1
|
Sieńko J, Kotowski M, Czarnecka W, Podkówka A, Tejchman K, Kotfis K, Zeair S, Czajkowski Z, Skonieczna-Żydecka K. Microchimerism as Post-Transplant Marker of a Chronic Rejection Process. Int J Mol Sci 2023; 24:10603. [PMID: 37445781 DOI: 10.3390/ijms241310603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
The risk of losing a transplanted organ is high, and non-invasive markers to warn of this phenomenon are still being sought. We investigated the impact of post-transplant microchimerism on the function of the transplanted kidney. The study included 100 kidney transplant recipients, mostly women. All transplanted organs were from opposite-sex deceased donors. Microchimerism was assessed using multiplex PCR. Male DNA was detected in all urine samples from female recipients and in 13/56 blood samples from female kidney recipients. Female DNA was found in 31/44 urine samples from male recipients, but in none of the blood samples. Microchimerism in the urine of female recipients correlated positively with blood urea (Rs = 0.45; p = 5.84 × 10-4) and K+ ions (Rs = 0.29; p = 0.03), while microchimerism in the blood of female recipients also correlated positively with blood urea (Rs = 0. 28; p = 0.04), cystatin C (Rs = 0.31; p = 0.02) and the number of incompatible HLA alleles (Rs = 0.42; p = 0.01). A history of DGF was associated with higher urinary donor DNA concentrations in female recipients.: Post-transplant microchimerism may serve as a potential marker of chronic kidney rejection.
Collapse
Affiliation(s)
- Jerzy Sieńko
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Kotowski
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Wiktoria Czarnecka
- Scientific Circle at Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Albert Podkówka
- Scientific Circle at Department of Biochemical Sciences, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Karol Tejchman
- Department of General Surgery and Transplantology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Samir Zeair
- General and Transplant Surgery Ward with Sub-Departments of Pomeranian Regional Hospital in Szczecin, 71-455 Szczecin, Poland
| | - Zenon Czajkowski
- Department of Intensive Care, Pomeranian Regional Hospital in Szczecin, 71-455 Szczecin, Poland
| | | |
Collapse
|
2
|
Bharath TS, Saraswathi TR, Suresh Sajjan MC, Ramchandran CR, Govindraj Kumar N. Isolation and quantification of DNA from epithelial cells obtained from acrylic removable partial denture for sex identification. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2019. [DOI: 10.1186/s41935-019-0123-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
3
|
Cismaru CA, Pop L, Berindan-Neagoe I. Incognito: Are Microchimeric Fetal Stem Cells that Cross Placental Barrier Real Emissaries of Peace? Stem Cell Rev Rep 2018; 14:632-641. [PMID: 29948753 DOI: 10.1007/s12015-018-9834-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chimerism occurs naturaly throughout gestation and can also occur as a consequence of transfusion and transplantation therapy. It consists of the acquisition and long-term persistence of a genetically distinct population of allogenic cells inside another organism. Previous reports have suggested that feto-maternal microchimerism could exert a beneficial effect on the treatment of hematological and solid tumors in patients treated by PBSCT. In this review we report the mechanism of transplacental fetal stem cell trafficking during pregnancy and the effect of their long-term persistence on autoimmunity, GVHD, PBSCT, cancer and stem cell treatment.
Collapse
Affiliation(s)
- Cosmin Andrei Cismaru
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Gh. Marinescu street, 400337, Cluj-Napoca, Romania.
| | - Laura Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Gh. Marinescu street, 400337, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Gh. Marinescu street, 400337, Cluj-Napoca, Romania
| |
Collapse
|
4
|
Nicholson L, Lecour S, Wedegärtner S, Kindermann I, Böhm M, Sliwa K. Assessing perinatal depression as an indicator of risk for pregnancy-associated cardiovascular disease. Cardiovasc J Afr 2017; 27:119-22. [PMID: 27213860 PMCID: PMC4928172 DOI: 10.5830/cvja-2015-087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/14/2015] [Indexed: 01/08/2023] Open
Abstract
Cardiovascular conditions associated with pregnancy are serious complications. In general, depression is a well-known risk indicator for cardiovascular disease (CVD). Mental distress and depression are associated with physiological responses such as inflammation and oxidative stress. Both inflammation and oxidative stress have been implicated in the pathophysiology of CVDs associated with pregnancy. This article discusses whether depression could represent a risk indicator for CVDs in pregnancy, in particular in pre-eclampsia and peripartum cardiomyopathy (PPCM).
Collapse
Affiliation(s)
- Lauren Nicholson
- Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart group, Department of Medicine, University of Cape Town, South Africa.
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and MRC Inter-University Cape Heart group, Department of Medicine, University of Cape Town, South Africa
| | - Sonja Wedegärtner
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | - Ingrid Kindermann
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | - Michael Böhm
- Clinic for Internal Medicine III, Cardiology, Angiology and Intensive Care Medicine, University Hospital of Saarland, Homburg/Saar, Germany
| | - Karen Sliwa
- Hatter Institute for Cardiovascular Research in Africa, and IDM, Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa; Soweto Cardiovascular Research Unit, University of the Witwatersrand, Johannesburg; Inter-Cape Heart Group, Medical Research Council South Africa, Cape Town, South Africa.
| |
Collapse
|
5
|
Yang EKL, Marsh SGE, Chen PY, Chen CP, Chen SP, Lin PY. A dispermic chimerism detected in a Taiwanese potential unrelated hematopoietic stem cell donor. HLA 2017; 89:98-103. [PMID: 28102039 DOI: 10.1111/tan.12954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/08/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023]
Abstract
Chimerism is defined as the presence of 2 or more than 1 genetically distinct cell populations in an organism. Dispermic chimeras are derived from the fertilization of 1 or 2 matured nuclei by 2 sperms. We here report detection of a healthy and phenotypically normal female with normal ABO red blood cell typing in whom dispermic chimerism was suspected after 3 alleles were identified at multiple human leukocyte antigen (HLA) loci using molecular HLA analysis. Molecular HLA typing showed the donor to have 3 HLA-A, -B, -C, -DRB1, -DQB1 and -DPB1 alleles in blood, saliva and nail samples. In addition, 3 of her 9 short tandem repeat loci also showed to have 3 distinct alleles in blood, nail and saliva specimens. In all investigations, the third alleles were attributed to a dual paternal contribution. This case represents a dispermic chimerism, with 2 paternal and 1 maternal haplotypes variably distributed throughout body tissues in a healthy and phenotypically normal female without abnormalities in erythrocyte ABO blood group. The origin of this chimerism is probably due to the fertilization of a single egg and its polar body, or a parthenogenetic egg, by 2 sperms.
Collapse
Affiliation(s)
- E K L Yang
- Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Department of Laboratory Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - S G E Marsh
- Anthony Nolan Research Institute and UCL Cancer Institute, The Royal Free Campus, London, UK
| | - P-Y Chen
- Center of Medical Genetics, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - C-P Chen
- Department of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei, Taiwan
| | - S-P Chen
- Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - P Y Lin
- Laboratory of Immunogenetics, Tzu Chi Cord Blood Bank, and Buddhist Tzu Chi Bone Marrow Donor Registry, Buddhist Tzu Chi Stem Cells Centre, Hualien Tzu Chi Hospital, Hualien, Taiwan
| |
Collapse
|
6
|
Novel insights into the link between fetal cell microchimerism and maternal cancers. J Cancer Res Clin Oncol 2016; 142:1697-704. [PMID: 26746656 DOI: 10.1007/s00432-015-2110-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Fetal cell microchimerism (FCM) is defined as the persistence of fetal cells in the mother for decades after pregnancy without any apparent rejection. Fetal microchimeric cells (fmcs) engraft the maternal bone marrow and are able to migrate through the circulation and to reach tissues. In malignancies, the possible role of fmcs is still controversial, several studies advising a protective and repairing function, and other postulating a beneficial role in the progression of the disease. At the peripheral blood level, FCM is less frequently observed in women with several solid and hematological neoplasia with respect to healthy controls, suggesting a beneficial role in cancer surveillance. At the tissue level, fmcs were documented in neoplastic lesions of thyroid, breast, cervix, lung and melanoma, displaying epithelial, hematopoietic, mesenchymal and endothelial lineage differentiation. Fmcs expressing hematopoietic markers were hypothesized to have a role in the attack to neoplastic cells, whereas those expressing epithelial or mesenchymal antigens could be involved in repair and replacement of damaged cells. On the other hand, fetal cells showing an endothelial phenotype could have a role in tumor evolution and progression. The positive effect of FCM is supported by findings in animal models. CONCLUSIONS This review provides an extensive overview of the link between fetal cell microchimerism and maternal cancers. Moreover, biological mechanisms by which fetal cell microchimerism is believed to modulate the protection against cancer development or tumor progression will be discussed, together with findings in animal models.
Collapse
|
7
|
Boddy AM, Fortunato A, Wilson Sayres M, Aktipis A. Fetal microchimerism and maternal health: a review and evolutionary analysis of cooperation and conflict beyond the womb. Bioessays 2015; 37:1106-18. [PMID: 26316378 PMCID: PMC4712643 DOI: 10.1002/bies.201500059] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of fetal cells has been associated with both positive and negative effects on maternal health. These paradoxical effects may be due to the fact that maternal and offspring fitness interests are aligned in certain domains and conflicting in others, which may have led to the evolution of fetal microchimeric phenotypes that can manipulate maternal tissues. We use cooperation and conflict theory to generate testable predictions about domains in which fetal microchimerism may enhance maternal health and those in which it may be detrimental. This framework suggests that fetal cells may function both to contribute to maternal somatic maintenance (e.g. wound healing) and to manipulate maternal physiology to enhance resource transmission to offspring (e.g. enhancing milk production). In this review, we use an evolutionary framework to make testable predictions about the role of fetal microchimerism in lactation, thyroid function, autoimmune disease, cancer and maternal emotional, and psychological health. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Amy M Boddy
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA
| | - Angelo Fortunato
- Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA
| | - Melissa Wilson Sayres
- Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, USA.,Center for Evolution and Cancer, University of California San Francisco, San Francisco, CA, USA.,Center for Evolution and Medicine, The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
8
|
Boyon C, Collinet P, Boulanger L, Rubod C, Lucot JP, Vinatier D. Fetal microchimerism: benevolence or malevolence for the mother? Eur J Obstet Gynecol Reprod Biol 2011; 158:148-52. [PMID: 21664033 DOI: 10.1016/j.ejogrb.2011.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 05/04/2011] [Accepted: 05/10/2011] [Indexed: 01/24/2023]
Abstract
For a long time, the conventional view was that the fetus and maternal vascular system are kept separate. In fact there is a two way traffic of cells through the placenta and the transplacental passage of cells is in fact the norm. The fetal cells can persist in a wide range of woman's tissues following a pregnancy or an abortion and she becomes a chimera. Fetal cells have been found in the maternal circulation and they were shown to persist for the entire life in humans, thus demonstrating long-term engraftment and survival capabilities. Microchimerism is a subject of much interest for a number of reasons. Studies of fetal microchimerism during pregnancy may offer explanations for complications of pregnancy, such as preeclampsia, as well as insights into the pathogenesis of autoimmune diseases which usually ameliorate during pregnancy. The impact of the persistence of allogenic cells of fetal origin and of the maternal immunological response to them on the mother's health is still not clear. On the beneficial side, it has been proposed that genetically disparate fetal microchimerism provides protection against some cancers, that fetal microchimerism can afford the mother new mechanisms of protection to some diseases, that fetal microchimerism can enlarge the immunological repertoire of the mother improving her defense against aggressor. Fetal cells are often present at sites of maternal injury and may have an active role in the repair of maternal tissues.
Collapse
Affiliation(s)
- Charlotte Boyon
- Université Nord de France, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée, EA 4550, Université Lille 1, Lille, F-59650 Villeneuve d'Ascq, Service de chirurgie gynécologique, CHU Lille, F-59000 Lille, France
| | | | | | | | | | | |
Collapse
|
9
|
Boyon C, Vinatier D. [Fetal microchimerism: self and non-self, finally who are we?]. ACTA ACUST UNITED AC 2011; 40:387-98. [PMID: 21354718 DOI: 10.1016/j.jgyn.2011.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 01/22/2011] [Accepted: 01/26/2011] [Indexed: 01/01/2023]
Abstract
For a long time, the conventional view was that the fetus and maternal vascular system are kept separate. In fact there is a two-way traffic of immune cells through the placenta and the transplacental passage of cells is in fact the norm. The fetal cells can persist in a wide range of woman's tissue following a pregnancy or an abortion and she becomes a chimera. Fetal cells have been found in the maternal circulation and they were shown to persist for almost three decades in humans, thus demonstrating long-term engraftment and survival capabilities. Microchimerism is a subject of much interest for a number of reasons. Studies of fetal microchimerism during pregnancy may offer explanations for complications of pregnancy, such as preeclampsia, as well as insights into the pathogenesis of autoimmune disease which usually ameliorates during pregnancy. The impact that the persistence of allogenic cells of fetal origin and the maternal immunological response to them has on the mother's health and whether it is detrimental or beneficial to the mother is still not clear. Although microchimerism has been implicated in some autoimmune diseases, fetal microchimerism is common in healthy individuals. On the beneficial side, it has been proposed that genetically disparate fetal microchimerism provides protection against some cancers, that fetal microchimerism can afford the mother new alleles of protection to some diseases she has not, that fetal microchimerism can enlarge the immunological repertoire of the mother improving her defense against aggressor. Fetal cells are often present at sites of maternal injury and may have an active role in the repair of maternal tissues.
Collapse
Affiliation(s)
- C Boyon
- FRE 3249 CNRS, cité scientifique, université Lille 1, Villeneuve d'Ascq, France
| | | |
Collapse
|