1
|
Kammala AK, Lintao RCV, Hoy R, Selim J, Luisi J, Yaklic JL, Ameredes BT, Menon R. Fetal microchimeric cells influence maternal lung health following term and preterm births. Sci Rep 2024; 14:28417. [PMID: 39557969 PMCID: PMC11574256 DOI: 10.1038/s41598-024-79795-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
Fetal microchimerism, the presence of fetal cells in maternal tissues, has garnered interest for its potential role in maternal physiology. In this study, we aimed to explore the impact of fetal microchimeric cells on maternal lung health following term and preterm delivery, particularly in the context of infection-induced preterm birth and subsequent allergic challenges. We characterized the immune cells in maternal lungs using a transgenic mouse model (mT+ Ve, Td Tomato) and high dimensional mass cytometry (CyTOF) techniques. We evaluated their influence on lung function and inflammation. Our findings revealed distinct differences in the immune cell composition of maternal lungs between term and preterm deliveries. Mice delivered preterm significantly increased in fetal-specific cells, such as activated macrophages and Tbet + Ve memory B-cells, compared to term-delivered mice. Conversely, term deliveries showed elevated levels of CD4 cells. Furthermore, preterm-delivered dams demonstrated heightened airway hyperresponsiveness, pro-inflammatory cytokine expression, cellular infiltration, and lung mucous production compared to term-delivered dams. Co-culture experiments demonstrated that microchimeric cells from preterm births stimulated the production of inflammatory cytokines IL-6 and TNF-α in lung epithelial cells. These findings shed light on the complex immune dynamics postpartum and their role in lung complications after preterm birth. Understanding these mechanisms could provide insights for targeted interventions to improve maternal lung health in at-risk populations.
Collapse
Affiliation(s)
- Ananth Kumar Kammala
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| | - Ryan C V Lintao
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Richa Hoy
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jessica Selim
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA
- John Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jonathan Luisi
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Jerome L Yaklic
- Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Bill T Ameredes
- Department of Internal Medicine, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
- Department of Pharmacology and Toxicology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd., Galveston, TX, 77555-1062, USA.
| |
Collapse
|
2
|
Kolanska K, Roche M, Carrière C, Le Gac M, Ferrand N, Zaoui M, Le Gall M, Selleret L, Gligorov J, Sabbah M, Aractingi S, Chabbert-Buffet N. Impact of Fetal Umbilical Cord Blood CD34+ Cells on Breast Cancer Cell Lines: A Mechanism of Fetal Microchimerism. Cells Tissues Organs 2024:1-16. [PMID: 39462491 DOI: 10.1159/000542242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024] Open
Abstract
INTRODUCTION Fetal microchimerism could be involved in the regulation of breast cancer oncogenesis. CD34+ cells could be of a particular interest as up to 12% of the CD34+ population in maternal blood are of fetal origin. The aim of this research was to analyze the impact of umbilical cord blood (UCB) CD34+ on MCF-7 and MDA-MB-231 breast cancer cell lines, in order to uncover novel biological mechanisms and suggest novel treatment options for breast cancer. METHODS UCB CD34+ cells were obtained from healthy women at full-term delivery. Direct cultures were grown with MCF-7 and MDA-MB-231 cells. Proliferation, migration, invasion, and transcriptomic analysis of breast cancer cell lines were compared between cultures exposed and nonexposed to UCB CD34+ cells. Interactions between UCB CD34+ and breast cancer cells were analyzed under fluorescent microscopy. Functional analyses were generated with QIAGEN's Ingenuity Pathway Analysis (IPA) and Gene Set Enrichment Analysis (GSEA). RESULTS Direct contact between UCB CD34+ and breast cancer cell lines induced a reduction in the proliferative capacities of MCF-7 and MDA-MB-231 and diminished the migration abilities of MDA-MB-231 cells. In 3D coculture, UCB CD34+ cells were attracted by tumor spheroids and incorporated into tumor cells. These cell-to-cell interactions were responsible for transcriptome modifications coherent with observed functional modifications. Among the cytokines secreted by UCB CD34+, IFN-γ was identified as a potential upstream regulator responsible for the molecular modifications observed in transcriptomic analysis of MCF-7 breast cancer cells exposed to UCB CD34+ cells, as was IL-17A in MDA-MB-231 cells. CONCLUSION Direct cell-to-cell contact induced functional modifications in breast cancer cells. Interactions between UCB CD34+ and breast cancer cells could induce cell fusion and signal transmission via cytokines. Further analysis of direct cell-to-cell interactions should be performed at a molecular level to further understand the potential role of fetal CD34+ cells in breast cancer.
Collapse
Affiliation(s)
- Kamila Kolanska
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Merwane Roche
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Camille Carrière
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Marjolaine Le Gac
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Nathalie Ferrand
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Maurice Zaoui
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Morgane Le Gall
- Plateforme Proteom'IC, Institut Cochin, INSERM, CNRS, Université de Paris Cité, Paris, France
| | - Lise Selleret
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
| | - Joseph Gligorov
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
- Assistance-Publique Hôpitaux de Paris-Tenon, Institut Universitaire de Cancerologie Université Pierre et Marie Curie, Sorbonne Université, Paris, France
| | - Michèle Sabbah
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| | - Selim Aractingi
- Institut Cochin, Inserm, UMRS1016, Faculté de Médecine, Université de Paris Cité, Paris, France
| | - Nathalie Chabbert-Buffet
- Service de gynécologie obstétrique et médecine de la reproduction, Hôpital Tenon, AP-HP, Sorbonne Université, Paris, France
- INSERM UMRS 938, Centre de Recherche Saint-Antoine, Paris, France
| |
Collapse
|
3
|
Song Y, Fu Z, Zhu X, Zhang J, Bai W, Song B. The flower of Abelmoschus manihot (L.) medik exerts antioxidant effects by regulating the Nrf2 signalling pathway in scald injury. Wound Repair Regen 2024; 32:123-134. [PMID: 38151814 DOI: 10.1111/wrr.13146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/25/2023] [Accepted: 12/12/2023] [Indexed: 12/29/2023]
Abstract
Scald is a common skin injury in daily life. It is well known that skin burns are associated with inflammation and oxidative stress. In our previous study, we found that Abelmoschus manihot (L.) medik had excellent therapeutic effects on scald-induced inflammation, but its effect on scald-induced oxidative stress was not reported. In this study, a deep second-degree scald model in mice was established, and the wound healing rate, healing time, malondialdehyde (MDA) and total superoxide dismutase (T-SOD) levels, and nuclear factor erythroid 2-related Factor 2 (Nrf2) expression in wound tissue were measured to evaluate the scald wound healing performance of extraction from A. manihot (L.) medik (EAM). Scalding activity in mice was examined in vivo by hot water-induced finger swelling. The treatment scald activities were also examined in vivo by subjecting mice to thermal water-induced digit swelling. Additionally, the antioxidant effect of EAM on fibroblasts was also used to determine the mechanism in vitro. The results showed that EAM not only decreased the wound healing time but also effectively regulated the levels of oxidising, MDA and T-SOD in wound tissue. Concurrently, EAM suppressed digit swelling and hyperalgesia. Furthermore, EAM had a significant protective effect on NIH-3T3 cells after H2 O2 injury by regulating the Nrf2 signalling pathway against oxidative injury. Therefore, EAM is a promising drug for the treatment of scald-induced inflammation.
Collapse
Affiliation(s)
- Ying Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- Hangzhou King's Healthcare Pharmaceutical Technology Co., Ltd., Hangzhou, Zhejiang, China
| | - Zailin Fu
- Linping Campus, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyi Zhu
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Jun Zhang
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Wenwen Bai
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Biwei Song
- Department of Pharmacology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Schust DJ, Bonney EA, Sugimoto J, Ezashi T, Roberts RM, Choi S, Zhou J. The Immunology of Syncytialized Trophoblast. Int J Mol Sci 2021; 22:ijms22041767. [PMID: 33578919 PMCID: PMC7916661 DOI: 10.3390/ijms22041767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/02/2021] [Accepted: 02/06/2021] [Indexed: 02/06/2023] Open
Abstract
Multinucleate syncytialized trophoblast is found in three forms in the human placenta. In the earliest stages of pregnancy, it is seen at the invasive leading edge of the implanting embryo and has been called primitive trophoblast. In later pregnancy, it is represented by the immense, multinucleated layer covering the surface of placental villi and by the trophoblast giant cells found deep within the uterine decidua and myometrium. These syncytia interact with local and/or systemic maternal immune effector cells in a fine balance that allows for invasion and persistence of allogeneic cells in a mother who must retain immunocompetence for 40 weeks of pregnancy. Maternal immune interactions with syncytialized trophoblast require tightly regulated mechanisms that may differ depending on the location of fetal cells and their invasiveness, the nature of the surrounding immune effector cells and the gestational age of the pregnancy. Some specifically reflect the unique mechanisms involved in trophoblast cell–cell fusion (aka syncytialization). Here we will review and summarize several of the mechanisms that support healthy maternal–fetal immune interactions specifically at syncytiotrophoblast interfaces.
Collapse
Affiliation(s)
- Danny J. Schust
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Correspondence:
| | - Elizabeth A. Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont College of Medicine, Burlington, VT 05405, USA;
| | - Jun Sugimoto
- Department of Obstetrics and Gynecology, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Toshi Ezashi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - R. Michael Roberts
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Sehee Choi
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jie Zhou
- Department of Obstetrics, Gynecology, University of Missouri School of Medicine, Columbia, MO 65202, USA; (T.E.); (R.M.R.); (S.C.); (J.Z.)
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
5
|
Deems NP, Leuner B. Pregnancy, postpartum and parity: Resilience and vulnerability in brain health and disease. Front Neuroendocrinol 2020; 57:100820. [PMID: 31987814 PMCID: PMC7225072 DOI: 10.1016/j.yfrne.2020.100820] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/25/2019] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
Abstract
Risk and resilience in brain health and disease can be influenced by a variety of factors. While there is a growing appreciation to consider sex as one of these factors, far less attention has been paid to sex-specific variables that may differentially impact females such as pregnancy and reproductive history. In this review, we focus on nervous system disorders which show a female bias and for which there is data from basic research and clinical studies pointing to modification in disease risk and progression during pregnancy, postpartum and/or as a result of parity: multiple sclerosis (MS), depression, stroke, and Alzheimer's disease (AD). In doing so, we join others (Shors, 2016; Galea et al., 2018a) in aiming to illustrate the importance of looking beyond sex in neuroscience research.
Collapse
Affiliation(s)
- Nicholas P Deems
- The Ohio State University, Department of Psychology, Columbus, OH, USA
| | - Benedetta Leuner
- The Ohio State University, Department of Psychology, Columbus, OH, USA.
| |
Collapse
|
6
|
Snethen H, Ye J, Gillespie KM, Scolding NJ. Maternal micro-chimeric cells in the multiple sclerosis brain. Mult Scler Relat Disord 2020; 40:101925. [PMID: 31986425 DOI: 10.1016/j.msard.2020.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/29/2019] [Accepted: 01/01/2020] [Indexed: 11/26/2022]
Abstract
Maternal microchimeric cells (MMC) pass across the placenta from a mother to her baby during pregnancy. MMC have been identified in healthy adults, but have been reported to be more frequent and at a higher concentration in individuals with autoimmune diseases. MMC in brain tissue from individuals with autoimmune neurological disease has never previously been explored. The present study aims to identify and quantify MMC in adult human brain from control and multiple sclerosis (MS) affected individuals using fluorescent in situ hybridization (FISH) with a probe for the X and Y chromosomes. Post mortem brain tissue from 6 male MS cases and 6 male control cases were examined. Female cells presumed to be MMC were identified in 5/6 MS cases and 6/6 control cases. Cell specific labeling identified female cells of neuronal and immune phenotype in both control and active MS lesion tissue. This study shows that female cells presumed to be MMC are a common phenomenon in adult human brain where they appear to have embedded into brain tissue with the ability to express tissue specific markers.
Collapse
Affiliation(s)
- Heidi Snethen
- MS and stem cell group, Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jody Ye
- Diabetes and Metabolism Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Kathleen M Gillespie
- Diabetes and Metabolism Unit, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Neil J Scolding
- MS and stem cell group, Clinical Neuroscience, Bristol Medical School, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
7
|
Popkov VA, Andrianova NV, Manskikh VN, Silachev DN, Pevzner IB, Zorova LD, Sukhikh GT, Plotnikov EY, Zorov DB. Pregnancy protects the kidney from acute ischemic injury. Sci Rep 2018; 8:14534. [PMID: 30266919 PMCID: PMC6162317 DOI: 10.1038/s41598-018-32801-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/14/2018] [Indexed: 01/03/2023] Open
Abstract
A complex analysis of acute kidney injury (AKI) in pregnant women shows that it is caused by the interaction of gestation-associated pathologies and beneficial signaling pathways activated by pregnancy. Studies report an increase in the regeneration of some organs during pregnancy. However, the kidney response to the injury during pregnancy has not been addressed. We investigated the mechanisms of the pregnancy influence on AKI. During pregnancy, the kidneys were shown to be more tolerant to AKI. Pregnant animals showed remarkable preservation of kidney functions after ischemia/reperfusion (I/R) indicated by the decrease of serum creatinine levels. The pregnant rats also demonstrated a significant decrease in kidney injury markers and an increase in protective markers. Two months after the I/R, group of pregnant animals had a decreased level of fibrosis in the kidney tissue. These effects are likely linked to increased cell proliferation after injury: using real-time cell proliferation monitoring we demonstrated that after ischemic injury, cells isolated from pregnant animal kidneys had higher proliferation potential vs. control animals; it was also supported by an increase of proliferation marker PCNA levels in kidneys of pregnant animals. We suggest that these effects are associated with hormonal changes in the maternal organism, since hormonal pseudopregnancy simulated effects of pregnancy.
Collapse
Affiliation(s)
- Vasily A Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Vasily N Manskikh
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Denis N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Irina B Pevzner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Ljubava D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Gennady T Sukhikh
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia
| | - Egor Y Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. .,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia. .,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia.
| | - Dmitry B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. .,V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, Russia.
| |
Collapse
|
8
|
Popkov VA, Silachev DN, Jankauskas SS, Zorova LD, Pevzner IB, Babenko VA, Plotnikov EY, Zorov DB. Molecular and cellular interactions between mother and fetus. Pregnancy as a rejuvenating factor. BIOCHEMISTRY (MOSCOW) 2016; 81:1480-1487. [DOI: 10.1134/s0006297916120099] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Di Germanio C, Bernier M, de Cabo R, Barboni B. Amniotic Epithelial Cells: A New Tool to Combat Aging and Age-Related Diseases? Front Cell Dev Biol 2016; 4:135. [PMID: 27921031 PMCID: PMC5118838 DOI: 10.3389/fcell.2016.00135] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/02/2016] [Indexed: 01/16/2023] Open
Abstract
The number of elderly people is growing at an unprecedented rate and this increase of the aging population is expected to have a direct impact on the incidence of age-related diseases and healthcare-associated costs. Thus, it is imperative that new tools are developed to fight and slow age-related diseases. Regenerative medicine is a promising strategy for the maintenance of health and function late in life; however, stem cell-based therapies face several challenges including rejection and tumor transformation. As an alternative, the placenta offers an extraordinary source of fetal stem cells, including the amniotic epithelial cells (AECs), which retain some of the characteristics of embryonic stem cells, but show low immunogenicity, together with immunomodulatory and anti-inflammatory activities. Because of these characteristics, AECs have been widely utilized in regenerative medicine. This perspective highlights different mechanisms triggered by transplanted AECs that could be potentially useful for anti-aging therapies, which include: Graft and differentiation for tissue regeneration in age-related settings, anti-inflammatory behavior to combat “inflammaging,” anti-tumor activity, direct lifespan and healthspan extension properties, and possibly rejuvenation in a manner reminiscent of heterochronic parabiosis. Here, we critically discuss benefits and limitation of AECs-based therapies in age-related diseases.
Collapse
Affiliation(s)
- Clara Di Germanio
- Faculty of Veterinary Medicine, University of TeramoTeramo, Italy; Translational Gerontology Branch, National Institute on Aging, National Institute of HealthBaltimore, MD, USA
| | - Michel Bernier
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health Baltimore, MD, USA
| | - Rafael de Cabo
- Translational Gerontology Branch, National Institute on Aging, National Institute of Health Baltimore, MD, USA
| | - Barbara Barboni
- Faculty of Veterinary Medicine, University of Teramo Teramo, Italy
| |
Collapse
|
10
|
Falick Michaeli T, Bergman Y, Gielchinsky Y. Rejuvenating effect of pregnancy on the mother. Fertil Steril 2015; 103:1125-8. [PMID: 25813291 DOI: 10.1016/j.fertnstert.2015.02.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 01/10/2023]
Abstract
Aging is associated with reduced tissue regenerative capacity. In recent years, studies in mice have shown that transfusion of blood from young animals to old ones can reverse some aging effects and increase regenerative potential similar to that seen in young animals. Because pregnancy is a unique biological model of a partially shared blood system, we have speculated that pregnancy would have a rejuvenating effect on the mother. Recent studies support this idea. In this review, we will summarize the current knowledge of the rejuvenating effect of pregnancy on the mother.
Collapse
Affiliation(s)
- Tal Falick Michaeli
- Rubin Chair in Medical Science, Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yehudit Bergman
- Rubin Chair in Medical Science, Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Gielchinsky
- Rubin Chair in Medical Science, Department of Developmental Biology and Cancer Research, IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel; Department of Obstetrics and Gynecology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
11
|
Biphasic recruitment of microchimeric fetal mesenchymal cells in fibrosis following acute kidney injury. Kidney Int 2013; 85:600-10. [PMID: 24304884 DOI: 10.1038/ki.2013.459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 09/03/2013] [Accepted: 09/05/2013] [Indexed: 12/19/2022]
Abstract
Fetal microchimeric cells (FMCs) enter the maternal circulation and persist in tissue for decades. They have capacity to home to injured maternal tissue and differentiate along that tissue's lineage. This raises the question of the origin(s) of cells transferred to the mother during pregnancy. FMCs with a mesenchymal phenotype have been documented in several studies, which makes mesenchymal stem cells an attractive explanation for their broad plasticity. Here we assessed the recruitment and mesenchymal lineage contribution of FMCs in response to acute kidney fibrosis induced by aristolochic acid injection. Serial in vivo bioluminescence imaging revealed a biphasic recruitment of active collagen-producing FMCs during the repair process of injured kidney in post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter. The presence of FMCs long-term post injury (day 60) was associated with profibrotic molecules (TGF-β/CTGF), serum urea levels, and collagen deposition. Immunostaining confirmed FMCs at short term (day 15) using post-partum wild-type mothers that had delivered green fluorescent protein-positive pups and suggested a mainly hematopoietic phenotype. We conclude that there is biphasic recruitment to, and activity of, FMCs at the injury site. Moreover, we identified five types of FMC, implicating them all in the reparative process at different stages of induced renal interstitial fibrosis.
Collapse
|
12
|
George D, Czech J, John B, Yu M, Jennings LJ. Detection and quantification of chimerism by droplet digital PCR. CHIMERISM 2013; 4:102-8. [PMID: 23974275 DOI: 10.4161/chim.25400] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Accurate quantification of chimerism and microchimerism is proving to be increasingly valuable for hematopoietic cell transplantation as well as non-transplant conditions. However, methods that are available to quantify low-level chimerism lack accuracy. Therefore, we developed and validated a method for quantifying chimerism based on digital PCR technology. We demonstrate accurate quantification that far exceeds what is possible with analog qPCR down to 0.01% with the potential to go even lower. Also, this method is inherently more informative than qPCR. We expect the advantages of digital PCR will make it the preferred method for chimerism analysis.
Collapse
Affiliation(s)
- David George
- Department of Pathology and Laboratory Medicine; Ann & Robert H. Lurie Children's Hospital of Chicago; Chicago, IL USA
| | | | | | | | | |
Collapse
|
13
|
Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS One 2013; 8:e62662. [PMID: 23650524 PMCID: PMC3641113 DOI: 10.1371/journal.pone.0062662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/22/2013] [Indexed: 12/13/2022] Open
Abstract
The contribution of distant and/or bone marrow-derived endogenous mesenchymal stem cells (MSC) to skin wounds is controversial. Bone marrow transplantation experiments employed to address this have been largely confounded by radiation-resistant host-derived MSC populations. Gestationally-acquired fetal MSC are known to engraft in maternal bone marrow in all pregnancies and persist for decades. These fetal cells home to damaged maternal tissues, mirroring endogenous stem cell behavior. We used fetal microchimerism as a tool to investigate the natural homing and engraftment of distant MSC to skin wounds. Post-partum wild-type mothers that had delivered transgenic pups expressing luciferase under the collagen type I-promoter were wounded. In vivo bioluminescence imaging (BLI) was then used to track recruitment of fetal cells expressing this mesenchymal marker over 14 days of healing. Fetal cells were detected in 9/43 animals using BLI (Fisher exact p = 0.01 versus 1/43 controls). These collagen type I-expressing fetal cells were specifically recruited to maternal wounds in the initial phases of healing, peaking on day 1 (n = 43, p<0.01). This was confirmed by detection of Y-chromosome+ve fetal cells that displayed fibroblast-like morphology. Histological analyses of day 7 wounds revealed vimentin-expressing fetal cells in dermal tissue. Our results demonstrate the participation of distant mesenchymal cells in skin wounds. These data imply that endogenous MSC populations are likely recruited from bone marrow to wounds to participate in healing.
Collapse
Affiliation(s)
- Elke Seppanen
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - Edwige Roy
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - Rebecca Ellis
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| | - George Bou-Gharios
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Nicholas M. Fisk
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
- Centre for Advanced Prenatal Care, Royal Brisbane and Women’s Hospital, Herston, Australia
| | - Kiarash Khosrotehrani
- The University of Queensland, UQ Centre for Clinical Research, Herston Campus, Brisbane, Australia
| |
Collapse
|