1
|
Wang W, Wang S, Gong W, Lv L, Xu L, Nie J, Huang L. Valsa mali secretes an effector protein VmEP1 to target a K homology domain-containing protein for virulence in apple. MOLECULAR PLANT PATHOLOGY 2022; 23:1577-1591. [PMID: 35851537 PMCID: PMC9562843 DOI: 10.1111/mpp.13248] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The K homology (KH) repeat is an RNA-binding motif that exists in various proteins, some of which participate in plant growth. However, the function of KH domain-containing proteins in plant defence is still unclear. In this study, we found that a KH domain-containing protein in apple (Malus domestica), HEN4-like (MdKRBP4), is involved in the plant immune response. Silencing of MdKRBP4 compromised reactive oxygen species (ROS) production and enhanced the susceptibility of apple to Valsa mali, whereas transient overexpression of MdKRBP4 stimulated ROS accumulation in apple leaves, indicating that MdKRBP4 is a positive immune regulator. Additionally, MdKRBP4 was proven to interact with the VmEP1 effector secreted by V. mali, which led to decreased accumulation of MdKRBP4. Coexpression of MdKRBP4 with VmEP1 inhibited cell death and ROS production induced by MdKRBP4 in Nicotiana benthamiana. These results indicate that MdKRBP4 functions as a novel positive regulatory factor in plant immunity in M. domestica and is a virulence target of the V. mali effector VmEP1.
Collapse
Affiliation(s)
- Weidong Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shuaile Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wan Gong
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Luqiong Lv
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Liangsheng Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jiajun Nie
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
2
|
Wang Z, Gou X. Receptor-Like Protein Kinases Function Upstream of MAPKs in Regulating Plant Development. Int J Mol Sci 2020; 21:ijms21207638. [PMID: 33076465 PMCID: PMC7590044 DOI: 10.3390/ijms21207638] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/03/2023] Open
Abstract
Mitogen-activated protein kinases (MAPKs) are a group of protein kinase broadly involved in various signal pathways in eukaryotes. In plants, MAPK cascades regulate growth, development, stress responses and immunity by perceiving signals from the upstream regulators and transmitting the phosphorylation signals to the downstream signaling components. To reveal the interactions between MAPK cascades and their upstream regulators is important for understanding the functional mechanisms of MAPKs in the life span of higher plants. Typical receptor-like protein kinases (RLKs) are plasma membrane-located to perceive endogenous or exogenous signal molecules in regulating plant growth, development and immunity. MAPK cascades bridge the extracellular signals and intracellular transcription factors in many RLK-mediated signaling pathways. This review focuses on the current findings that RLKs regulate plant development through MAPK cascades and discusses questions that are worth investigating in the near future.
Collapse
|
3
|
Offor BC, Dubery IA, Piater LA. Prospects of Gene Knockouts in the Functional Study of MAMP-Triggered Immunity: A Review. Int J Mol Sci 2020; 21:ijms21072540. [PMID: 32268496 PMCID: PMC7177850 DOI: 10.3390/ijms21072540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
Plants depend on both preformed and inducible defence responses to defend themselves against biotic stresses stemming from pathogen attacks. In this regard, plants perceive pathogenic threats from the environment through pattern recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs), and so induce plant defence responses against invading pathogens. Close to thirty PRR proteins have been identified in plants, however, the molecular mechanisms underlying MAMP perception by these receptors/receptor complexes are not fully understood. As such, knockout (KO) of genes that code for PRRs and co-receptors/defence-associated proteins is a valuable tool to study plant immunity. The loss of gene activity often causes changes in the phenotype of the model plant, allowing in vivo studies of gene function and associated biological mechanisms. Here, we review the functions of selected PRRs, brassinosteroid insensitive 1 (BRI1) associated receptor kinase 1 (BAK1) and other associated defence proteins that have been identified in plants, and also outline KO lines generated by T-DNA insertional mutagenesis as well as the effect on MAMP perception—and triggered immunity (MTI). In addition, we further review the role of membrane raft domains in flg22-induced MTI in Arabidopsis, due to the vital role in the activation of several proteins that are part of the membrane raft domain theory in this regard.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
4
|
Wang J, Gao C, Li L, Cao W, Dong R, Ding X, Zhu C, Chu Z. Transgenic RXLR Effector PITG_15718.2 Suppresses Immunity and Reduces Vegetative Growth in Potato. Int J Mol Sci 2019; 20:ijms20123031. [PMID: 31234322 PMCID: PMC6627464 DOI: 10.3390/ijms20123031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 01/25/2023] Open
Abstract
Phytophthora infestans causes the severe late blight disease of potato. During its infection process, P. infestans delivers hundreds of RXLR (Arg-x-Leu-Arg, x behalf of any one amino acid) effectors to manipulate processes in its hosts, creating a suitable environment for invasion and proliferation. Several effectors interact with host proteins to suppress host immunity and inhibit plant growth. However, little is known about how P. infestans regulates the host transcriptome. Here, we identified an RXLR effector, PITG_15718.2, which is upregulated and maintains a high expression level throughout the infection. Stable transgenic potato (Solanum tuberosum) lines expressing PITG_15718.2 show enhanced leaf colonization by P. infestans and reduced vegetative growth. We further investigated the transcriptional changes between three PITG_15718.2 transgenic lines and the wild type Désirée by using RNA sequencing (RNA-Seq). Compared with Désirée, 190 differentially expressed genes (DEGs) were identified, including 158 upregulated genes and 32 downregulated genes in PITG_15718.2 transgenic lines. Eight upregulated and nine downregulated DEGs were validated by real-time RT-PCR, which showed a high correlation with the expression level identified by RNA-Seq. These DEGs will help to explore the mechanism of PITG_15718.2-mediated immunity and growth inhibition in the future.
Collapse
Affiliation(s)
- Jiao Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Cungang Gao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Long Li
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| | - Weilin Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Ran Dong
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- Shandong Provincial Key Laboratory of Vegetable Disease and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China.
| | - Changxiang Zhu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Life Science, Shandong Agricultural University, Tai'an, 271018, China.
| | - Zhaohui Chu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China.
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
5
|
Affiliation(s)
- Simon Uhse
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Armin Djamei
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
6
|
Murphy F, He Q, Armstrong M, Giuliani LM, Boevink PC, Zhang W, Tian Z, Birch PRJ, Gilroy EM. The Potato MAP3K StVIK Is Required for the Phytophthora infestans RXLR Effector Pi17316 to Promote Disease. PLANT PHYSIOLOGY 2018; 177:398-410. [PMID: 29588335 PMCID: PMC5933144 DOI: 10.1104/pp.18.00028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/04/2018] [Indexed: 05/19/2023]
Abstract
Plant pathogens deliver effectors to manipulate processes in their hosts, creating a suitable environment for invasion and proliferation. Yet, little is known about the host proteins that are targeted by effectors from filamentous pathogens. Here, we show that stable transgenic expression in potato (Solanum tuberosum) and transient expression in Nicotiana benthamiana of the arginine-any amino acid-leucine-arginine effector Pi17316 enhances leaf colonization by the late blight pathogen Phytophthora infestans Expression of Pi17316 also attenuates cell death triggered by the pathogen-associated molecular pattern Infestin1 (INF1), indicating that the effector suppresses pattern-triggered immunity. However, this effector does not attenuate cell death triggered by a range of resistance proteins, showing that it specifically suppresses INF1-triggered cell death (ICD). In yeast two-hybrid assays, Pi17316 interacts directly with the potato ortholog of VASCULAR HIGHWAY1-interacting kinase (StVIK), encoding a predicted MEK kinase (MAP3K). Interaction in planta was confirmed by coimmunoprecipitation and occurs at the plant plasma membrane. Virus-induced gene silencing of VIK in N. benthamiana attenuated P. infestans colonization, whereas transient overexpression of StVIK enhanced colonization, indicating that this host protein acts as a susceptibility factor. Moreover, VIK overexpression specifically attenuated ICD, indicating that it is a negative regulator of immunity. The abilities of Pi17316 to enhance P. infestans colonization or suppress ICD were compromised significantly in NbVIK-silenced plants, demonstrating that the effector activity of Pi17316 is mediated by this MAP3K. Thus, StVIK is exploited by P. infestans as a susceptibility factor to promote late blight disease.
Collapse
Affiliation(s)
- Fraser Murphy
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Qin He
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Miles Armstrong
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Licida M Giuliani
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Petra C Boevink
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Wei Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhendong Tian
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Paul R J Birch
- Division of Plant Science, University of Dundee (at James Hutton Institute), Invergowrie, Dundee DD2 5DA, United Kingdom
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| | - Eleanor M Gilroy
- Cell and Molecular Sciences, James Hutton Institute, Invergowrie, Dundee DD2 5DA, United Kingdom
| |
Collapse
|
7
|
Chaparro-Garcia A, Schwizer S, Sklenar J, Yoshida K, Petre B, Bos JIB, Schornack S, Jones AME, Bozkurt TO, Kamoun S. Phytophthora infestans RXLR-WY Effector AVR3a Associates with Dynamin-Related Protein 2 Required for Endocytosis of the Plant Pattern Recognition Receptor FLS2. PLoS One 2015; 10:e0137071. [PMID: 26348328 PMCID: PMC4562647 DOI: 10.1371/journal.pone.0137071] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Pathogens utilize effectors to suppress basal plant defense known as PTI (Pathogen-associated molecular pattern-triggered immunity). However, our knowledge of PTI suppression by filamentous plant pathogens, i.e. fungi and oomycetes, remains fragmentary. Previous work revealed that the co-receptor BAK1/SERK3 contributes to basal immunity against the potato pathogen Phytophthora infestans. Moreover BAK1/SERK3 is required for the cell death induced by P. infestans elicitin INF1, a protein with characteristics of PAMPs. The P. infestans host-translocated RXLR-WY effector AVR3a is known to supress INF1-mediated cell death by binding the plant E3 ligase CMPG1. In contrast, AVR3aKI-Y147del, a deletion mutant of the C-terminal tyrosine of AVR3a, fails to bind CMPG1 and does not suppress INF1-mediated cell death. Here, we studied the extent to which AVR3a and its variants perturb additional BAK1/SERK3-dependent PTI responses in N. benthamiana using the elicitor/receptor pair flg22/FLS2 as a model. We found that all tested variants of AVR3a suppress defense responses triggered by flg22 and reduce internalization of activated FLS2. Moreover, we discovered that AVR3a associates with the Dynamin-Related Protein 2 (DRP2), a plant GTPase implicated in receptor-mediated endocytosis. Interestingly, silencing of DRP2 impaired ligand-induced FLS2 internalization but did not affect internalization of the growth receptor BRI1. Our results suggest that AVR3a associates with a key cellular trafficking and membrane-remodeling complex involved in immune receptor-mediated endocytosis. We conclude that AVR3a is a multifunctional effector that can suppress BAK1/SERK3-mediated immunity through at least two different pathways.
Collapse
Affiliation(s)
| | - Simon Schwizer
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Benjamin Petre
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Jorunn I. B. Bos
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | | | - Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
8
|
Pham J, Liu J, Bennett MH, Mansfield JW, Desikan R. Arabidopsis histidine kinase 5 regulates salt sensitivity and resistance against bacterial and fungal infection. THE NEW PHYTOLOGIST 2012; 194:168-180. [PMID: 22256998 DOI: 10.1111/j.1469-8137.2011.04033.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• The ability of plants to adapt to multiple stresses imposed by the natural environment requires cross-talk and fine-tuning of stress signalling pathways. The hybrid histidine kinase Arabidopsis histidine kinase 5 (AHK5) is known to mediate stomatal responses to exogenous and endogenous signals in Arabidopsis thaliana. The purpose of this study was to determine whether the function of AHK5 in stress signalling extends beyond stomatal responses. • Plant growth responses to abiotic stresses, tissue susceptibility to bacterial and fungal pathogens, and hormone production and metabolism of reactive oxygen species were monitored in a T-DNA insertion mutant of AHK5. • The findings of this study indicate that AHK5 positively regulates salt sensitivity and contributes to resistance to the bacterium Pseudomonas syringae pv. tomato DC3000 and the fungal pathogen Botrytis cinerea. • This is the first report of a role for AHK5 in the regulation of survival following challenge by a hemi-biotrophic bacterium and a necrotrophic fungus, as well as in the growth response to salt stress. The function of AHK5 in regulating the production of hormones and redox homeostasis is discussed.
Collapse
Affiliation(s)
- Jasmine Pham
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Jasmine Liu
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mark H Bennett
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - John W Mansfield
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Radhika Desikan
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
9
|
Gilroy EM, Taylor RM, Hein I, Boevink P, Sadanandom A, Birch PRJ. CMPG1-dependent cell death follows perception of diverse pathogen elicitors at the host plasma membrane and is suppressed by Phytophthora infestans RXLR effector AVR3a. THE NEW PHYTOLOGIST 2011; 190:653-66. [PMID: 21348873 DOI: 10.1111/j.1469-8137.2011.03643.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
• Little is known about how effectors from filamentous eukaryotic plant pathogens manipulate host defences. Recently, Phytophthora infestans RXLR effector AVR3a has been shown to target and stabilize host E3 ligase CMPG1, which is required for programmed cell death (PCD) triggered by INF1. We investigated the involvement of CMPG1 in PCD elicited by perception of diverse pathogen proteins, and assessed whether AVR3a could suppress each. • The role of CMPG1 in PCD events was investigated using virus-induced gene silencing, and the ability of AVR3a to suppress each was determined by transient expression of natural forms (AVR3a(KI) and AVR3a(EM)) and a mutated form, AVR3a(KI/Y147del) , which is unable to interact with or stabilize CMPG1. • PCD triggered at the host plasma membrane by Cf-9/Avr9, Cf-4/Avr4, Pto/AvrPto or the oomycete pathogen-associated molecular pattern (PAMP), cellulose-binding elicitor lectin (CBEL), required CMPG1 and was suppressed by AVR3a, but not by the AVR3a(KI/Y147del) mutant. Conversely, PCD triggered by nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins R3a, R2 and Rx was independent of CMPG1 and unaffected by AVR3a. • CMPG1-dependent PCD follows perception of diverse pathogen elicitors externally or in association with the inner surface of the host plasma membrane. We argue that AVR3a targets CMPG1 to block initial signal transduction/regulatory processes following pathogen perception at the plasma membrane.
Collapse
Affiliation(s)
- Eleanor M Gilroy
- Plant Pathology, Scottish Crop Research Institute, Invergowrie, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
10
|
Pritchard L, Birch P. A systems biology perspective on plant-microbe interactions: biochemical and structural targets of pathogen effectors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:584-603. [PMID: 21421407 DOI: 10.1016/j.plantsci.2010.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 12/13/2010] [Accepted: 12/15/2010] [Indexed: 05/22/2023]
Abstract
Plants have biochemical defences against stresses from predators, parasites and pathogens. In this review we discuss the interaction of plant defences with microbial pathogens such as bacteria, fungi and oomycetes, and viruses. We examine principles of complex dynamic networks that allow identification of network components that are differentially and predictably sensitive to perturbation, thus making them likely effector targets. We relate these principles to recent developments in our understanding of known effector targets in plant-pathogen systems, and propose a systems-level framework for the interpretation and modelling of host-microbe interactions mediated by effectors. We describe this framework briefly, and conclude by discussing useful experimental approaches for populating this framework.
Collapse
Affiliation(s)
- Leighton Pritchard
- Plant Pathology Programme, SCRI, Errol Road, Invergowrie, Dundee, Scotland DD25DA, UK.
| | | |
Collapse
|