1
|
Sokolowski DJ, Hou H, Yuki KE, Roy A, Chan C, Choi W, Faykoo-Martinez M, Hudson M, Corre C, Uusküla-Reimand L, Goldenberg A, Palmert MR, Wilson MD. Age, sex, and cell type-resolved hypothalamic gene expression across the pubertal transition in mice. Biol Sex Differ 2024; 15:83. [PMID: 39449090 PMCID: PMC11515584 DOI: 10.1186/s13293-024-00661-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The hypothalamus plays a central role in regulating puberty. However, our knowledge of the postnatal gene regulatory networks that control the pubertal transition in males and females is incomplete. Here, we investigate the age-, sex- and cell-type-specific gene regulation in the hypothalamus across the pubertal transition. METHODS We used RNA-seq to profile hypothalamic gene expression in male and female mice at five time points spanning the onset of puberty (postnatal days (PD) 12, 22, 27, 32, and 37). By combining this data with hypothalamic single nuclei RNA-seq data from pre- and postpubertal mice, we assigned gene expression changes to their most likely cell types of origin. In our colony, pubertal onset occurs earlier in male mice, allowing us to focus on genes whose expression is dynamic across ages and offset between sexes, and to explore the bases of sex effects. RESULTS Our age-by-sex pattern of expression enriched for biological pathways involved hormone production, neuronal activation, and glial maturation. Additionally, we inferred a robust expansion of oligodendrocytes precursor cells into mature oligodendrocytes spanning the prepubertal (PD12) to peri-pubertal (PD27) timepoints. Using spatial transcriptomic data from postpubertal mice, we observed the lateral hypothalamic area and zona incerta were the most oligodendrocyte-rich regions and that these cells expressed genes known to be involved in pubertal regulation. CONCLUSION Together, by incorporating multiple biological timepoints and using sex as a variable, we identified gene and cell-type changes that may participate in orchestrating the pubertal transition and provided a resource for future studies of postnatal hypothalamic gene regulation.
Collapse
Affiliation(s)
- Dustin J Sokolowski
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Huayun Hou
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Kyoko E Yuki
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Anna Roy
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | - Cadia Chan
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
- Donnelly Centre for Cellular & Biomolecular Research, Toronto, ON, Canada
| | - Wendy Choi
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Mariela Faykoo-Martinez
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Matt Hudson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christina Corre
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
| | | | - Anna Goldenberg
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Vector Institute, Toronto, ON, Canada
- CIFAR, Toronto, ON, Canada
| | - Mark R Palmert
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada
- Division of Endocrinology, The Hospital for Sick Children, Toronto, ON, Canada
- Departments of Pediatrics and Physiology, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael D Wilson
- Genetics and Genome Biology, SickKids Research Institute, Toronto, ON, Canada.
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Li X, Cheng J, Guo K, Wan J, Wang C, Chen L, Xu N, Chen M. KGF-2 ameliorates UVB-triggered skin photodamage in mice by attenuating DNA damage and inflammatory response and mitochondrial dysfunction. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12993. [PMID: 39187972 DOI: 10.1111/phpp.12993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/06/2024] [Accepted: 07/29/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Long-term exposure to UVB induces DNA damage, inflammatory response, mitochondrial dysfunction, and apoptosis in skin cells, thus causing skin photodamage. Research has demonstrated the noteworthy antioxidant, anti-inflammatory, DNA repair, and mitochondrial protective properties of keratinocyte growth factor-2 (KGF-2). METHODS To examine the impact of KGF-2 on UVB-triggered skin photodamage in mice, hair-removed mice were initially exposed under UVB radiation and subsequently treated with KGF-2 hydrogel and repeated for 6 days. On day 7, the assessment of histopathological alterations, inflammation, DNA damage, mitochondrial function, and apoptosis in mouse skin was assessed. RESULTS It was found that KGF-2 could effectively relieve cutaneous photodamage symptoms and inhibit epidermal proliferation in mice. Meanwhile, KGF-2 was found to significantly reduce DNA damage, attenuate the inflammatory response, and inhibit the mitochondria-mediated intrinsic apoptotic pathway in the UVB-exposed mouse skin photodamage model. CONCLUSION To summarize, our results indicated that KGF-2 reduces the severity of mouse skin photodamage caused by UVB rays by attenuating DNA damage and the inflammatory response, besides inhibiting the mitochondria-mediated intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Xuenan Li
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Jinli Cheng
- Department of Pharmacy, Nanjing Yuhua hospital, Nanjing, China
| | - Keke Guo
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Jianwei Wan
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Cuihong Wang
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Lu Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Nuo Xu
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou, China
| | - Min Chen
- Department of Pharmacy, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| |
Collapse
|
3
|
Melnik BC. Acne Transcriptomics: Fundamentals of Acne Pathogenesis and Isotretinoin Treatment. Cells 2023; 12:2600. [PMID: 37998335 PMCID: PMC10670572 DOI: 10.3390/cells12222600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
This review on acne transcriptomics allows for deeper insights into the pathogenesis of acne and isotretinoin's mode of action. Puberty-induced insulin-like growth factor 1 (IGF-1), insulin and androgen signaling activate the kinase AKT and mechanistic target of rapamycin complex 1 (mTORC1). A Western diet (hyperglycemic carbohydrates and milk/dairy products) also co-stimulates AKT/mTORC1 signaling. The AKT-mediated phosphorylation of nuclear FoxO1 and FoxO3 results in their extrusion into the cytoplasm, a critical switch which enhances the transactivation of lipogenic and proinflammatory transcription factors, including androgen receptor (AR), sterol regulatory element-binding transcription factor 1 (SREBF1), peroxisome proliferator-activated receptor γ (PPARγ) and signal transducer and activator of transcription 3 (STAT3), but reduces the FoxO1-dependent expression of GATA binding protein 6 (GATA6), the key transcription factor for infundibular keratinocyte homeostasis. The AKT-mediated phosphorylation of the p53-binding protein MDM2 promotes the degradation of p53. In contrast, isotretinoin enhances the expression of p53, FoxO1 and FoxO3 in the sebaceous glands of acne patients. The overexpression of these proapoptotic transcription factors explains isotretinoin's desirable sebum-suppressive effect via the induction of sebocyte apoptosis and the depletion of BLIMP1(+) sebocyte progenitor cells; it also explains its adverse effects, including teratogenicity (neural crest cell apoptosis), a reduced ovarian reserve (granulosa cell apoptosis), the risk of depression (the apoptosis of hypothalamic neurons), VLDL hyperlipidemia, intracranial hypertension and dry skin.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, 49069 Osnabrück, Germany
| |
Collapse
|
4
|
Su Z, Zhang Y, Cao J, Sun Y, Cai Y, Zhang B, He L, Zhang Z, Xie J, Meng Q, Luo L, Li F, Li J, Zhang J, Chen X, Hong A. Hyaluronic acid-FGF2-derived peptide bioconjugates for suppression of FGFR2 and AR simultaneously as an acne antagonist. J Nanobiotechnology 2023; 21:55. [PMID: 36803994 PMCID: PMC9938603 DOI: 10.1186/s12951-023-01812-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Acne is a chronic skin condition that has serious consequences for mental and social well-being because it frequently occurs on the face. Several acne treatment approaches have commonly been used but have been hampered by side effects or weak activity. Thus, the investigation of the safety and efficacy of anti-acne compounds is of considerable medical importance. Herein, an endogenous peptide (P5) derived from fibroblast growth factors 2 (FGF2) was conjugated to the polysaccharide hyaluronic acid (HA) to generate the bioconjugate nanoparticle HA-P5, which suppresses fibroblast growth factor receptors (FGFRs) to significantly rehabilitate acne lesions and reduce sebum accumulation in vivo and in vitro. Moreover, our results show that HA-P5 inhibits both fibroblast growth factor receptor 2 (FGFR2) and androgen receptor (AR) signalling in SZ95 cells, reverses the acne-prone transcriptome, and decreases sebum secretion. Furthermore, the cosuppression mechanism revealed that HA-P5 blocks FGFR2 activation, as well as the YTH N6-methyladenosine RNA binding protein F3 (YTHDF3) downstream molecules, including an N6-methyladenosine (m6A) reader that facilitates AR translation. More importantly, a significant difference between HA-P5 and the commercial FGFR inhibitor AZD4547 is that HA-P5 does not trigger the overexpression of aldo-keto reductase family 1 member C3 (AKR1C3), which blocks acne treatment by catalyzing the synthesis of testosterone. Overall, we demonstrate that a polysaccharide-conjugated and naturally derived oligopeptide HA-P5 can alleviate acne and act as an optimal FGFR2 inhibitor and reveal that YTHDF3 plays a crucial role in signalling between FGFR2 and AR.
Collapse
Affiliation(s)
- Zijian Su
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yibo Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jieqiong Cao
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
- The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yuanmeng Sun
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yuling Cai
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Bihui Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Liu He
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Zilei Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Junye Xie
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qilin Meng
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Lin Luo
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fu Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jingsheng Li
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinting Zhang
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaojia Chen
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - An Hong
- Department of Cell Biology, College of Life Science and Technology, Jinan University; National Engineering Research Center of Genetic Medicine; Guangdong Provincial Key Laboratory of Bioengineering Medicine; Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
5
|
Botulinum Neurotoxin Type A Directly Affects Sebocytes and Modulates Oleic Acid-Induced Lipogenesis. Toxins (Basel) 2022; 14:toxins14100708. [PMID: 36287976 PMCID: PMC9609209 DOI: 10.3390/toxins14100708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
Excess sebum (seborrhea) results in oily skin and is associated with large pore size and acne. Studies in healthy, seborrheic volunteers have reported that intradermal injection of commercial preparations of botulinum neurotoxin type A (BoNT/A) (onabotulinumtoxinA, abobotulinumtoxinA, and incobotulinumtoxinA) reduced sebum production, and thus, skin oiliness and pore size. The mechanism for these effects has not been fully elucidated; however, several theories involving direct or indirect effects of BoNT/A on neuronal and/or dermal cells (e.g., sebocytes) have been proposed. In the present study, we evaluated the direct effect of native research grade BoNT/A complex, a commercial preparation of BoNT/A (onabotA), and BoNT/A variants on sebocyte lipogenesis using an in vitro sebocyte cell model. We show that picomolar concentrations of BoNT/A (BoNT/A complex: half maximal effective concentration [EC50] = 24 pM; BoNT/A 150 kDa: EC50 = 34 pM) modulate sebocyte lipogenesis and reduce oleic acid-induced sebocyte differentiation, lipogenesis, and holocrine-like secretion. Comparative studies with the binding domain of BoNT/A, which lacks enzymatic activity, show that this effect is independent of the enzymatic activity of BoNT/A and likely occurs via sebocyte cell surface receptors (e.g., fibroblast growth factor receptors). Overall, these results shed light on the potential mechanism of action and rationale for use of BoNT/A for treatment of sebum-related conditions.
Collapse
|
6
|
Moltrasio C, Tricarico PM, Romagnuolo M, Marzano AV, Crovella S. Hidradenitis Suppurativa: A Perspective on Genetic Factors Involved in the Disease. Biomedicines 2022; 10:2039. [PMID: 36009585 PMCID: PMC9406067 DOI: 10.3390/biomedicines10082039] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/22/2022] Open
Abstract
Hidradenitis Suppurativa (HS) is a chronic inflammatory skin disease of the pilosebaceous unit, clinically consisting of painful nodules, abscesses, and sinus tracts mostly in, but not limited to, intertriginous skin areas. HS can be defined as a complex skin disease with multifactorial etiologies, including-among others-genetic, immunologic, epigenetic, and environmental factors. Based on genetic heterogeneity and complexity, three different forms can be recognized and considered separately as sporadic, familial, and syndromic. To date, several genetic variants associated to disease susceptibility, disease-onset, and/or treatment response have been reported; some of these reside in genes encoding the gamma-secretase subunits whereas others involve autoinflammatory and/or keratinization genes. The aim of this perspective work is to provide an overview of the contribution of several genetic studies encompassing family linkage analyses, target candidate gene studies, and -omic studies in this field. In our viewpoint, we discuss the role of genetics in Hidradenitis suppurativa considering findings based on Sanger sequencing as well as the more recent Next Generation Sequencing (i.e., exome sequencing or RNA Sequencing) with the aim of better understanding the etio-pathogenesis of the disease as well as identifying novel therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | | | - Maurizio Romagnuolo
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
7
|
The Immunogenetics of Acne. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1367:137-154. [DOI: 10.1007/978-3-030-92616-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Baroud S, Wu J, Zouboulis CC. Acne Syndromes and Mosaicism. Biomedicines 2021; 9:biomedicines9111735. [PMID: 34829964 PMCID: PMC8615598 DOI: 10.3390/biomedicines9111735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/14/2021] [Accepted: 11/19/2021] [Indexed: 01/14/2023] Open
Abstract
Abnormal mosaicism is the coexistence of cells with at least two genotypes, by the time of birth, in an individual derived from a single zygote, which leads to a disease phenotype. Somatic mosaicism can be further categorized into segmental mosaicism and nonsegmental somatic mosaicism. Acne is a chronic illness characterized by inflammatory changes around and in the pilosebaceous units, commonly due to hormone- and inflammatory signaling-mediated factors. Several systemic disorders, such as congenital adrenal hyperplasia, polycystic ovarian syndrome, and seborrhoea-acne-hirsutism-androgenetic alopecia syndrome have classically been associated with acne. Autoinflammatory syndromes, including PAPA, PASH, PAPASH, PsAPASH, PsaPSASH, PASS, and SAPHO syndromes include acneiform lesions as a key manifestation. Mosaic germline mutations in the FGFR2 gene have been associated with Apert syndrome and nevus comedonicus, two illnesses that are accompanied by acneiform lesions. In this review, we summarize the concept of cutaneous mosaicism and elaborate on acne syndromes, as well as acneiform mosaicism.
Collapse
Affiliation(s)
- Sumer Baroud
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Jim Wu
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
| | - Christos C. Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany; (S.B.); (J.W.)
- Correspondence: ; Tel.: +49-340-501-4000
| |
Collapse
|
9
|
Epstein RJ, Tian LJ, Gu YF. 2b or Not 2b: How Opposing FGF Receptor Splice Variants Are Blocking Progress in Precision Oncology. JOURNAL OF ONCOLOGY 2021; 2021:9955456. [PMID: 34007277 PMCID: PMC8110382 DOI: 10.1155/2021/9955456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/21/2021] [Indexed: 01/16/2023]
Abstract
More than ten thousand peer-reviewed studies have assessed the role of fibroblast growth factors (FGFs) and their receptors (FGFRs) in cancer, but few patients have yet benefited from drugs targeting this molecular family. Strategizing how best to use FGFR-targeted drugs is complicated by multiple variables, including RNA splicing events that alter the affinity of ligands for FGFRs and hence change the outcomes of stromal-epithelial interactions. The effects of splicing are most relevant to FGFR2; expression of the FGFR2b splice isoform can restore apoptotic sensitivity to cancer cells, whereas switching to FGFR2c may drive tumor progression by triggering epithelial-mesenchymal transition. The differentiating and regulatory actions of wild-type FGFR2b contrast with the proliferative actions of FGFR1 and FGFR3, and may be converted to mitogenicity either by splice switching or by silencing of tumor suppressor genes such as CDH1 or PTEN. Exclusive use of small-molecule pan-FGFR inhibitors may thus cause nonselective blockade of FGFR2 isoforms with opposing actions, undermining the rationale of FGFR2 drug targeting. This splice-dependent ability of FGFR2 to switch between tumor-suppressing and -driving functions highlights an unmet oncologic need for isoform-specific drug targeting, e.g., by antibody inhibition of ligand-FGFR2c binding, as well as for more nuanced molecular pathology prediction of FGFR2 actions in different stromal-tumor contexts.
Collapse
Affiliation(s)
- Richard J. Epstein
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
- Garvan Institute of Medical Research and UNSW Clinical School, 84 Victoria St, Darlinghurst 2010 Sydney, Australia
| | - Li Jun Tian
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| | - Yan Fei Gu
- New Hope Cancer Center, Beijing United Hospital, 9-11 Jiangtai West Rd, Chaoyang, Beijing 100015, China
| |
Collapse
|
10
|
Bharti S, Vadlamudi HC. A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis. J Recept Signal Transduct Res 2020; 41:105-116. [PMID: 32787477 DOI: 10.1080/10799893.2020.1805626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Acne vulgaris is a very common pilosebaceous inflammatory disease occurring primarily on the face and also rare on the upper arms, trunk, and back, which is caused by Propionibacterium, Staphylococcus, Corynebacterium, and other species. Pathophysiology of acne comprises of irregular keratinocyte proliferation, differentiation, increased sebum output, bacterial antigens and cytokines induced inflammatory response. Treatment of acne requires proper knowledge on the pathophysiology then only the clinician can come out with a proper therapeutic dosage regimen. Understanding the pathophysiology not only includes the mechanism but also involvement of receptors. Thus, this review is framed in such a way that the authors have focused on the disease acne vulgaris, pathophysiology, transcription factors viz. the Forkhead Box O1 (FoxO1) Transcription Factor, hormones like androgens and receptors such as Histamine receptors, Retinoic receptor, Fibroblast growth factor receptors, Toll like receptor, Androgen receptor, Liver X-receptor, Melanocortin receptor, Peroxisome proliferator-activated receptor and epidermal growth factor receptors involvement in the progression of acne vulgaris.
Collapse
Affiliation(s)
- Sneha Bharti
- Department of Pharmaceutics, Acharya & BM Reddy College of Pharmacy, Bangalore, India
| | | |
Collapse
|
11
|
Affiliation(s)
| | - Rachel Giesey
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Harib Ezaldein
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Gregory R Delost
- Department of Dermatology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| |
Collapse
|
12
|
Tricarico PM, Boniotto M, Genovese G, Zouboulis CC, Marzano AV, Crovella S. An Integrated Approach to Unravel Hidradenitis Suppurativa Etiopathogenesis. Front Immunol 2019; 10:892. [PMID: 31105704 PMCID: PMC6494959 DOI: 10.3389/fimmu.2019.00892] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022] Open
Abstract
Hidradenitis suppurativa/acne inversa (HS) is a chronic inflammatory disease involving hair follicles that presents with painful nodules, abscesses, fistulae, and hypertrophic scars, typically occurring in apocrine gland bearing skin. Establishing a diagnosis of HS may take up to 7 years after disease onset. HS severely impairs the quality of life of patients and its high frequency causes significant costs for health care system. HS patients have an increased risk of developing associated diseases, such as inflammatory bowel diseases and spondyloarthropathies, thereby suggesting a common pathophysiological mechanism. Familial cases, which are around 35% of HS patients, have allowed the identification of susceptibility genes. HS is perceived as a complex disease where environmental factors trigger chronic inflammation in the skin of genetically predisposed individuals. Despite the efforts made to understand HS etiopathogenesis, the exact mechanisms at the basis of the disease need to be still unraveled. In this review, we considered all OMICs studies performed on HS and observed that OMICs contribution in the context of HS appeared as not clear enough and/or rich of useful clinical information. Indeed, most studies focused only on one aspect—genome, transcriptome, or proteome—of the disease, enrolling small numbers of patients. This is quite limiting for the genetic studies, from different geographical areas and looking at a few aspects of HS pathogenesis without any integration of the findings obtained or a comparison among different studies. A strong need for an integrated approach using OMICs tools is required to discover novel actors involved in HS etiopathogenesis. Moreover, we suggest the constitution of consortia to enroll a higher number of patients to be analyzed following common and consensus OMICs strategies. Comparison and integration with the findings present in the OMICs repositories are mandatory. In a theoretic pipeline, the Skin-OMICs profile obtained from each HS patient should be compared and integrated with repositories and literature data by using appropriate InterOMICs approach. The final goal is not only to improve the knowledge of HS etiopathogenesis but also to provide novel tools to the clinicians with the eventual aim of offering a tailored treatment for HS patients.
Collapse
Affiliation(s)
- Paola M Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Michele Boniotto
- University of Paris Est-Créteil and INSERM U955/IMRB-Team 16, Créteil, France
| | - Giovanni Genovese
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e Dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - Angelo V Marzano
- UOC Dermatologia, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Dipartimento di Fisiopatologia Medico-Chirurgica e Dei Trapianti, Università degli Studi di Milano, Milan, Italy
| | - Sergio Crovella
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| |
Collapse
|
13
|
Kumtornrut C, Yamauchi T, Koike S, Aiba S, Yamasaki K. Androgens modulate keratinocyte differentiation indirectly through enhancing growth factor production from dermal fibroblasts. J Dermatol Sci 2019; 93:150-158. [PMID: 30792099 DOI: 10.1016/j.jdermsci.2019.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/28/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND The main pathogenesis of acne vulgaris is increase in sebum production and abnormal keratinization of the hair infundibulum. The androgens are involved in acne pathogenesis by modulating sebaceous glands to enhance sebum production. However, the molecular mechanisms of abnormal keratinization of the hair infundibulum are not fully elucidated. OBJECTIVE We hypothesized that the androgens affect the dermal fibroblasts, another androgen receptor-positive cells in the skin, resulting in abnormal keratinization through keratinocyte-fibroblast interaction. METHODS We investigated effects of androgens and estrogens on growth factors expressions by RT-PCR and western blot analysis in human fibroblast (hFB), human keratinocyte (hKC), and fibroblast-keratinocyte co-culture. In vivo, we examined the growth factor expression in acne lesions compared to normal hair follicles by laser-assisted confocal microscope. RESULTS In vitro, androgens but not estrogens significantly increased amphiregulin (AREG), epiregulin (EREG), fibroblast growth factor (FGF) 10, and insulin-like growth factor binding protein (IGFBP) 5 mRNA and protein expressions in human fibroblasts but not in keratinocytes. In vivo, AREG, EREG, FGF10, and IGFBP5 were more abundant in acne lesion compared to normal facial skin. FGF10 suppressed cytokeratin 1 and cytokeratin 10 expression in hKC, which was along with the decreased ratio of cytokeratin 10 against cytokeratin 14 in acne lesions compared to normal facial skin. Also, DHT suppressed cytokeratin 1 and cytokeratin 10, in fibroblast-keratinocyte co-culture similarly to the effect of FGF10 to hKC. CONCLUSION These observations suggested that androgens enhance growth factors production from dermal fibroblasts, and growth factors from fibroblasts alter keratinocyte differentiation in acne lesion.
Collapse
Affiliation(s)
- Chanat Kumtornrut
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan; Division of Dermatology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Takeshi Yamauchi
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Saaya Koike
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan
| | - Kenshi Yamasaki
- Department of Dermatology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, 980-8575, Japan.
| |
Collapse
|
14
|
Claudel JP, Auffret N, Leccia MT, Poli F, Dréno B. Acne and nutrition: hypotheses, myths and facts. J Eur Acad Dermatol Venereol 2018; 32:1631-1637. [PMID: 29633388 DOI: 10.1111/jdv.14998] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/15/2018] [Indexed: 12/28/2022]
Abstract
Acne is an inflammatory and multifactorial skin disease. Different external and internal factors, including air pollution, aggressive skincare products, medication, mechanical, hormonal and familial factors and, more recently, lifestyle and stress, have been suggested as having an impact on acne. Moreover, for many years nutrition was believed to cause or worsen acne. Over the last decades, however, it has become a dermatological doctrine that there is no direct association between diet and acne. Even if recent research has allowed to identify certain nutritional elements and behaviour that may impact on acne, including the excessive intake of dairy products and hyperglycaemic food, modern lifestyle nutrition, obesity and eating disorders, knowledge about the role of nutrition in the physiopathology of acne still remains sparse and hypotheses and myths continue to dominate the debate. Thus, further clinical and translational research is necessary to investigate and confirm the association between nutrition and acne.
Collapse
Affiliation(s)
| | | | - M T Leccia
- Department of Dermatology, Allergology and Photobiology, CHU A Michallon, Grenoble, France
| | - F Poli
- Private Practice, Paris, France
| | - B Dréno
- Department of Dermatology, CIC 1413, CRCINA Inserm 1232, Nantes University Hospital, Nantes, France
| |
Collapse
|
15
|
Lichtenberger R, Simpson MA, Smith C, Barker J, Navarini AA. Genetic architecture of acne vulgaris. J Eur Acad Dermatol Venereol 2017; 31:1978-1990. [PMID: 28593717 DOI: 10.1111/jdv.14385] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 05/18/2017] [Indexed: 01/14/2023]
Abstract
Acne vulgaris is a ubiquitary skin disease characterized by chronic inflammation of the pilosebaceous unit resulting from bacterial colonization of hair follicles by Propionibacterium acnes, androgen-induced increased sebum production, altered keratinization and inflammation. Here, we review our current understanding of the genetic architecture of this intriguing disease. We analysed genomewide association studies (GWAS) and candidate genes studies for acne vulgaris. Moreover, we included GWAS studies for the associated disease polycystic ovary syndrome (PCOS). Overall, the available data revealed sixteen genetic loci flagged by single nucleotide polymorphisms (SNPs), none of which has been confirmed yet by independent studies. Moreover, a GWAS for PCOS identified 21 susceptible loci. The genetic architecture is complex which has been revealed by GWAS. Further and larger studies in different populations are required to confirm or disprove results from candidate gene studies as well to identify signals that may overlap between different populations. Finally, studies on rare genetic variants in acne and associated diseases like PCOS may deepen our understanding of its pathogenesis.
Collapse
Affiliation(s)
- R Lichtenberger
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland
| | - M A Simpson
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - C Smith
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - J Barker
- Division of Genetics and Molecular Medicine, King's College, London, UK
| | - A A Navarini
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland.,Division of Genetics and Molecular Medicine, King's College, London, UK
| |
Collapse
|
16
|
Reneker LW, Wang L, Irlmeier RT, Huang AJW. Fibroblast Growth Factor Receptor 2 (FGFR2) Is Required for Meibomian Gland Homeostasis in the Adult Mouse. Invest Ophthalmol Vis Sci 2017; 58:2638-2646. [PMID: 28510629 PMCID: PMC5444547 DOI: 10.1167/iovs.16-21204] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose Little is known about the signaling mechanisms controlling meibomian gland (MG) homeostasis and the pathogenic processes leading to MG atrophy and dysfunction in dry eye disease (DED). We investigated the role of fibroblast growth factor receptor 2 (FGFR2) in the MG homeostasis of adult mice. Methods A triple transgenic mouse strain (Krt14-rtTA; tetO-Cre; Fgfr2flox/flox), referred to as Fgfr2CKO mice, was generated in which the Fgfr2 gene is ablated by Cre recombinase in keratin 14 (Krt14)-expressing epithelial cells on doxycycline (Dox) induction. FGFR2 expression in normal human and mouse MGs was evaluated by immunohistochemistry. Pathologic MG changes in transgenic mice with conditional deletion of FGFR2 were examined by lipid staining, histology, and immunostaining. Results FGFR2 was highly expressed in normal human MGs and adult mouse MGs. Two-month-old Fgfr2CKO mice fed Dox-containing chow for 2 weeks developed severe MG atrophy. MG acinar atrophy in the Fgfr2CKO mice was associated with reduced lipid (meibum) production and the development of clinical findings similar to those in humans with evaporative DED related to MG dysfunction (MGD). Immunohistochemical analyses showed that FGFR2 deletion severely affected proliferation and differentiation of MG acinar cells but affected MG ductal cells to a lesser extent. Conclusions FGFR2 deletion results in significant MG acinar atrophy and clinical manifestations of MGD in Fgfr2CKO mice, suggesting that MG homeostasis is FGFR2 dependent. The Fgfr2CKO mice with inducible MG atrophy can serve as a valuable animal model for investigating the pathogenesis of MGD and developing novel therapeutic strategies for MGD-related DED.
Collapse
Affiliation(s)
- Lixing W Reneker
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Lanlan Wang
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Rebecca T Irlmeier
- Mason Eye Institute, Department of Ophthalmology, University of Missouri School of Medicine, Columbia, Missouri, United States
| | - Andrew J W Huang
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
17
|
|
18
|
Higgins R, Pink A, Hunger R, Yawalkar N, Navarini AA. Generalized Comedones, Acne, and Hidradenitis Suppurativa in a Patient with an FGFR2 Missense Mutation. Front Med (Lausanne) 2017; 4:16. [PMID: 28293556 PMCID: PMC5328982 DOI: 10.3389/fmed.2017.00016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/08/2017] [Indexed: 11/13/2022] Open
Abstract
Mutations in the fibroblast growth factor-receptor gene 2 (FGFR2) gene have been implicated in numerous diseases, including nevus comedonicus (NC) and naevoid acne that have somatic missense mutations in FGFR2 in the affected tissue. A patient presented in our department with unusual, innumerable large comedones throughout his back reminiscient of NC, as well as multifocal hidradenitis suppurativa and acne. Topical and systemic treatments were unsuccessful. Whole exome sequencing of blood-derived DNA detected a germline mutation in FGFR2 that was predicted to be damaging. This could explain the multifocal and severe nature of the disease. We suggest screening other, phenotypically similar patients for FGFR2 mutations. Our findings, once confirmed independently, could indicate that therapeutic modulation of FGFR signaling in the acne tetrad could be effective.
Collapse
Affiliation(s)
- Rebecca Higgins
- Department of Dermatology, University Hospital of Zurich , Zurich , Switzerland
| | - Andrew Pink
- King's College, St John's Institute of Dermatology , London , UK
| | - Robert Hunger
- Department of Dermatology, Inselspital, Bern University Hospital and University of Bern , Bern , Switzerland
| | - Nikhil Yawalkar
- Department of Dermatology, Inselspital, Bern University Hospital and University of Bern , Bern , Switzerland
| | - Alexander A Navarini
- Department of Dermatology, University Hospital of Zurich, Zurich, Switzerland; King's College, St John's Institute of Dermatology, London, UK
| |
Collapse
|
19
|
Kuentz P, Fraitag S, Gonzales M, Dhombres F, St‐Onge J, Duffourd Y, Joyé N, Jouannic J, Picard A, Marle N, Thevenon J, Thauvin‐Robinet C, Faivre L, Rivière J, Vabres P. Mosaic‐activating
FGFR2
mutation in two fetuses with papillomatous pedunculated sebaceous naevus. Br J Dermatol 2016; 176:204-208. [DOI: 10.1111/bjd.14681] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Affiliation(s)
- P. Kuentz
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Laboratoire de Génétique Chromosomique et Moléculaire Plateau Technique de Biologie Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Génétique Biologique Histologie Centre Hospitalier Universitaire de Besançon F‐25000 Besançon France
| | - S. Fraitag
- Service d'Anatomie et de Cytologie Pathologiques APHP Groupe Hospitalier Necker‐Enfants Malades F‐75743 Paris France
| | - M. Gonzales
- Service de Médecine Fœtale Centre Pluridisciplinaire de Diagnostic Prénatal de l'Est Parisien APHP Hôpital Armand Trousseau Université Pierre et Marie Curie Paris France
| | - F. Dhombres
- Service de Médecine Fœtale Centre Pluridisciplinaire de Diagnostic Prénatal de l'Est Parisien APHP Hôpital Armand Trousseau Université Pierre et Marie Curie Paris France
| | - J. St‐Onge
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - Y. Duffourd
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - N. Joyé
- Département de Génétique Médicale APHP Hôpital Armand Trousseau Université Pierre et Marie Curie Paris France
| | - J.‐M. Jouannic
- Service de Médecine Fœtale Centre Pluridisciplinaire de Diagnostic Prénatal de l'Est Parisien APHP Hôpital Armand Trousseau Université Pierre et Marie Curie Paris France
| | - A. Picard
- Service de Chirurgie Maxillo‐Faciale et Chirurgie Plastique APHP Groupe Hospitalier Necker‐Enfants Malades F‐75743 Paris France
- Centre de Référence Malformations Rares de la Face et de la Cavité Buccale UFR Paris Descartes Université Paris France
| | - N. Marle
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Laboratoire de Génétique Chromosomique et Moléculaire Plateau Technique de Biologie Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - J. Thevenon
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Service de Pédiatrie 1 et de Génétique Médicale Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - C. Thauvin‐Robinet
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Service de Pédiatrie 1 et de Génétique Médicale Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - L. Faivre
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Service de Pédiatrie 1 et de Génétique Médicale Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - J.‐B. Rivière
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Laboratoire de Génétique Chromosomique et Moléculaire Plateau Technique de Biologie Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| | - P. Vabres
- Equipe d'Accueil 4271 Génétique des Anomalies du Développement Université de Bourgogne Franche‐Comté F‐21079 Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (TRANSLAD) Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
- Service de Dermatologie Centre Hospitalo‐Universitaire Dijon‐Bourgogne F‐21079 Dijon France
| |
Collapse
|
20
|
Zouboulis CC, Picardo M, Ju Q, Kurokawa I, Törőcsik D, Bíró T, Schneider MR. Beyond acne: Current aspects of sebaceous gland biology and function. Rev Endocr Metab Disord 2016; 17:319-334. [PMID: 27726049 DOI: 10.1007/s11154-016-9389-5] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The sebaceous gland is most commonly found in association with a hair follicle. Its traditional function is the holocrine production of sebum, a complex mixture of lipids, cell debris, and other rather poorly characterized substances. Due to the gland's central role in acne pathogenesis, early research had focused on its lipogenic activity. Less studied aspects of the sebaceous gland, such as stem cell biology, the regulation of cellular differentiation by transcription factors, the significance of specific lipid fractions, the endocrine and specially the neuroendocrine role of the sebaceous gland, and its contribution to the innate immunity, the detoxification of the skin, and skin aging have only recently attracted the attention of researchers from different disciplines. Here, we summarize recent multidisciplinary progress in sebaceous gland research and discuss how sebaceous gland research may stimulate the development of novel therapeutic strategies targeting specific molecular pathways of the pathogenesis of skin diseases.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Auenweg 38, 06847, Dessau, Germany.
| | - Mauro Picardo
- San Gallicano Dermatologic Institute, IRCCS, Rome, Italy
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Ichiro Kurokawa
- Department of Dermatology, Meiwa Hospital, Nishinomiya, Japan
| | - Dániel Törőcsik
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tamás Bíró
- Department of Immunology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
21
|
Gozali MV, Yi F, Zhang JA, Liu J, Wu HJ, Xu Y, Luo D, Zhou BR. Photodynamic therapy inhibit Fibroblast Growth Factor-10 induced keratinocyte differentiation and proliferation through ROS in Fibroblast Growth Factor Receptor-2b pathway. Sci Rep 2016; 6:27402. [PMID: 27273653 PMCID: PMC4895211 DOI: 10.1038/srep27402] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/18/2016] [Indexed: 12/22/2022] Open
Abstract
5-aminolevulinic acid-photodynamic therapy (ALA-PDT) is known to be effective in several skin diseases such as acne, actinic keratoses, condyloma acuminata. However, some detailed mechanisms of ALA-PDT to treat these skin diseases still remain elusive. In this study, we aimed to investigate mechanism of ALA-PDT in in-vitro and in-vivo models. For in vitro, we use human keratinocyte cell line (HaCaT) cells. CCK-8 was used to detect cell proliferation activity, immunofluorescence and western blotting method to detect the content of keratin (K)1, K6, K16, protein kinase C (PKC), fibroblast growth factor receptor-2b (FGFR2b) protein, ELISA and RT-PCR to detect expression of interleukin (IL) 1α in the cell supernatant, and detect reactive oxygen species (ROS). For in vivo, we use 20 rabbits to induce hyperkeratosis acne model in their ear. Dermatoscope was used to see follicle hyperkeratosis and skin biopsy to analyze histology and immunohistochemical of PKC, FGFR2b, K1, K6 and K16. Results from this study suggest that ROS stimulated by ALA-PDT lead to inhibition of FGFR2b pathway in PKC downstream to cause reduction of IL1α expression, and eventually, keratinocytes differentiation and proliferation. Our data thus reveal a treatment mechanism of ALA-PDT underlying hyperkeratosis related dermatoses.
Collapse
Affiliation(s)
- Maya Valeska Gozali
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Fei Yi
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jia-An Zhang
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Juan Liu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hong-Jin Wu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Xu
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Dan Luo
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Bing-Rong Zhou
- Department of Dermatology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| |
Collapse
|
22
|
Liu ZH, Li EH, Xu DL, Sun WL, Hong Y, Zhao W, Xia SJ, Jiang JT. Genetic research and structural dysplasia assessment of anorectal malformations in neonatal male rats induced by di(n-butyl) phthalate. ENVIRONMENTAL TOXICOLOGY 2016; 31:261-268. [PMID: 25213187 DOI: 10.1002/tox.22040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 08/11/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
This study was the first to investigate the genetic abnormalities and structural dysplasia of anorectal malformations (ARMs) in male rats induced by di(n-butyl) phthalate (DBP). DBP was administered to timed-pregnant rats to establish the ARM rat model. The incidence of ARMs in male offspring was 39.5%. In neonatal period, decreased body weight and anogenital distance were observed. The general image and histological analysis of male offspring confirmed the presence of ARMs. Anatomical examination of the ARM male rats revealed the dysplasia in solid organs (heart-lung, liver, spleen, and kidney). The decreases of serum testosterone concentration and androgen receptor expression in terminal rectum were indicative of the antiandrogenic effects of DBP. Moreover, significant decreased mRNA expressions of these androgen-related genes such as sonic hedgehog, Gli2, Gli3, bone morphogenetic protein 4, Wnt5a, Hoxa13, Hoxd13, fibroblast growth factor 10, and fibroblast growth factor receptor 2 were found in terminal rectum of the ARM male pubs. These results demonstrated that development of ARM rats was impaired by maternal exposure to DBP. The antiandrogenic effects of DBP disturbing the androgen-related signaling networks might play an important role in the occurrence of ARMs.
Collapse
Affiliation(s)
- Zhi-Hong Liu
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - En-Hui Li
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Dong-Liang Xu
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Wen-Lan Sun
- Department of Geriatrics, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Yan Hong
- Department of Central Laboratory, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Wei Zhao
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| | - Jun-Tao Jiang
- Department of Urology, Shanghai First People's Hospital Affiliated to Shanghai Jiaotong University, 100 Haining Road, Shanghai, 200080, China
| |
Collapse
|
23
|
Abstract
Acne vulgaris, an epidemic inflammatory skin disease of adolescence, is closely related to Western diet. Three major food classes that promote acne are: 1) hyperglycemic carbohydrates, 2) milk and dairy products, 3) saturated fats including trans-fats and deficient ω-3 polyunsaturated fatty acids (PUFAs). Diet-induced insulin/insulin-like growth factor (IGF-1)-signaling is superimposed on elevated IGF-1 levels during puberty, thereby unmasking the impact of aberrant nutrigenomics on sebaceous gland homeostasis. Western diet provides abundant branched-chain amino acids (BCAAs), glutamine, and palmitic acid. Insulin and IGF-1 suppress the activity of the metabolic transcription factor forkhead box O1 (FoxO1). Insulin, IGF-1, BCAAs, glutamine, and palmitate activate the nutrient-sensitive kinase mechanistic target of rapamycin complex 1 (mTORC1), the key regulator of anabolism and lipogenesis. FoxO1 is a negative coregulator of androgen receptor, peroxisome proliferator-activated receptor-γ (PPARγ), liver X receptor-α, and sterol response element binding protein-1c (SREBP-1c), crucial transcription factors of sebaceous lipogenesis. mTORC1 stimulates the expression of PPARγ and SREBP-1c, promoting sebum production. SREBP-1c upregulates stearoyl-CoA- and Δ6-desaturase, enhancing the proportion of monounsaturated fatty acids in sebum triglycerides. Diet-mediated aberrations in sebum quantity (hyperseborrhea) and composition (dysseborrhea) promote Propionibacterium acnes overgrowth and biofilm formation with overexpression of the virulence factor triglyceride lipase increasing follicular levels of free palmitate and oleate. Free palmitate functions as a "danger signal," stimulating toll-like receptor-2-mediated inflammasome activation with interleukin-1β release, Th17 differentiation, and interleukin-17-mediated keratinocyte proliferation. Oleate stimulates P. acnes adhesion, keratinocyte proliferation, and comedogenesis via interleukin-1α release. Thus, diet-induced metabolomic alterations promote the visible sebofollicular inflammasomopathy acne vulgaris. Nutrition therapy of acne has to increase FoxO1 and to attenuate mTORC1/SREBP-1c signaling. Patients should balance total calorie uptake and restrict refined carbohydrates, milk, dairy protein supplements, saturated fats, and trans-fats. A paleolithic-like diet enriched in vegetables and fish is recommended. Plant-derived mTORC1 inhibitors and ω-3-PUFAs are promising dietary supplements supporting nutrition therapy of acne vulgaris.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Germany
| |
Collapse
|
24
|
Abstract
The term epidermal nevus syndrome (ENS) has been used to describe the association of epidermal hamartomas and extracutaneous abnormalities. Although many continue to use the term "ENS," it is now understood that this is not one disease, but rather a heterogeneous group with distinct genetic profiles defined by a common cutaneous phenotype: the presence of epidermal and adnexal hamartomas that are associated with other organ system involvement. One commonality is that epidermal nevi often follow the lines of Blaschko and it appears the more widespread the cutaneous manifestations, the greater the risk for extracutaneous manifestations. The majority of the extracutaneous manifestations involve the brain, eye, and skeletal systems. The CNS involvement is wide ranging and involves both clinical manifestations such as intellectual disability and seizures, as well as structural anomalies. Several subsets of ENS with characteristic features have been delineated including the nevus sebaceus syndrome, Proteus syndrome, CHILD syndrome, Becker's nevus syndrome, nevus comedonicus syndrome, and phakomatosis pigmentokeratotica. Advances in molecular biology have revealed that the manifestations of ENS are due to genomic mosaicism. It is likely that the varied clinical manifestations of ENS are due in great part to the functional effects of specific genetic defects. Optimal management of the patient with ENS involves an interdisciplinary approach given the potential for multisystem involvement. Of note, epidermal nevi have been associated with both benign and malignant neoplasms, and thus ongoing clinical follow-up is required.
Collapse
Affiliation(s)
- Sarah Asch
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Jeffrey L Sugarman
- Departments of Dermatology and Community and Family Medicine, University of California San Francisco, Santa Rosa, CA, USA.
| |
Collapse
|
25
|
|
26
|
Sinha P, Srivastava S, Mishra N, Yadav NP. New perspectives on antiacne plant drugs: contribution to modern therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301304. [PMID: 25147793 PMCID: PMC4132408 DOI: 10.1155/2014/301304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022]
Abstract
Acne is a common but serious skin disease, which affects approximately 80% adolescents and young adults in 11-30 age group. 42.5% of men and 50.9% of women continue to suffer from this disease into their twenties. Bacterial resistance is now at the alarming stage due to the irrational use of antibiotics. Hence, search for new lead molecule/bioactive and rational delivery of the existing drug (for better therapeutic effect) to the site of action is the need of the hour. Plants and plant-derived products have been an integral part of health care system since time immemorial. Therefore, plants that are currently used for the treatment of acne and those with a high potential are summarized in the present review. Most active plant extracts, namely, P. granatum, M. alba, A. anomala, and M. aquifolium exhibit minimum inhibitory concentration (MIC) in the range of 4-50 µg/mL against P. acnes, while aromatic oils of C. obovoides, C. natsudaidai, C. japonica, and C. nardus possess MICs 0.005-0.6 μL/mL and phytomolecules such as rhodomyrtone, pulsaquinone, hydropulsaquinone, honokiol, magnolol, xanthohumol lupulones, chebulagic acid and rhinacanthin-C show MIC in the range of 0.5-12.5 μg/mL. Novel drug delivery strategies of important plant leads in the treatment of acne have also been discussed.
Collapse
Affiliation(s)
- Priyam Sinha
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Shruti Srivastava
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Nidhi Mishra
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Narayan Prasad Yadav
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| |
Collapse
|
27
|
Bergler-Czop B. The aetiopathogenesis of acne vulgaris - what's new? Int J Cosmet Sci 2014; 36:187-94. [DOI: 10.1111/ics.12122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Affiliation(s)
- B. Bergler-Czop
- Departament of Dermatology; Silesian Medical University in Katowice; Francuska Street 20/24 Katowice 40-027 Poland
| |
Collapse
|
28
|
Seo YJ, Li ZJ, Choi DK, Sohn KC, Kim HR, Lee Y, Kim CD, Lee YH, Shi G, Lee JH, Im M. Regional difference in sebum production by androgen susceptibility in human facial skin. Exp Dermatol 2013; 23:70-2. [DOI: 10.1111/exd.12291] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 12/28/2022]
Affiliation(s)
- Young Joon Seo
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Zheng Jun Li
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Dae Kyoung Choi
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Kyung Cheol Sohn
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Hyeong Rae Kim
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Young Lee
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Chang Deok Kim
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Young Ho Lee
- Department of Anatomy; College of Medicine; Chungnam National University; Daejeon Korea
| | - Ge Shi
- Department of Dermatology; The Affiliated Hospital of Guangdong Medical College; Zhanjiang China
| | - Jeung Hoon Lee
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| | - Myung Im
- Department of Dermatology; College of Medicine; Chungnam National University; Daejeon Korea
| |
Collapse
|
29
|
Abstract
Acne is the most common skin disorder. In the majority of cases, acne is a disease that changes its skin distribution and severity over time; moreover, it can be a physically (scar development) and psychologically damaging condition that lasts for years. According to its clinical characteristics, it can be defined as a chronic disease according to the World Health Organization criteria. Acne is also a cardinal component of many systemic diseases or syndromes, such as congenital adrenal hyperplasia, seborrhea-acne-hirsutism-androgenetic alopecia syndrome, polycystic ovarian syndrome, hyperandrogenism-insulin resistance-acanthosis nigricans syndrome, Apert syndrome, synovitis-acne-pustulosis-hyperostosis-osteitis syndrome, and pyogenic arthritis-pyoderma gangrenosum-acne syndrome. Recent studies on the Ache hunter gatherers of Paraguay detected the lack of acne in association with markedly lower rates of obesity, diabetes mellitus, hyperlipidemia, and cardiovascular diseases, a finding that indicates either a nutritional or a genetic background of this impressive concomitance.
Collapse
Affiliation(s)
- Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology, and Immunology, Dessau Medical Center, Auenweg 38, 06847 Dessau, Germany.
| |
Collapse
|
30
|
Hong JB, Prucha H, Melnik B, Ziai M, Ring J, Chen W. [Uncommon acne-associated syndromes and their significance in understanding the pathogenesis of acne]. DER HAUTARZT 2013; 64:274-9. [PMID: 23525534 DOI: 10.1007/s00105-012-2460-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Acne is an intriguing model for the study of interactions between hormones, innate immunity, inflammation and wound healing (scarring). The manifestations and involvement of acne in different systemic diseases and some rare syndromes demonstrate its multifaceted nature. Synovitis-Acne-Pustulosis-Hyperostosis-Osteitis (SAPHO) and Pyogenic Arthritis-Pyoderma gangrenosum-Acne (PAPA) syndromes, both regarded as autoinflammatory diseases, highlight the attributes of inflammation in acne. While SAPHO syndrome can be used to explore the pathogenic role of Propionibacterium acnes in acne, PAPA syndrome and Apert syndrome can help understand the genetic influence on acne. The genetic defects in the gain-of-function of FGFR2 mutations in Apert syndrome and acne nevus of Munro lend further support to the hypothesis that the interaction of forkhead box class O (FoxOs)-mediated transcriptional regulation with androgen receptor transactivation and insulin/insulin like growth factor-1(IGF-1)-signaling is crucial in acne pathogenesis. Novel biologics, such as tumor necrosis factor (TNF) blockers and IL-1 inhibitors, appear promising in opposing the inflammation associated with SAPHO and PAPA syndromes, but it remains to seen if they can also improve severe acne particularly in the long term.
Collapse
Affiliation(s)
- J-B Hong
- Klinik für Dermatologie, National Taiwan University Hospital, Taipei
| | | | | | | | | | | |
Collapse
|
31
|
Liu C, Cui Y, Luan J, Zhou X, Han J. The molecular and cellular basis of Apert syndrome. Intractable Rare Dis Res 2013; 2:115-22. [PMID: 25343114 PMCID: PMC4204555 DOI: 10.5582/irdr.2013.v2.4.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 11/24/2013] [Accepted: 11/27/2013] [Indexed: 01/19/2023] Open
Abstract
Apert syndrome (AS) is a rare genetic and congenital disease characterized by craniosynostosis and syndactly of hands and feet. AS patients generally require lifelong management, however there are still no effective treatment methods except surgery. In recent years, research has made great progress in the pathogenesis of AS. FGFR2 mediates extracellular signals into cells and the mutations in the FGFR2 gene cause AS occurrence. Activated FGFs/FGFR2 signaling disrupt the balance of cell proliferation, differentiation and apoptosis via its downstream signal pathways. However, how the pathways transform the balance is not well understood and contradictions have occurred in different studies. In this review, we'll focus on these problems to get a better understanding of AS pathogenesis.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Science, Ji'nan, Shandong, China
| | - Yazhou Cui
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jing Luan
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Xiaoyan Zhou
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
| | - Jinxiang Han
- Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, Shandong, China
- Address correspondence to: Dr. Jinxiang Han, Key Laboratory for Rare Disease Research of Shandong Province, Key Laboratory for Biotech Drugs of the Ministry of Health, Shandong Medical Biotechnological Center, Shandong Academy of Medical Sciences, Ji'nan, 250062, Shandong, China. E-mail:
| |
Collapse
|
32
|
Abstract
INTRODUCTION Apert syndrome is one of the more clinically distinct craniosynostosis syndromes in man. It is caused by gain-of-function mutations in FGFR2, over 98% of which are the two amino acid substitution mutations S252W and P253R. FGFR2 is widely expressed throughout development, so that many tissues are adversely affected in Apert syndrome, particularly the calvarial bones, which begin to fuse during embryonic development, and the brain. DISCUSSION Mouse models of both of these two causative mutations and a third rare splice mutation have been created and display many of the phenotypes typical of Apert syndrome. The molecular and cellular mechanisms underlying Apert phenotypes have begun to be elucidated, and proof-of-principle treatment of these phenotypes by chemical inhibitor and gene-based therapies has been demonstrated.
Collapse
|
33
|
Lai JJ, Chang P, Lai KP, Chen L, Chang C. The role of androgen and androgen receptor in skin-related disorders. Arch Dermatol Res 2012; 304:499-510. [PMID: 22829074 DOI: 10.1007/s00403-012-1265-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 06/15/2012] [Accepted: 07/06/2012] [Indexed: 02/05/2023]
Abstract
Androgen and androgen receptor (AR) may play important roles in several skin-related diseases, such as androgenetic alopecia and acne vulgaris. Current treatments for these androgen/AR-involved diseases, which target the synthesis of androgens or prevent its binding to AR, can cause significant adverse side effects. Based on the recent studies using AR knockout mice, it has been suggested that AR and androgens play distinct roles in the skin pathogenesis, and AR seems to be a better target than androgens for the treatment of these skin diseases. Here, we review recent studies of androgen/AR roles in several skin-related disorders, including acne vulgaris, androgenetic alopecia and hirsutism, as well as cutaneous wound healing.
Collapse
Affiliation(s)
- Jiann-Jyh Lai
- George Whipple Lab for Cancer Research, Departments of Pathology and Urology and The Wilmot Cancer Center, University of Rochester Medical Center, Box 626, URMC, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
34
|
Wang Y, Zhou X, Oberoi K, Phelps R, Couwenhoven R, Sun M, Rezza A, Holmes G, Percival CJ, Friedenthal J, Krejci P, Richtsmeier JT, Huso DL, Rendl M, Jabs EW. p38 Inhibition ameliorates skin and skull abnormalities in Fgfr2 Beare-Stevenson mice. J Clin Invest 2012; 122:2153-64. [PMID: 22585574 DOI: 10.1172/jci62644] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/04/2012] [Indexed: 12/21/2022] Open
Abstract
Beare-Stevenson cutis gyrata syndrome (BSS) is a human genetic disorder characterized by skin and skull abnormalities. BSS is caused by mutations in the FGF receptor 2 (FGFR2), but the molecular mechanisms that induce skin and skull abnormalities are unclear. We developed a mouse model of BSS harboring a FGFR2 Y394C mutation and identified p38 MAPK as an important signaling pathway mediating these abnormalities. Fgfr2+/Y394C mice exhibited epidermal hyperplasia and premature closure of cranial sutures (craniosynostosis) due to abnormal cell proliferation and differentiation. We found ligand-independent phosphorylation of FGFR2 and activation of p38 signaling in mutant skin and calvarial tissues. Treating Fgfr2+/Y394C mice with a p38 kinase inhibitor attenuated skin abnormalities by reversing cell proliferation and differentiation to near normal levels. This study reveals the pleiotropic effects of the FGFR2 Y394C mutation evidenced by cutis gyrata, acanthosis nigricans, and craniosynostosis and provides a useful model for investigating the molecular mechanisms of skin and skull development. The demonstration of a pathogenic role for p38 activation may lead to the development of therapeutic strategies for BSS and related conditions, such as acanthosis nigricans or craniosynostosis.
Collapse
Affiliation(s)
- Yingli Wang
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cuevas P, Angulo J, Giménez-Gallego G. Long-term effectiveness of dobesilate in the treatment of papulopustular rosacea. BMJ Case Rep 2011; 2011:bcr.08.2011.4579. [PMID: 22675033 DOI: 10.1136/bcr.08.2011.4579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
This case report is a representative example from a study directed to assess the long-term clinical benefit of dobesilate in rosacea in five enrolled papulopustular rosacea patients with several years of disease, treated topically with 5% potassium dobesilate cream for 3 weeks. The patient suffered papulopustular rosacea for more than 10 years, during which she received topical metronidazole and azelaic acid, and systemic doxycycline therapies without satisfactory improvement. Dobesilate treatment promoted improvement of rosacea symptoms and signs. Two years after treatment the patient still shows a good facial cosmesis.
Collapse
Affiliation(s)
- Pedro Cuevas
- Research Department, Hospital Ramon y Cajal, Madrid, Spain.
| | | | | |
Collapse
|
36
|
Melnik BC. Isotretinoin and FoxO1: A scientific hypothesis. DERMATO-ENDOCRINOLOGY 2011; 3:141-65. [PMID: 22110774 PMCID: PMC3219165 DOI: 10.4161/derm.3.3.15331] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/13/2022]
Abstract
Oral isotretinoin (13-cis retinoic acid) is the most effective drug in the treatment of acne and restores all major pathogenetic factors of acne vulgaris. isotretinoin is regarded as a prodrug which after isomerizisation to all-trans-retinoic acid (ATRA) induces apoptosis in cells cultured from human sebaceous glands, meibomian glands, neuroblastoma cells, hypothalamic cells, hippocampus cells, Dalton's lymphoma ascites cells, B16F-10 melanoma cells, and neuronal crest cells and others. By means of translational research this paper provides substantial indirect evidence for isotretinoin's mode of action by upregulation of forkhead box class O (FoxO) transcription factors. FoxOs play a pivotal role in the regulation of androgen receptor transactivation, insulin/insulin like growth factor-1 (IGF-1)-signaling, peroxisome proliferator-activated receptor-γ (PPArγ)- and liver X receptor-α (LXrα)-mediated lipogenesis, β-catenin signaling, cell proliferation, apoptosis, reactive oxygene homeostasis, innate and acquired immunity, stem cell homeostasis, as well as anti-cancer effects. An accumulating body of evidence suggests that the therapeutic, adverse, teratogenic and chemopreventive effecs of isotretinoin are all mediated by upregulation of FoxO-mediated gene transcription. These FoxO-driven transcriptional changes of the second response of retinoic acid receptor (RAR)-mediated signaling counterbalance gene expression of acne due to increased growth factor signaling with downregulated nuclear FoxO proteins. The proposed isotretinoin→ATRA→RAR→FoxO interaction offers intriguing new insights into the mode of isotretinoin action and explains most therapeutic, adverse and teratogenic effects of isotretinoin in the treatment of acne by a common mode of FoxO-mediated transcriptional regulation.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology; Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück, Germany
| |
Collapse
|
37
|
Szabó K, Kemény L. Studying the genetic predisposing factors in the pathogenesis of acne vulgaris. Hum Immunol 2011; 72:766-73. [PMID: 21669244 DOI: 10.1016/j.humimm.2011.05.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 04/28/2011] [Accepted: 05/13/2011] [Indexed: 02/04/2023]
Abstract
Acne is one of the most common dermatologic diseases in the developed regions of the world, affecting a large percentage of the population. Despite the great improvement in the number and quality of studies of the molecular etiology of this disease in the past 3 decades, the detailed molecular pathogenesis and the cause of the large individual variations in severity of skin symptoms remain unknown. The roles of genetic inheritance and special genetic susceptibility and protective factors have been suggested for over 100 years, but their identification and determination started only in the 1990s. To date, only a small number of genetic polymorphisms affecting the expression and/or function of a handful of genes have been investigated. This review surveys the major findings of the classic and molecular genetic studies that have been conducted in this field, draws conclusions, and indicates how the available data help our current understanding of the pathogenesis of this common skin disease.
Collapse
Affiliation(s)
- Kornélia Szabó
- Dermatological Research Group of the Hungarian Academy of Sciences, Szeged, Hungary.
| | | |
Collapse
|
38
|
Chen W, Obermayer-Pietsch B, Hong JB, Melnik BC, Yamasaki O, Dessinioti C, Ju Q, Liakou AI, Al-Khuzaei S, Katsambas A, Ring J, Zouboulis CC. Acne-associated syndromes: models for better understanding of acne pathogenesis. J Eur Acad Dermatol Venereol 2010; 25:637-46. [DOI: 10.1111/j.1468-3083.2010.03937.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
39
|
|
40
|
|