1
|
Redl E, Scherholz M, Wollesen T, Todt C, Wanninger A. Cell Proliferation Pattern and Twist Expression in an Aplacophoran Mollusk Argue Against Segmented Ancestry of Mollusca. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2016; 326:422-436. [PMID: 27966274 PMCID: PMC5299467 DOI: 10.1002/jez.b.22714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/12/2023]
Abstract
The study of aplacophoran mollusks (i.e., Solenogastres or Neomeniomorpha and Caudofoveata or Chaetodermomorpha) has traditionally been regarded as crucial for reconstructing the morphology of the last common ancestor of the Mollusca. Since their proposed close relatives, the Polyplacophora, show a distinct seriality in certain organ systems, the aplacophorans are also in the focus of attention with regard to the question of a potential segmented ancestry of mollusks. To contribute to this question, we investigated cell proliferation patterns and the expression of the twist ortholog during larval development in solenogasters. In advanced to late larvae, during the outgrowth of the trunk, a pair of longitudinal bands of proliferating cells is found subepithelially in a lateral to ventrolateral position. These bands elongate during subsequent development as the trunk grows longer. Likewise, expression of twist occurs in two laterally positioned, subepithelial longitudinal stripes in advanced larvae. Both, the pattern of proliferating cells and the expression domain of twist demonstrate the existence of extensive and long-lived mesodermal bands in a worm-shaped aculiferan, a situation which is similar to annelids but in stark contrast to conchiferans, where the mesodermal bands are usually rudimentary and ephemeral. Yet, in contrast to annelids, neither the bands of proliferating cells nor the twist expression domain show a separation into distinct serial subunits, which clearly argues against a segmented ancestry of mollusks. Furthermore, the lack of twist expression during the development of the ventromedian muscle argues against homology of a ventromedian longitudinal muscle in protostomes with the notochord of chordates.
Collapse
Affiliation(s)
- Emanuel Redl
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Maik Scherholz
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Tim Wollesen
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| | - Christiane Todt
- University Museum, The Natural History CollectionsUniversity of BergenBergenNorway
| | - Andreas Wanninger
- Faculty of Life SciencesDepartment of Integrative ZoologyUniversity of ViennaViennaAustria
| |
Collapse
|
2
|
In silico evo-devo: reconstructing stages in the evolution of animal segmentation. EvoDevo 2016; 7:14. [PMID: 27482374 PMCID: PMC4968448 DOI: 10.1186/s13227-016-0052-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolution of animal segmentation is a major research focus within the field of evolutionary-developmental biology. Most studied segmented animals generate their segments in a repetitive, anterior-to-posterior fashion coordinated with the extension of the body axis from a posterior growth zone. In the current study we ask which selection pressures and ordering of evolutionary events may have contributed to the evolution of this specific segmentation mode. RESULTS To answer this question we extend a previous in silico simulation model of the evolution of segmentation by allowing the tissue growth pattern to freely evolve. We then determine the likelihood of evolving oscillatory sequential segmentation combined with posterior growth under various conditions, such as the presence or absence of a posterior morphogen gradient or selection for determinate growth. We find that posterior growth with sequential segmentation is the predominant outcome of our simulations only if a posterior morphogen gradient is assumed to have already evolved and selection for determinate growth occurs secondarily. Otherwise, an alternative segmentation mechanism dominates, in which divisions occur in large bursts through the entire tissue and all segments are created simultaneously. CONCLUSIONS Our study suggests that the ancestry of a posterior signalling centre has played an important role in the evolution of sequential segmentation. In addition, it suggests that determinate growth evolved secondarily, after the evolution of posterior growth. More generally, we demonstrate the potential of evo-devo simulation models that allow us to vary conditions as well as the onset of selection pressures to infer a likely order of evolutionary innovations.
Collapse
|
3
|
Gillette R, Brown JW. The Sea Slug, Pleurobranchaea californica: A Signpost Species in the Evolution of Complex Nervous Systems and Behavior. Integr Comp Biol 2015; 55:1058-69. [PMID: 26163678 DOI: 10.1093/icb/icv081] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
How and why did complex brain and behavior evolve? Clues emerge from comparative studies of animals with simpler morphology, nervous system, and behavioral economics. The brains of vertebrates, arthropods, and some annelids have highly derived executive structures and function that control downstream, central pattern generators (CPGs) for locomotion, behavioral choice, and reproduction. For the vertebrates, these structures-cortex, basal ganglia, and hypothalamus-integrate topographically mapped sensory inputs with motivation and memory to transmit complex motor commands to relay stations controlling CPG outputs. Similar computations occur in the central complex and mushroom bodies of the arthropods, and in mammals these interactions structure subjective thought and socially based valuations. The simplest model systems available for comparison are opisthobranch molluscs, which have avoided selective pressure for complex bodies, brain, and behavior through potent chemical defenses. In particular, in the sea-slug Pleurobranchaea californica the functions of vertebrates' olfactory bulb and pallium are performed in the peripheral nervous system (PNS) of the chemotactile oral veil. Functions of hypothalamus and basal ganglia are combined in Pleurobranchaea's feeding motor network. The actions of basal ganglia on downstream locomotor regions and spinal CPGs are analogous to Pleurobranchaea's feeding network actions on CPGs for agonist and antagonist behaviors. The nervous systems of opisthobranch and pulmonate gastropods may conserve or reflect relations of the ancestral urbilaterian. Parallels and contrasts in neuronal circuits for action selection in Pleurobranchaea and vertebrates suggest how a basic set of decision circuitry was built upon in evolving segmentation, articulated skeletons, sociality, and highly invested reproductive strategies. They suggest (1) an origin of olfactory bulb and pallium from head-region PNS; (2) modularization of an ancestral feeding network into discrete but interacting executive modules for incentive comparison and decision (basal ganglia), and homeostatic functions (hypothalamus); (3) modification of a multifunctional premotor network for turns and locomotion, and its downstream targets for mid-brain and hind-brain motor areas and spinal CPGs; (4) condensation of a distributed serotonergic network for arousal into the raphe nuclei, with superimposed control by a peptidergic hypothalamic network mediating appetite and arousal; (5) centralization and condensation of the dopaminergic sensory afferents of the PNS, and/or the disperse dopaminergic elements of central CPGs, into the brain nuclei mediating valuation, reward, and motor arousal; and (6) the urbilaterian possessed the basic circuit relations integrating sensation, internal state, and learning for cost-benefit approach-avoidance decisions.
Collapse
Affiliation(s)
- Rhanor Gillette
- *Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 407 Goodwin Avenue, 524 Burrill Hall, Urbana, IL 61801, USA;
| | - Jeffrey W Brown
- Program in Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
4
|
Wanninger A. Morphology is dead – long live morphology! Integrating MorphoEvoDevo into molecular EvoDevo and phylogenomics. Front Ecol Evol 2015. [DOI: 10.3389/fevo.2015.00054] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
5
|
Lemer S, Kawauchi GY, Andrade SCS, González VL, Boyle MJ, Giribet G. Re-evaluating the phylogeny of Sipuncula through transcriptomics. Mol Phylogenet Evol 2014; 83:174-83. [PMID: 25450098 DOI: 10.1016/j.ympev.2014.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 01/28/2023]
Abstract
Sipunculans (also known as peanut worms) are an ancient group of exclusively marine worms with a global distribution and a fossil record that dates back to the Early Cambrian. The systematics of sipunculans, now considered a distinct subclade of Annelida, has been studied for decades using morphological and molecular characters, and has reached the limits of Sanger-based approaches. Here, we reevaluate their family-level phylogeny by comparative transcriptomic analysis of eight species representing all known families within Sipuncula. Two data matrices with alternative gene occupancy levels (large matrix with 675 genes and 62% missing data; reduced matrix with 141 genes and 23% missing data) were analysed using concatenation and gene-tree methods, yielding congruent results and resolving each internal node with maximum support. We thus corroborate prior phylogenetic work based on molecular data, resolve outstanding issues with respect to the familial relationships of Aspidosiphonidae, Antillesomatidae and Phascolosomatidae, and highlight the next area of focus for sipunculan systematics.
Collapse
Affiliation(s)
- Sarah Lemer
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.
| | - Gisele Y Kawauchi
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; CEBIMar, Universidade de São Paulo, Praia do Cabelo Gordo, São Sebastião, São Paulo, Brazil
| | - Sónia C S Andrade
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Departamento de Zootecnia, ESALQ-USP, Piracicaba, São Paulo, Brazil
| | - Vanessa L González
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Michael J Boyle
- Smithsonian Tropical Research Institute (STRI), Naos Marine Laboratories, Panama 0843/03092, Panama
| | - Gonzalo Giribet
- Museum of Comparative Zoology, Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
Helm C, Stevenson PA, Rouse GW, Bleidorn C. Immunohistochemical investigations of Myzostoma cirriferum and Mesomyzostoma cf. katoi (Myzostomida, Annelida) with implications for the evolution of the myzostomid body plan. ZOOMORPHOLOGY 2014. [DOI: 10.1007/s00435-014-0221-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Temereva EN, Tsitrin EB. Development and organization of the larval nervous system in Phoronopsis harmeri: new insights into phoronid phylogeny. Front Zool 2014; 11:3. [PMID: 24418063 PMCID: PMC3924620 DOI: 10.1186/1742-9994-11-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 01/09/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The organization and development of the nervous system has traditionally been used as an important character for establishing the relationships among large groups of animals. According to this criterion, phoronids were initially regarded as deuterostomian but have more recently been regarded as protostomian. The resolving of this conflict requires detailed information from poorly investigated members of phoronids, such as Phoronopsis harmeri. RESULTS The serotonin-like immunoreactive part of the P. harmeri nervous system changes during larval development. These changes mostly concern the nervous system of the hood and correlate with the appearance of the median and two marginal neurite bundles, the frontal organ, and the sensory field. The apical organ has bilateral symmetry. The tentacular neurite bundle passes under the tentacles, contains several types of perikarya, and gives rise to intertentacular bundles, which branch in the tentacle base and penetrate into adjacent tentacles by two lateroabfrontal bundles. There are two groups of dorsolateral perikarya, which exhibit serotonin-like immunoreactivity, contact the tentacular neurite bundle, and are located near the youngest tentacles. Larvae have a minor nerve ring, which originates from the posterior marginal neurite bundle of the hood, passes above the tentacle base, and gives rise to the mediofrontal neurite bundle in each tentacle. Paired laterofrontal neurite bundles of tentacles form a continuous nerve tract that conducts to the postoral ciliated band. DISCUSSION The organization of the nervous system differs among the planktotrophic larvae of phoronid species. These differences may correlate with differences in phoronid biology. Data concerning the innervation of tentacles in different phoronid larvae are conflicting and require careful reinvestigation. The overall organization of the nervous system in phoronid larvae has more in common with the deuterostomian than with the protostomian nervous system. Phoronid larvae demonstrate some "deuterostome-like" features, which are, in fact, have to be ancestral bilaterian characters. Our new results and previous data indicate that phoronids have retained some plesiomorphic features, which were inherited from the last common ancestor of all Bilateria. It follows that phoronids should be extracted from the Trochozoan (=Spiralia) clade and placed at the base of the Lophotrochozoan stem.
Collapse
Affiliation(s)
- Elena N Temereva
- Department of Invertebrate Zoology, Biological faculty, Moscow State University, Moscow 119992, Russia.
| | | |
Collapse
|
8
|
Kawauchi GY, Sharma PP, Giribet G. Sipunculan phylogeny based on six genes, with a new classification and the descriptions of two new families. ZOOL SCR 2012. [DOI: 10.1111/j.1463-6409.2011.00507.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Temereva EN. Ventral nerve cord in Phoronopsis harmeri larvae. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 318:26-34. [DOI: 10.1002/jez.b.21437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/15/2011] [Accepted: 07/20/2011] [Indexed: 01/19/2023]
|
10
|
KRISTOF ALEN, WOLLESEN TIM, MAIOROVA ANASTASSYAS, WANNINGER ANDREAS. Cellular and muscular growth patterns during sipunculan development. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2011; 316B:227-40. [PMID: 21246707 PMCID: PMC4682194 DOI: 10.1002/jez.b.21394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 10/04/2010] [Accepted: 12/01/2010] [Indexed: 11/07/2022]
Abstract
Sipuncula is a lophotrochozoan taxon with annelid affinities, albeit lacking segmentation of the adult body. Here, we present data on cell proliferation and myogenesis during development of three sipunculan species, Phascolosoma agassizii, Thysanocardia nigra, and Themiste pyroides. The first anlagen of the circular body wall muscles appear simultaneously and not subsequently as in the annelids. At the same time, the rudiments of four longitudinal retractor muscles appear. This supports the notion that four introvert retractors were part of the ancestral sipunculan bodyplan. The longitudinal muscle fibers form a pattern of densely arranged fibers around the retractor muscles, indicating that the latter evolved from modified longitudinal body wall muscles. For a short time interval, the distribution of S-phase mitotic cells shows a metameric pattern in the developing ventral nerve cord during the pelagosphera stage. This pattern disappears close to metamorphic competence. Our findings are congruent with data on sipunculan neurogenesis, as well as with recent molecular analyses that place Sipuncula within Annelida, and thus strongly support a segmental ancestry of Sipuncula.
Collapse
Affiliation(s)
- ALEN KRISTOF
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | - TIM WOLLESEN
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| | | | - ANDREAS WANNINGER
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Whitington PM, Mayer G. The origins of the arthropod nervous system: insights from the Onychophora. ARTHROPOD STRUCTURE & DEVELOPMENT 2011; 40:193-209. [PMID: 21315833 DOI: 10.1016/j.asd.2011.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
A revision of evolutionary relationships of the Arthropoda has provided fresh impetus to tracing the origins of the nervous system of this group of animals: other members of the Ecdysozoa possess a markedly different type of nervous system from both the arthropods and the annelid worms, with which they were previously grouped. Given their status as favoured sister taxon of the arthropods, Onychophora (velvet worms) are a key group for understanding the evolutionary changes that have taken place in the panarthropod (Arthropoda + Onychophora + Tardigrada) lineage. This article reviews our current knowledge of the structure and development of the onychophoran nervous system. The picture that emerges from these studies is that the nervous system of the panarthropod ancestor was substantially different from that of modern arthropods: this animal probably possessed a bipartite, rather than a tripartite brain; its nerve cord displayed only a limited degree of segmentation; and neurons were more numerous but more uniform in morphology than in living arthropods. These observations suggest an evolutionary scenario, by which the arthropod nervous system evolved from a system of orthogonally crossing nerve tracts present in both a presumed protostome ancestor and many extant worm-like invertebrates, including the onychophorans.
Collapse
Affiliation(s)
- Paul M Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
12
|
Richter S, Loesel R, Purschke G, Schmidt-Rhaesa A, Scholtz G, Stach T, Vogt L, Wanninger A, Brenneis G, Döring C, Faller S, Fritsch M, Grobe P, Heuer CM, Kaul S, Møller OS, Müller CHG, Rieger V, Rothe BH, Stegner MEJ, Harzsch S. Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary. Front Zool 2010; 7:29. [PMID: 21062451 PMCID: PMC2996375 DOI: 10.1186/1742-9994-7-29] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2010] [Accepted: 11/09/2010] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa. RESULTS We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section. CONCLUSIONS The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.
Collapse
Affiliation(s)
- Stefan Richter
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Rudi Loesel
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Günter Purschke
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Andreas Schmidt-Rhaesa
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Gerhard Scholtz
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Thomas Stach
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Lars Vogt
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Georg Brenneis
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
- Humboldt-Universität zu Berlin, Institut für Biologie - Vergleichende Zoologie, Philippstraße 13, D-10115 Berlin, Germany
| | - Carmen Döring
- Universität Osnabrück, Fachbereich Biologie/Chemie, AG Zoologie, Barbarastraße 11,, D-49069 Osnabrück, Germany
| | - Simone Faller
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Martin Fritsch
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Peter Grobe
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, An der Immenburg 1, D-53121 Bonn, Germany
| | - Carsten M Heuer
- RWTH Aachen, Institute of Biology II, Department of Developmental Biology and Morphology of Animals, Mies-van-der-Rohe-Straße 15, D-52056 Aachen, Germany
| | - Sabrina Kaul
- Freie Universität Berlin, Zoologie - Systematik und Evolutionsforschung, Königin-Luise-Straße 1-3, D-14195 Berlin, Germany
| | - Ole S Møller
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Carsten HG Müller
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Verena Rieger
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| | - Birgen H Rothe
- Biozentrum Grindel/Zoological Museum, Martin-Luther-King-Platz 3, D-20146 Hamburg, Germany
| | - Martin EJ Stegner
- Universität Rostock, Institut für Biowissenschaften, Abteilung für Allgemeine und Spezielle Zoologie, Universitätsplatz 2, D-18055 Rostock, Germany
| | - Steffen Harzsch
- Ernst-Moritz-Arndt-Universität Greifswald, Zoologisches Institut, Cytologie und Evolutionsbiologie, Johann-Sebastian-Bach-Straße 11/12, D-17487 Greifswald, Germany
| |
Collapse
|
13
|
Cardoso Neves R, Møbjerg Kristensen R, Wanninger A. Serotonin immunoreactivity in the nervous system of the Pandora larva, the Prometheus larva, and the dwarf male of Symbion americanus (Cycliophora). ZOOL ANZ 2010. [DOI: 10.1016/j.jcz.2010.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Kristof A, Klussmann-Kolb A. Neuromuscular development of Aeolidiella stephanieae Valdéz, 2005 (Mollusca, Gastropoda, Nudibranchia). Front Zool 2010; 7:5. [PMID: 20205753 PMCID: PMC2822759 DOI: 10.1186/1742-9994-7-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 01/22/2010] [Indexed: 11/17/2022] Open
Abstract
Background Studies on the development of the nervous system and the musculature of invertebrates have become more sophisticated and numerous within the last decade and have proven to provide new insights into the evolutionary history of organisms. In order to provide new morphogenetic data on opisthobranch gastropods we investigated the neuromuscular development in the nudibranch Aeolidiella stephanieae Valdéz, 2005 using immunocytochemistry as well as F-actin labelling in conjunction with confocal laser scanning microscopy (cLSM). Results The ontogenetic development of Aeolidiella stephanieae can be subdivided into 8 stages, each recognisable by characteristic morphological and behavioural features as well as specific characters of the nervous system and the muscular system, respectively. The larval nervous system of A. stephanieae includes an apical organ, developing central ganglia, and peripheral neurons associated with the velum, foot and posterior, visceral part of the larva. The first serotonergic and FMRFamidergic neural structures appear in the apical organ that exhibits an array of three sensory, flask-shaped and two non-sensory, round neurons, which altogether disappear prior to metamorphosis. The postmetamorphic central nervous system (CNS) becomes concentrated, and the rhinophoral ganglia develop together with the anlage of the future rhinophores whereas oral tentacle ganglia are not found. The myogenesis in A. stephanieae begins with the larval retractor muscle followed by the accessory larval retractor muscle, the velar or prototroch muscles and the pedal retractors that all together degenerate during metamorphosis, and the adult muscle complex forms de novo. Conclusions Aeolidiella stephanieae comprises features of the larval and postmetamorphic nervous as well as muscular system that represent the ground plan of the Mollusca or even the Trochozoa (e. g. presence of the prototrochal or velar muscle ring). On the one hand, A. stephanieae shows some features shared by all nudibranchs like the postmetamorphic condensation of the CNS, the possession of rhinophoral ganglia and the lack of oral tentacle ganglia as well as the de novo formation of the adult muscle complex. On the other hand, the structure and arrangement of the serotonergic apical organ is similar to other caenogastropod and opisthobranch gastropods supporting their sister group relationship.
Collapse
Affiliation(s)
- Alen Kristof
- Research Group for Comparative Zoology, Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
15
|
Brinkmann N, Wanninger A. Neurogenesis suggests independent evolution of opercula in serpulid polychaetes. BMC Evol Biol 2009; 9:270. [PMID: 19930667 PMCID: PMC2785788 DOI: 10.1186/1471-2148-9-270] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 11/23/2009] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND The internal phylogenetic relationships of Annelida, one of the key lophotrochozoan lineages, are still heavily debated. Recent molecular analyses suggest that morphologically distinct groups, such as the polychaetes, are paraphyletic assemblages, thus questioning the homology of a number of polychaete morphological characters. Serpulid polychaetes are typically recognized by having fused anterior ends bearing a tentacular crown and an operculum. The latter is commonly viewed as a modified tentacle (= radiole) and is often used as an important diagnostic character in serpulid systematics. RESULTS By reconstructing the developmental neuroanatomy of the serpulid polychaete Spirorbis cf. spirorbis (Spirorbinae), we found striking differences in the overall neural architecture, the innervation pattern, and the ontogenetic establishment of the nervous supply of the operculum and the radioles in this species. Accordingly, the spirorbin operculum might not be homologous to the radioles or to the opercula of other serpulid taxa such as Serpula and Pomatoceros and is thus probably not a part of the tentacular crown. CONCLUSION We demonstrate that common morphological traits such as the prostomial appendages may have evolved independently in respective serpulid sublineages and therefore require reassessment before being used in phylogenetic analyses. Our findings corroborate recent molecular studies that argue for a revision of serpulid systematics. In addition, our data on Spirorbis neurogenesis provide a novel set of characters that highlight the developmental plasticity of the segmented annelid nervous system.
Collapse
Affiliation(s)
- Nora Brinkmann
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| | - Andreas Wanninger
- Department of Biology, Research Group for Comparative Zoology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark
| |
Collapse
|
16
|
Mayer G, Whitington PM. Neural development in Onychophora (velvet worms) suggests a step-wise evolution of segmentation in the nervous system of Panarthropoda. Dev Biol 2009; 335:263-75. [PMID: 19683520 DOI: 10.1016/j.ydbio.2009.08.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 08/02/2009] [Accepted: 08/10/2009] [Indexed: 12/20/2022]
Abstract
A fundamental question in biology is how animal segmentation arose during evolution. One particular challenge is to clarify whether segmental ganglia of the nervous system evolved once, twice, or several times within the Bilateria. As close relatives of arthropods, Onychophora play an important role in this debate since their nervous system displays a mixture of both segmental and non-segmental features. We present evidence that the onychophoran "ventral organs," previously interpreted as segmental anlagen of the nervous system, do not contribute to nerve cord formation and therefore cannot be regarded as vestiges of segmental ganglia. The early axonal pathways in the central nervous system arise by an anterior-to-posterior cascade of axonogenesis from neuronal cell bodies, which are distributed irregularly along each presumptive ventral cord. This pattern contrasts with the strictly segmental neuromeres present in arthropod embryos and makes the assumption of a secondary loss of segmentation in the nervous system during the evolution of the Onychophora less plausible. We discuss the implications of these findings for the evolution of neural segmentation in the Panarthropoda (Arthropoda+Onychophora+Tardigrada). Our data best support the hypothesis that the ancestral panarthropod had only a partially segmented nervous system, which evolved progressively into the segmental chain of ganglia seen in extant tardigrades and arthropods.
Collapse
Affiliation(s)
- Georg Mayer
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria 3010, Australia.
| | | |
Collapse
|
17
|
Wanninger A. Shaping the things to come: ontogeny of lophotrochozoan neuromuscular systems and the tetraneuralia concept. THE BIOLOGICAL BULLETIN 2009; 216:293-306. [PMID: 19556595 DOI: 10.1086/bblv216n3p293] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Despite the large variation in adult bodyplan phenotypes, a worm-shaped morphology is considered plesiomorphic for both Lophotrochozoa and Bilateria. Although almost all larval and adult lophotrochozoan worms have serially arranged ring muscles in their body wall, a comparison of their ontogeny reveals no less than six different developmental pathways that lead to this homogenous arrangement of ring muscles. However, in all taxa, with the exception of chaetodermomorph molluscs and the segmented annelids, ring muscle development starts with synchronous formation of certain pioneer myocytes, which is thus considered basal for Lophotrochozoa. Recent studies on spiralian neurogenesis revealed remnants of ancestral segmentation in echiurans and sipunculans, thus confirming molecular phylogenetic studies that propose a close relationship of these three taxa. Larval entoprocts exhibit a mosaic of larval and adult molluscan characters and, among other apomorphies, share with polyplacophoran Mollusca a complex larval apical organ and a tetraneurous nervous system, strongly suggesting a monophyletic assemblage of Entoprocta and Mollusca. The term Tetraneuralia is proposed herein for this lophotrochozoan clade. Overall, formation of the lophotrochozoan neuromuscular bodyplan appears as a highly dynamic process on both the ontogenetic and the evolutionary timescales, highlighting the importance of insights into these processes for reconstructing ancestral bodyplan features and phylogenetic relationships.
Collapse
Affiliation(s)
- Andreas Wanninger
- University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| |
Collapse
|