1
|
Pilcher C, Buco PAV, Truong JQ, Ramsland PA, Smeets MF, Walkley CR, Holien JK. Characteristics of the Kelch domain containing (KLHDC) subfamily and relationships with diseases. FEBS Lett 2025. [PMID: 39887712 DOI: 10.1002/1873-3468.15108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
The Kelch protein superfamily is an evolutionary conserved family containing 63 alternate protein coding members. The superfamily is split into three subfamilies: Kelch like (KLHL), Kelch-repeat and bric-a-bracs (BTB) domain containing (KBTBD) and Kelch domain containing protein (KLHDC). The KLHDC subfamily is one of the smallest within the Kelch superfamily, containing 10 primary members. There is little known about the structures and functions of the subfamily; however, they are thought to be involved in several cellular and molecular processes. Recently, there have been significant structural and biochemical advances for KLHDC2, which has aided our understanding of other KLHDC family members. Furthermore, small molecules directly targeting KLHDC2 have been identified, which act as tools for targeted protein degradation. This review utilises this information, in conjunction with a thorough exploration of the structural aspects and potential biological functions to summarise the relationship between KLHDCs and human disease.
Collapse
Affiliation(s)
- Courtney Pilcher
- School of Science, STEM College, RMIT University, Melbourne, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Paula Armina V Buco
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
| | - Jia Q Truong
- School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Paul A Ramsland
- School of Science, STEM College, RMIT University, Melbourne, Australia
- Department of Immunology, Monash University, Melbourne, Australia
- Department of Surgery, Austin Health, The University of Melbourne, Melbourne, Australia
| | | | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Melbourne, Australia
- Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Melbourne, Australia
- St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, Eastern Hill Academic Centre, Melbourne Medical School, The University of Melbourne, Carlton, Australia
| |
Collapse
|
2
|
Cuceu C, Hempel WM, Sabatier L, Bosq J, Carde P, M'kacher R. Chromosomal Instability in Hodgkin Lymphoma: An In-Depth Review and Perspectives. Cancers (Basel) 2018; 10:cancers10040091. [PMID: 29587466 PMCID: PMC5923346 DOI: 10.3390/cancers10040091] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/22/2022] Open
Abstract
The study of Hodgkin lymphoma (HL), with its unique microenvironment and long-term follow-up, has provided exceptional insights into several areas of tumor biology. Findings in HL have not only improved our understanding of human carcinogenesis, but have also pioneered its translation into the clinics. HL is a successful paradigm of modern treatment strategies. Nonetheless, approximately 15–20% of patients with advanced stage HL still die following relapse or progressive disease and a similar proportion of patients are over-treated, leading to treatment-related late sequelae, including solid tumors and organ dysfunction. The malignant cells in HL are characterized by a highly altered genomic landscape with a wide spectrum of genomic alterations, including somatic mutations, copy number alterations, complex chromosomal rearrangements, and aneuploidy. Here, we review the chromosomal instability mechanisms in HL, starting with the cellular origin of neoplastic cells and the mechanisms supporting HL pathogenesis, focusing particularly on the role of the microenvironment, including the influence of viruses and macrophages on the induction of chromosomal instability in HL. We discuss the emerging possibilities to exploit these aberrations as prognostic biomarkers and guides for personalized patient management.
Collapse
Affiliation(s)
- Corina Cuceu
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - William M Hempel
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Laure Sabatier
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
| | - Jacques Bosq
- Departement of Anapathology, Gustave Roussy Cancer Campus, 94805 Villejuif, France.
| | - Patrice Carde
- Department of Hematology Gustave Roussy Cancer Campus, 94800 Villejuif, France.
| | - Radhia M'kacher
- Laboratory of Radiobiology and Oncology and PROCyTOX, DRF, CEA, 91534 Paris-Saclay, France.
- Cell Environment, DNA damages R&D, Oncology section, 75020 Paris, France.
| |
Collapse
|
3
|
Accardi R, Fathallah I, Gruffat H, Mariggiò G, Le Calvez-Kelm F, Voegele C, Bartosch B, Hernandez-Vargas H, McKay J, Sylla BS, Manet E, Tommasino M. Epstein - Barr virus transforming protein LMP-1 alters B cells gene expression by promoting accumulation of the oncoprotein ΔNp73α. PLoS Pathog 2013; 9:e1003186. [PMID: 23516355 PMCID: PMC3597522 DOI: 10.1371/journal.ppat.1003186] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 12/22/2012] [Indexed: 12/15/2022] Open
Abstract
Many studies have proved that oncogenic viruses develop redundant mechanisms to alter the functions of the tumor suppressor p53. Here we show that Epstein-Barr virus (EBV), via the oncoprotein LMP-1, induces the expression of ΔNp73α, a strong antagonist of p53. This phenomenon is mediated by the LMP-1 dependent activation of c-Jun NH2-terminal kinase 1 (JNK-1) which in turn favours the recruitment of p73 to ΔNp73α promoter. A specific chemical inhibitor of JNK-1 or silencing JNK-1 expression strongly down-regulated ΔNp73α mRNA levels in LMP-1-containing cells. Accordingly, LMP-1 mutants deficient to activate JNK-1 did not induce ΔNp73α accumulation. The recruitment of p73 to the ΔNp73α promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of the transcriptional repressive polycomb 2 complex. Inhibition of ΔNp73α expression in lymphoblastoid cells (LCLs) led to the stimulation of apoptosis and up-regulation of a large number of cellular genes as determined by whole transcriptome shotgun sequencing (RNA-seq). In particular, the expression of genes encoding products known to play anti-proliferative/pro-apoptotic functions, as well as genes known to be deregulated in different B cells malignancy, was altered by ΔNp73α down-regulation. Together, these findings reveal a novel EBV mechanism that appears to play an important role in the transformation of primary B cells. Approximately 20% of worldwide human cancers have been associated with viral infections. Many oncogenic viruses exert their transforming properties by inactivating the products of tumour suppressor genes. One of the best characterized events induced by ongocenic viruses is the inactivation of the transcriptional factors p53. The mucosal high-risk HPV types, EBV, HTLV-1 and KSHV, via their viral proteins, are able to target p53 by distinct mechanisms. We have recently described a novel p53 inactivation mechanism of some cutaneous beta HPV types which have been suggested to be associated with skin carcinogenesis. Beta HPV38 induces accumulation of the p53 antagonist, ΔNp73α which in turn silences the expression of the p53-regulated genes. Here we report that also EBV, via the oncoprotein LMP-1, induces the expression of ΔNp73α which is dependent on the recruitment of p73 on ΔNp73 promoter and the activation of JNK-1. The recruitment of p73 to the ΔNp73 promoter correlated with the displacement of the histone-lysine N-methyltransferase EZH2 which is part of a transcriptional repressive polycomb 2 complex. We also show that ΔNp73α plays an important role in transformation of primary human B cells and regulates the expression of a large number of cellular genes that encode proteins linked to cancer development, including lymphomagenesis.
Collapse
MESH Headings
- Apoptosis
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Cell Transformation, Viral/genetics
- Cell Transformation, Viral/physiology
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Down-Regulation
- Epigenesis, Genetic
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/physiology
- Host-Pathogen Interactions
- Humans
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- Sequence Analysis, RNA
- Transcription, Genetic
- Transcriptional Activation
- Tumor Protein p73
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Proteins/genetics
- Tumor Suppressor Proteins/metabolism
- Up-Regulation
- Viral Matrix Proteins/genetics
- Viral Matrix Proteins/metabolism
Collapse
Affiliation(s)
- Rosita Accardi
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Ikbal Fathallah
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Henri Gruffat
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Giuseppe Mariggiò
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | | | - Catherine Voegele
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Birke Bartosch
- CRCL, INSERM U1052, CNRS 5286, Université de Lyon, Lyon, France
| | | | - James McKay
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Bakary S. Sylla
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Evelyne Manet
- INSERM U758, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Massimo Tommasino
- International Agency for Research on Cancer, World Health Organization, Lyon, France
- * E-mail:
| |
Collapse
|
4
|
van Krieken JH. New developments in the pathology of malignant lymphoma: a review of the literature published from April 2010–July 2010. J Hematop 2010. [DOI: 10.1007/s12308-010-0069-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
5
|
Krem MM, Salipante SJ, Horwitz MS. Mutations in a gene encoding a midbody protein in binucleated Reed-Sternberg cells of Hodgkin lymphoma. Cell Cycle 2010; 9:670-5. [PMID: 20107318 DOI: 10.4161/cc.9.4.10780] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Classical Hodgkin lymphoma (cHL) is a cancer in which malignant "Reed-Sternberg" cells comprise just a fraction of the bulk of the tumor and are characteristically binucleated. We recently identified a novel gene, KLHDC8B, which appears responsible for some familial cases of cHL. KLHDC8B encodes a midbody kelch protein expressed during cytokinesis. Deficiency of KLHDC8B leads to binucleated cells, implicating its involvement in Reed-Sternberg cell formation. Interestingly, other cancer genes, such as BRCA1 and BRCA2, also encode proteins locating to the midbody during cytokinesis, even though their participation in other pathways has received greater attention. Midbody components may be an overlooked source of tumor suppressor genes.
Collapse
Affiliation(s)
- Maxwell M Krem
- Medical Oncology Program, Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | | |
Collapse
|