors of patients with early-stage ESCC.
Collapse
Affiliation(s)
- Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Graduate Institute of Pathology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Han Chang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pei-Ming Huang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
31
|
Disrupted Skeletal Muscle Mitochondrial Dynamics, Mitophagy, and Biogenesis during Cancer Cachexia: A Role for Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3292087. [PMID: 28785374 PMCID: PMC5530417 DOI: 10.1155/2017/3292087] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/06/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022]
Abstract
Chronic inflammation is a hallmark of cancer cachexia in both patients and preclinical models. Cachexia is prevalent in roughly 80% of cancer patients and accounts for up to 20% of all cancer-related deaths. Proinflammatory cytokines IL-6, TNF-α, and TGF-β have been widely examined for their regulation of cancer cachexia. An established characteristic of cachectic skeletal muscle is a disrupted capacity for oxidative metabolism, which is thought to contribute to cancer patient fatigue, diminished metabolic function, and muscle mass loss. This review's primary objective is to highlight emerging evidence linking cancer-induced inflammation to the dysfunctional regulation of mitochondrial dynamics, mitophagy, and biogenesis in cachectic muscle. The potential for either muscle inactivity or exercise to alter mitochondrial dysfunction during cancer cachexia will also be discussed.
Collapse
|
32
|
Jinushi M, Morita T, Xu Z, Kinoshita I, Dosaka-Akita H, Yagita H, Kawakami Y. Autophagy-dependent regulation of tumor metastasis by myeloid cells. PLoS One 2017; 12:e0179357. [PMID: 28686632 PMCID: PMC5501406 DOI: 10.1371/journal.pone.0179357] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 05/30/2017] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a vital process controlling the lysosomal degradation of cellular organelles and thereby regulating tissue homeostasis in an environment-dependent fashion. Recent studies have unveiled the critical role of tumor cell-derived autophagy in regulating pro-tumor and anti-tumor processes depending on different stages and tumor microenvironments. However, the precise mechanism whereby autophagy regulates tumor progression remains largely unclear. Since myeloid cells contribute to tumor progression and metastasis, we evaluated the role of myeloid cell-specific autophagy in the regulation of tumor progression. We found that the number and size of metastatic lesions were smaller in myeloid cell-specific autophagy-deficient mice. Furthermore, autophagy-mediated regulation of TGF-β in myeloid cells was associated with the induction of epithelial-mesenchymal transition (EMT), which increases the invasive and metastatic potentials of tumor cells. Myeloid-derived autophagy also plays a critical role in impairing antitumor immune responses and promoting the survival and accumulation of M2 macrophages in tumor tissues in a CSF-1 and TGF-β-dependent manner. Taken together, our findings elucidate previously unrecognized mechanisms by which myeloid cells promote tumor progression through autophagy-mediated regulation of malignancy and immune tolerance.
Collapse
Affiliation(s)
- Masahisa Jinushi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- * E-mail:
| | - Tomoko Morita
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Zhihang Xu
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
- Acupuncture and Moxibustion College of Tianjin, University of Traditional Chinese Medicine, TianJin, China
| | - Ichiro Kinoshita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hideo Yagita
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
33
|
Brouwers B, Fumagalli D, Brohee S, Hatse S, Govaere O, Floris G, Van den Eynde K, Bareche Y, Schöffski P, Smeets A, Neven P, Lambrechts D, Sotiriou C, Wildiers H. The footprint of the ageing stroma in older patients with breast cancer. Breast Cancer Res 2017; 19:78. [PMID: 28673354 PMCID: PMC5494807 DOI: 10.1186/s13058-017-0871-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/20/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tumours are not only composed of malignant cells but also consist of a stromal micro-environment, which has been shown to influence cancer cell behaviour. Because the ageing process induces accumulation of senescent cells in the body, this micro-environment is thought to be different in cancers occurring in old patients compared with younger patients. More specifically, senescence-related fibroblastic features, such as the senescence-associated secretory profile (SASP) and the induction of autophagy, are suspected to stimulate tumour growth and progression. Methods We compared gene expression profiles in stromal fields of breast carcinomas by performing laser capture microdissection of the cancer-associated stroma from eight old (aged ≥80 years at diagnosis) and nine young (aged <45 years at diagnosis) patients with triple-negative breast cancer. Gene expression data were obtained by microarray analysis (Affymetrix). Differential gene expression and gene set enrichment analysis (GSEA) were performed. Results Differential gene expression analysis showed changes reminiscent of increased growth, de-differentiation and migration in stromal samples of older versus younger patients. GSEA confirmed the presence of a SASP, as well as the presence of autophagy in the stroma of older patients. Conclusions We provide the first evidence in humans that older age at diagnosis is associated with a different stromal micro-environment in breast cancers. The SASP and the presence of autophagy appear to be important age-induced stromal features. Electronic supplementary material The online version of this article (doi:10.1186/s13058-017-0871-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbara Brouwers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium. .,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.
| | - Debora Fumagalli
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sylvain Brohee
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Sigrid Hatse
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Olivier Govaere
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Giuseppe Floris
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Kathleen Van den Eynde
- Department of Imaging and Pathology, Laboratory of Translational Cell & Tissue Research, KU Leuven, Herestraat 49, B-3000, Leuven, Belgium.,Department of Pathology, University Hospitals Leuven, Herestraat 49, B-3000, Leuven, Belgium
| | - Yacine Bareche
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Patrick Schöffski
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium
| | - Ann Smeets
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Patrick Neven
- Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Department of Oncology, Laboratory for Translational Genetics, Vesalius Research Center (VRC), Vlaams Instituut voor Biotechnologie (VIB) and KU Leuven, Leuven, Belgium
| | - Christos Sotiriou
- Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | - Hans Wildiers
- Laboratory of Experimental Oncology (LEO), Department of Oncology, KU Leuven, Leuven, Belgium.,Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, Leuven, Belgium.,Multidisciplinary Breast Center, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
34
|
Fesler A, Liu H, Wu N, Liu F, Ling P, Ju J. Autophagy regulated by miRNAs in colorectal cancer progression and resistance. CANCER TRANSLATIONAL MEDICINE 2017; 3:96-100. [PMID: 28748218 PMCID: PMC5524452 DOI: 10.4103/ctm.ctm_64_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The catabolic process of autophagy is an essential cellular function that allows for the breakdown and recycling of cellular macromolecules. In recent years, the impact of epigenetic regulation of autophagy by non-coding microRNAs (miRNAs) has been recognized in human cancer. In colorectal cancer, Autophagy plays critical roles in cancer progression as well as resistance to chemotherapy, and recent evidence demonstrates that miRNAs are directly involved in mediating these functions. In this review, we will focus on the recent advancements in the field of miRNA regulation of autophagy in colorectal cancer.
Collapse
Affiliation(s)
- Andrew Fesler
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Hua Liu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
| | - Ning Wu
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| | - Peixue Ling
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| | - Jingfang Ju
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794 USA
- Shandong Academy of Pharmaceutical Sciences, Jinan, 250101, P. R. China
| |
Collapse
|
35
|
Pettersen K, Andersen S, Degen S, Tadini V, Grosjean J, Hatakeyama S, Tesfahun AN, Moestue S, Kim J, Nonstad U, Romundstad PR, Skorpen F, Sørhaug S, Amundsen T, Grønberg BH, Strasser F, Stephens N, Hoem D, Molven A, Kaasa S, Fearon K, Jacobi C, Bjørkøy G. Cancer cachexia associates with a systemic autophagy-inducing activity mimicked by cancer cell-derived IL-6 trans-signaling. Sci Rep 2017; 7:2046. [PMID: 28515477 PMCID: PMC5435723 DOI: 10.1038/s41598-017-02088-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 04/05/2017] [Indexed: 12/20/2022] Open
Abstract
The majority of cancer patients with advanced disease experience weight loss, including loss of lean body mass. Severe weight loss is characteristic for cancer cachexia, a condition that significantly impairs functional status and survival. The underlying causes of cachexia are incompletely understood, and currently no therapeutic approach can completely reverse the condition. Autophagy coordinates lysosomal destruction of cytosolic constituents and is systemically induced by starvation. We hypothesized that starvation-mimicking signaling compounds secreted from tumor cells may cause a systemic acceleration of autophagy during cachexia. We found that IL-6 secreted by tumor cells accelerates autophagy in myotubes when complexed with soluble IL-6 receptor (trans-signaling). In lung cancer patients, were cachexia is prevalent, there was a significant correlation between elevated IL-6 expression in the tumor and poor prognosis of the patients. We found evidence for an autophagy-inducing bioactivity in serum from cancer patients and that this is clearly associated with weight loss. Importantly, the autophagy-inducing bioactivity was reduced by interference with IL-6 trans-signaling. Together, our findings suggest that IL-6 trans-signaling may be targeted in cancer cachexia.
Collapse
Affiliation(s)
- Kristine Pettersen
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Sonja Andersen
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Simone Degen
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Valentina Tadini
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Joël Grosjean
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Shinji Hatakeyama
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland
| | - Almaz N Tesfahun
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Siver Moestue
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Jana Kim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Unni Nonstad
- Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Pål R Romundstad
- Department of Public Health and General Practice, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Frank Skorpen
- Department of Laboratory Medicine, Children's and Women's Health, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Thoracic Medicine, St.Olavs Hospital - Trondheim University Hospital, 7006, Trondheim, Norway
| | - Tore Amundsen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway.,Department of Thoracic Medicine, St.Olavs Hospital - Trondheim University Hospital, 7006, Trondheim, Norway
| | - Bjørn H Grønberg
- The Cancer Clinic, St.Olavs Hospital - Trondheim University Hospital, 7030, Trondheim, Norway.,Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Florian Strasser
- Oncological Palliative Medicine, Division ofClinic Oncology/Hematology, Department of Internal Medicine and Palliative Care Center, Cantonal Hospital, St. Gallen, Switzerland
| | - Nathan Stephens
- Clinical and Surgical Sciences, School of Clinical Sciences and Community Health, The University of Edinburgh, Royal Infirmary, N-5021, Edinburgh, UK
| | - Dag Hoem
- Department of Gastrointestinal Surgery, Haukeland University Hospital, N-5020, Bergen, Norway
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, N-5021, Bergen, Norway
| | - Stein Kaasa
- European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.,The Cancer Clinic, St.Olavs Hospital - Trondheim University Hospital, 7030, Trondheim, Norway
| | - Kenneth Fearon
- European Palliative Care Research Centre, Department of Cancer Research and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.,Clinical and Surgical Sciences, School of Clinical Sciences and Community Health, The University of Edinburgh, Royal Infirmary, N-5021, Edinburgh, UK
| | - Carsten Jacobi
- Musculoskeletal Disease Area, Novartis Institutes for BioMedical Research Basel, Novartis Pharma AG, 4056, Basel, Switzerland.
| | - Geir Bjørkøy
- Department of Medical Laboratory Technology, Faculty of Natural Sciences, NTNU - Norwegian University of Science and Technology, 7491, Trondheim, Norway. .,Centre of Molecular Inflammation Research and Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, 7030, Trondheim, Norway.
| |
Collapse
|
36
|
Lorente J, Velandia C, Leal JA, Garcia-Mayea Y, Lyakhovich A, Kondoh H, LLeonart ME. The interplay between autophagy and tumorigenesis: exploiting autophagy as a means of anticancer therapy. Biol Rev Camb Philos Soc 2017; 93:152-165. [PMID: 28464404 DOI: 10.1111/brv.12337] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/30/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
Abstract
In wild-type cells, autophagy represents a tumour-suppressor mechanism, and dysfunction of the autophagy machinery increases genomic instability, DNA damage, oxidative stress and stem/progenitor expansion, which are events associated with cancer onset. Autophagy occurs at a basal level in all cells depending on cell type and cellular microenvironment. However, the role of autophagy in cancer is diverse and can promote different outcomes even in a single tumour. For example, in hypoxic tumour regions, autophagy emerges as a protective mechanism and allows cancer cell survival. By contrast, in cancer cells surrounding the tumour mass, the induction of autophagy by radio- or chemotherapy promotes cell death and significantly reduces the tumour mass. Importantly, inhibition of autophagy compromises tumorigenesis by mechanisms that are not entirely understood. The aim of this review is to explain the apparently contradictory role of autophagy as a mechanism that both promotes and inhibits tumorigenesis using different models. The induction/inhibition of autophagy as a mechanism for cancer treatment is also discussed.
Collapse
Affiliation(s)
- Juan Lorente
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Otolaryngology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Carolina Velandia
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain.,Otolaryngology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Jose A Leal
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Yoelsis Garcia-Mayea
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| | - Hiroshi Kondoh
- Department of Geriatric Medicine, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Matilde E LLeonart
- Biomedical Research in Cancer Stem Cell Group, Pathology Department, Vall d'Hebron Hospital, 08035, Barcelona, Spain
| |
Collapse
|
37
|
Song C, Mitter SK, Qi X, Beli E, Rao HV, Ding J, Ip CS, Gu H, Akin D, Dunn WA, Bowes Rickman C, Lewin AS, Grant MB, Boulton ME. Oxidative stress-mediated NFκB phosphorylation upregulates p62/SQSTM1 and promotes retinal pigmented epithelial cell survival through increased autophagy. PLoS One 2017; 12:e0171940. [PMID: 28222108 PMCID: PMC5319799 DOI: 10.1371/journal.pone.0171940] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 01/27/2017] [Indexed: 12/16/2022] Open
Abstract
p62 is a scaffolding adaptor implicated in the clearance of protein aggregates by autophagy. Reactive oxygen species (ROS) can either stimulate or inhibit NFκB-mediated gene expression influencing cellular fate. We studied the effect of hydrogen peroxide (H2O2)-mediated oxidative stress and NFκB signaling on p62 expression in the retinal pigment epithelium (RPE) and investigated its role in regulation of autophagy and RPE survival against oxidative damage. Cultured human RPE cell line ARPE-19 and primary human adult and fetal RPE cells were exposed to H2O2-induced oxidative stress. The human apolipoprotein E4 targeted-replacement (APOE4) mouse model of AMD was used to study expression of p62 and other autophagy proteins in the retina. p62, NFκB p65 (total, phosphorylated, nuclear and cytoplasmic) and ATG10 expression was assessed by mRNA and protein analyses. Cellular ROS and mitochondrial superoxide were measured by CM-H2DCFDA and MitoSOX staining respectively. Mitochondrial viability was determined using MTT activity. qPCR-array system was used to investigate autophagic genes affected by p62. Nuclear and cytoplasmic levels of NFκB p65 were evaluated after cellular fractionation by Western blotting. We report that p62 is up-regulated in RPE cells under H2O2-induced oxidative stress and promotes autophagic activity. Depletion of endogenous p62 reduces autophagy by downregulation of ATG10 rendering RPE more susceptible to oxidative damage. NFκB p65 phosphorylation at Ser-536 was found to be critical for p62 upregulation in response to oxidative stress. Proteasome inhibition by H2O2 causes p62-NFκB signaling as antioxidant pre-treatment reversed p62 expression and p65 phosphorylation when RPE was challenged by H2O2 but not when by Lactacystin. p62 protein but not RNA levels are elevated in APOE4-HFC AMD mouse model, suggesting reduction of autophagic flux in disease conditions. Our findings suggest that p62 is necessary for RPE cytoprotection under oxidative stress and functions, in part, by modulating ATG10 expression. NFκB p65 activity may be a critical upstream initiator of p62 expression in RPE cells under oxidative stress.
Collapse
Affiliation(s)
- Chunjuan Song
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Sayak K. Mitter
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Xiaoping Qi
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Eleni Beli
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Haripriya V. Rao
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jindong Ding
- Departments of Ophthalmology and Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Colin S. Ip
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hongmei Gu
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Debra Akin
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - William A. Dunn
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida, United States of America
| | - Catherine Bowes Rickman
- Departments of Ophthalmology and Cell Biology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alfred S. Lewin
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, United States of America
| | - Maria B. Grant
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Michael E. Boulton
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
38
|
Cree IA, Charlton P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer 2017; 17:10. [PMID: 28056859 PMCID: PMC5214767 DOI: 10.1186/s12885-016-2999-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022] Open
Abstract
Background The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Review Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. Conclusion The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to ‘molecular chess’. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.
Collapse
Affiliation(s)
- Ian A Cree
- Department of Pathology, University Hospitals Coventry and Warwickshire, Coventry, CV2 2DX, UK. .,Faculty of Health and Life Sciences, Coventry University, Priory Street, Coventry, CV1 5FB, UK.
| | - Peter Charlton
- Imperial Innovations, 52 Princes Gate, Exhibition Road, London, SW7 2PG, UK
| |
Collapse
|
39
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
40
|
Liu FL, Mo EP, Yang L, Du J, Wang HS, Zhang H, Kurihara H, Xu J, Cai SH. Autophagy is involved in TGF-β1-induced protective mechanisms and formation of cancer-associated fibroblasts phenotype in tumor microenvironment. Oncotarget 2016; 7:4122-41. [PMID: 26716641 PMCID: PMC4826194 DOI: 10.18632/oncotarget.6702] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) present in tumor microenvironment acts in a coordinated fashion to either suppress or promote tumor development. However, the molecular mechanisms underlying the effects of TGF-β1 on tumor microenvironment are not well understood. Our clinical data showed a positive association between TGF-β1 expression and cancer-associated fibroblasts (CAFs) in tumor microenvironment of breast cancer patients. Thus we employed starved NIH3T3 fibroblasts in vitro and 4T1 cells mixed with NIH3T3 fibroblasts xenograft model in vivo to simulate nutritional deprivation of tumor microenvironment to explore the effects of TGF-β1. We demonstrated that TGF-β1 protected NIH3T3 fibroblasts from Star-induced growth inhibition, mitochondrial damage and cell apoptosis. Interestingly, TGF-β1 induced the formation of CAFs phenotype in starvation (Star)-treated NIH3T3 fibroblasts and xenografted Balb/c mice, which promoted breast cancer tumor growth. In both models, autophagy agonist rapamycin increased TGF-β1-induced protective effects and formation of CAFs phenotypes, while autophagy inhibitor 3-methyladenine, Atg5 knockdown or TGF-β type I receptor kinase inhibitor LY-2157299 blocked TGF-β1 induced these effects. Taken together, our results indicated that TGF-β/Smad autophagy was involved in TGF-β1-induced protective effects and formation of CAFs phenotype in tumor microenvironment, which may be used as therapy targets in breast cancer.
Collapse
Affiliation(s)
- Fang-Lan Liu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - En-Pan Mo
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Liu Yang
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Jun Du
- Pharmacy College, Sun Yat-Sen University, Guangzhou 510405, China
| | - Hong-Sheng Wang
- Pharmacy College, Sun Yat-Sen University, Guangzhou 510405, China
| | - Huan Zhang
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | | | - Jun Xu
- Pharmacy College, Jinan University, Guangzhou 510632, China
| | - Shao-Hui Cai
- Pharmacy College, Jinan University, Guangzhou 510632, China
| |
Collapse
|
41
|
Chi MS, Lee CY, Huang SC, Yang KL, Ko HL, Chen YK, Chung CH, Liao KW, Chi KH. Double autophagy modulators reduce 2-deoxyglucose uptake in sarcoma patients. Oncotarget 2016; 6:29808-17. [PMID: 26375670 PMCID: PMC4745764 DOI: 10.18632/oncotarget.5060] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022] Open
Abstract
Rationale According to the metabolic symbiosis model, cancer stromal fibroblasts could be hijacked by surrounding cancer cells into a state of autophagy with aerobic glycolysis to help provide recycled nutrients. The purpose of this study was to investigate whether combined treatment with the autophagy inhibitor: hydroxychloroquine (HCQ) and the autophagy inducer: sirolimus (rapamycin, Rapa) would reduce glucose utilization in sarcoma patients. Methods Ten sarcoma patients who failed first-line treatment were enrolled in this study. They were treated with 1 mg of Rapa and 200 mg of HCQ twice daily for two weeks. The standardized uptake values (SUV) from pretreatment and posttreatment [18F]-fluorodeoxyglucose positron emission tomography (FDG PET) scans were reviewed, and changes from the baseline SUVmax were evaluated. Results Based on FDG PET response criteria, six patients had a partial response; three had stable disease, and one had progressive disease. Nevertheless, none of them showed a reduction in tumor volume. The mean SUVmax reduction in the 34 lesions evaluated was − 19.6% (95% CI = −30.1% to −9.1%), while the mean volume change was +16.4% (95% CI = +5.8% to + 27%). Only grade 1 toxicities were observed. Elevated serum levels of lactate dehydrogenase were detected after treatment in most metabolic responders. Conclusions The results of reduced SUVmax without tumor volume reduction after two weeks of Rapa and HCQ treatment may indicate that non-proliferative glycolysis occurred mainly in the cancer associated fibroblast compartment, and decreased glycolytic activity was evident from Rapa + HCQ double autophagy modulator treatment.
Collapse
Affiliation(s)
- Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,Institue of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsinchu, Taiwan
| | - Cheng-Yen Lee
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Su-Chen Huang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kai-Lin Yang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Hui-Ling Ko
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Yen-Kung Chen
- Department of Nuclear Medicine and PET Center, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chen-Han Chung
- Institue of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsinchu, Taiwan
| | - Kuang-Wen Liao
- Institue of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsinchu, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine and Institute of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
42
|
Ma D, Shen B, Seewoo V, Tong H, Yang W, Cheng X, Jin Z, Peng C, Qiu W. GADD45β induction by S-adenosylmethionine inhibits hepatocellular carcinoma cell proliferation during acute ischemia-hypoxia. Oncotarget 2016; 7:37215-37225. [PMID: 27177086 PMCID: PMC5095070 DOI: 10.18632/oncotarget.9295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 04/26/2016] [Indexed: 01/02/2023] Open
Abstract
Growth arrest DNA damage-inducible gene 45β (GADD45β), which influences cell growth, apoptosis and cellular response to DNA damage, is downregulated in hepatocellular carcinoma (HCC). S-adenosylmethionine (SAMe) serves as an essential methyl donor in multiple metabolic pathways and is a polyamine and glutathione (GSH) precursor. In this study, we assessed the roles of GADD45β and SAMe in cell survival during acute ischemia-hypoxia (I/H). SAMe treatment induced growth of HL-7702 normal hepatic cells, but decreased the viability of HepG2 (p53 wild-type) and Hep3B (p53 null) HCC cells. Cells were exposed to I/H with or without SAMe pre-treatment. I/H exposure alone triggered HCC cell proliferation promoted by autophagy. SAMe pre-treatment restored GADD45β expression and activated HCC cell apoptosis and eliminated I/H-induced HCC cell proliferation. p53 loss blunted the response to SAMe and I/H exposure in Hep3B cells; thus, the inhibitory effect of SAMe on cell proliferation may be reduced in p53-null cells as compared to wild-type cells. These results indicate that GADD45β induction by SAMe inhibits HCC cell proliferation during I/H as a result of increased apoptosis, and that SAMe also protects normal hepatocytes from apoptotic cell death and promotes normal cell regeneration. SAMe should be considered a potential therapeutic agent for the management of HCC.
Collapse
Affiliation(s)
- Ding Ma
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baiyong Shen
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Varun Seewoo
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Tong
- Department of Surgery, Huadong Hospital, Shanghai, China
| | - Weiping Yang
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Cheng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijian Jin
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenghong Peng
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weihua Qiu
- Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Fonseca P, Vardaki I, Occhionero A, Panaretakis T. Metabolic and Signaling Functions of Cancer Cell-Derived Extracellular Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:175-99. [PMID: 27572129 DOI: 10.1016/bs.ircmb.2016.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles have gained tremendous attention in the recent years as a novel mechanism of cell to cell communication. There are several types of extracellular vesicles, including exosomes, microvesicles, exosome, like vesicles, apoptotic bodies that differ mainly in the mechanism of biogenesis and secretion. The most well studied type of extracellular vesicles are the exosomes which are endosome-derived vesicles with a diameter of 50-150nm and enriched in ESCRT proteins including Alix, TSG101, Hsp70, and tetraspanins. It is now well established that exosomes promote tumor growth, alter the tumor microenvironment, facilitate the dissemination of cancer cells in an organotropic manner, modulate immune responses, and mediate resistance to therapy. Exosomes have also been recently implicated in an emerging hallmark of cancer, the cancer cell metabolism. The metabolic state of the cell defines, to a certain extent, both the rate of secretion and the molecular content of tumor-derived exosomes. Furthermore, exosomes have been shown to possess intrinsic metabolic activity since they can synthesize ATP by glycolysis. It follows that exosomes carry a number of metabolic enzymes and metabolites, including lactate, PGE, LDH isoforms, pyruvate, and monocarboxylate transporters. Last but not the least, exosomes are implicated in fatty acid synthesis and cholesterol metabolism and are thought to be crucial for the transcellular metabolism procedure. Uptake of exosomes is thought to alter the intracellular metabolic state of the cell. In summary, we describe the state of the art on the role of metabolism in the secretion, uptake, and the biological effects of exosomes in the metabolism of recipient cells.
Collapse
Affiliation(s)
- P Fonseca
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - I Vardaki
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - A Occhionero
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - T Panaretakis
- Department of Oncology-Pathology, Karolinska Institutet and University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Chi KH, Ko HL, Yang KL, Lee CY, Chi MS, Kao SJ. Addition of rapamycin and hydroxychloroquine to metronomic chemotherapy as a second line treatment results in high salvage rates for refractory metastatic solid tumors: a pilot safety and effectiveness analysis in a small patient cohort. Oncotarget 2016; 6:16735-45. [PMID: 25944689 PMCID: PMC4599303 DOI: 10.18632/oncotarget.3793] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/18/2015] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Autophagy is an important oncotarget that can be modulated during anti-cancer therapy. Enhancing autophagy using chemotherapy and rapamycin (Rapa) treatment and then inhibiting it using hydroxychloroquine (HCQ) could synergistically improve therapy outcome in cancer patients. It is still unclear whether addition of Rapa and HCQ to chemotherapy could be used for reversing drug resistance. PATIENTS AND METHODS Twenty-five stage IV cancer patients were identified. They had no clinical response to first-line metronomic chemotherapy; the patients were salvaged by adding an autophagy inducer (Rapa, 2 mg/day) and an autophagosome inhibitor (HCQ, 400 mg/day) to their current metronomic chemotherapy for at least 3 months. Patients included 4 prostate, 4 bladder, 4 lung, 4 breast, 2 colon, and 3 head and neck cancer patients as well as 4 sarcoma patients. RESULTS Chemotherapy was administered for a total of 137 months. The median duration of chemotherapy cycles per patient was 4 months (95% confidence interval, 3–7 months). The overall response rate to this treatment was of 40%, with an 84% disease control rate. The most frequent and clinically significant toxicities were myelotoxicities. Grade ≥3 leucopenia occurred in 6 patients (24%), grade ≥3 thrombocytopenia in 8 (32%), and anemia in 3 (12%). None of them developed febrile neutropenia. Non-hematologic toxicities were fatigue (total 32%, with 1 patient developing grade 3 fatigue), diarrhea (total 20%, 1 patient developed grade 3 fatigue), reversible grade 3 cardiotoxicity (1 patient), and grade V liver toxicity from hepatitis B reactivation (1 patient). CONCLUSION Our results of Rapa, HCQ and chemotherapy triplet combination suggest autophagy is a promising oncotarget and warrants further investigation in phase II studies.
Collapse
Affiliation(s)
- Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.,School of Medicine and Institute of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Ling Ko
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Kai-Lin Yang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Cheng-Yen Lee
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Shang-Jyh Kao
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
45
|
Liu WR, Jin L, Tian MX, Jiang XF, Yang LX, Ding ZB, Shen YH, Peng YF, Gao DM, Zhou J, Qiu SJ, Dai Z, Fan J, Shi YH. Caveolin-1 promotes tumor growth and metastasis via autophagy inhibition in hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2016. [PMID: 26206578 DOI: 10.1016/j.clinre.2015.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Caveolin-1 is a member of the caveolae family of membrane proteins. Although some researchers have investigated the function of Caveolin-1 in hepatocellular carcinoma, the mechanism of Caveolin-1 action and its prognostic value in hepatocellular carcinoma remain unclear. METHODS Caveolin-1 expression was measured in hepatocellular carcinoma cell lines and tissues using quantitative reverse transcription-polymerase chain reaction, western blot, and immunofluorescence assays. In in vitro experiments, Caveolin-1 was depleted using a short hairpin RNA lentiviral vector, and tumor cell behavior was analyzed. The effect of Caveolin-1 on hepatocellular carcinoma cell autophagy was investigated. Prognostic value of Caveolin-1 was analyzed by immunohistochemistry in two cohorts that included a total of 721 hepatocellular carcinoma patients. RESULTS We found that Caveolin-1 was overexpressed in highly metastatic hepatocellular carcinoma cell lines and tumor tissues. Moreover, Caveolin-1 promoted hepatocellular carcinoma cell proliferation, migration, and angiogenesis and inhibited autophagy. Finally, Caveolin-1 expression in hepatocellular carcinoma tissues was inversely correlated with patient overall survival and time to recurrence. CONCLUSION Our data obtained from cell lines suggest an oncogenic role for Caveolin-1 in hepatocellular carcinoma, Caveolin-1 contributed to hepatocellular carcinoma cell autophagy deficiency. Furthermore, Caveolin-1 may function as a novel prognostic indicator for hepatocellular carcinoma patients after curative resection, and combination of targeted therapy aimed at Caveolin-1 and autophagy modulation may represent an effective way to treat hepatocellular carcinoma.
Collapse
Affiliation(s)
- Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Lei Jin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Xi-Fei Jiang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Liu-Xiao Yang
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhen-Bin Ding
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hao Shen
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yuan-Fei Peng
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Dong-Mei Gao
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Shuang-Jian Qiu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China; Institutes of Biomedical Sciences, Fudan University, Shanghai, People's Republic of China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180, FengLin Road, 200032 Shanghai, China; Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China.
| |
Collapse
|
46
|
Yuan Y, Jiang YC, Sun CK, Chen QM. Role of the tumor microenvironment in tumor progression and the clinical applications (Review). Oncol Rep 2016; 35:2499-515. [PMID: 26986034 DOI: 10.3892/or.2016.4660] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 01/27/2016] [Indexed: 02/05/2023] Open
Abstract
Oncogene activation and tumor-suppressor gene inactivation are considered as the main causes driving the transformation of normal somatic cells into malignant tumor cells. Cancer cells are the driving force of tumor development and progression. Yet, cancer cells are unable to accomplish this alone. The tumor microenvironment is also considered to play an active role rather than simply acting as a by-stander in tumor progression. Through different pathways, tumor cells efficiently recruit stromal cells, which in turn, provide tumor cell growth signals, intermediate metabolites, and provide a suitable environment for tumor progression as well as metastasis. Through reciprocal communication, cancer cells and the microenvironment act in collusion leading to high proliferation and metastatic capability. Understanding the role of the tumor microenvironment in tumor progression provides us with novel approaches through which to target the tumor microenvironment for efficient anticancer treatment. In this review, we summarize the mechanisms involved in the recruitment of stromal cells by tumor cells to the primary tumor site and highlight the role of the tumor microenvironment in the regulation of tumor progression. We further discuss the potential approaches for cancer therapy.
Collapse
Affiliation(s)
- Yao Yuan
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yu-Chen Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chong-Kui Sun
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
47
|
Li WL, Xiong LX, Shi XY, Xiao L, Qi GY, Meng C. IKKβ/NFκBp65 activated by interleukin-13 targets the autophagy-related genes LC3B and beclin 1 in fibroblasts co-cultured with breast cancer cells. Exp Ther Med 2016; 11:1259-1264. [PMID: 27073433 PMCID: PMC4812107 DOI: 10.3892/etm.2016.3054] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 01/19/2016] [Indexed: 12/11/2022] Open
Abstract
Interleukin-13 (IL-13), a Th2 cytokine, plays an important role in fibrosis, inflammation, tissue hyperresponsiveness and tumor development. Although studies have demonstrated that IL-13 exerts its roles through signal transducer and activator of transcription 6 (STAT6) signaling pathway, recent studies have revealed that I kappa B kinase (IKK)/nuclear factor kappa B (NFκB) pathway may also be involved in. The aim of this study was to investigate whether IL-13 delivers signals to IKKβ/NFκBp65 and whether autophagy genes are IL-13-induced the activation of NFκBp65 transcriptional targets in fibroblasts of breast tumor stroma. We examined the phosphorylation of IKKβ, the activation of NFκBp65 and NFκBp65-targeted autophagy genes in fibroblasts co-cultured with breast cancer cells under the condition of IL-13 stimulation. Results of this study showed that IL-13 induced IKKβ phosphorylation in the fibroblast line ESF co-cultured with breast cancer cell line BT474, and subsequently NFκBp65 was activated and aimed at beclin 1 and microtubule-associated protein 1 light chain 3 B (MAP1LC3B or LC3B) in these ESF cells. BMS345541, an inhibitor of IKK/NFκB pathway, significantly inhibited the IL-13-induced the activation of NFκB and also inhibited NFκB-targeted beclin 1 and LC3B expression. Our results suggest that IL-13 regulates beclin 1 and LC3B expression through IKKβ/NFκBp65 in fibroblasts co-cultured with breast cancer cells, and IL-13 plays role in activating IKKβ/NFκBp65.
Collapse
Affiliation(s)
- Wen-Lin Li
- Key Laboratory of Medical Biology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Yu Shi
- Key Laboratory of Medical Biology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Liang Xiao
- Molecular Laboratory, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330006, P.R. China
| | - Guan-Yun Qi
- Key Laboratory of Medical Biology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chuang Meng
- Key Laboratory of Medical Biology, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
48
|
Abstract
Cancer cells are distinguished from normal cells by increased proliferation and metabolism, loss of polarity control, and the potential to invade other tissues of the body. As hubs of signaling transduction, primary cilia have been linked to diverse developmental and degenerative disorders. Interestingly, loss of cilia has been observed in multiple malignant tumors, suggesting a potential suppressive role of cilia in cancer development. More recently, emerging studies began to unveil the bidirectional interaction of cilia and autophagy, a basic cellular clearance and recycling mechanism to regulate cell homeostasis. Here, we summarize the interplay between cilia and autophagy and discuss the roles of cilia in both autophagy and cancer.
Collapse
Affiliation(s)
- Muqing Cao
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Qing Zhong
- Center for Autophagy Research; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
49
|
Rodolfo C, Di Bartolomeo S, Cecconi F. Autophagy in stem and progenitor cells. Cell Mol Life Sci 2016; 73:475-96. [PMID: 26502349 PMCID: PMC11108450 DOI: 10.1007/s00018-015-2071-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/12/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.
Collapse
Affiliation(s)
- Carlo Rodolfo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Sabrina Di Bartolomeo
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy
| | - Francesco Cecconi
- Dipartimento di Biologia, Università degli Studi di Roma Tor Vergata, 00133, Rome, Italy.
- IRCCS Fondazione Santa Lucia, 00143, Rome, Italy.
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, 2100, Copenhagen, Denmark.
| |
Collapse
|
50
|
Monocarboxylate transporter 4 as a prognostic biomarker in patients with colorectal cancer and liver metastases. INTERNATIONAL JOURNAL OF SURGERY OPEN 2016. [DOI: 10.1016/j.ijso.2016.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|