1
|
Ertle CM, Rommel FR, Tumala S, Moriwaki Y, Klein J, Kruse J, Gieler U, Peters EMJ. New Pathways for the Skin's Stress Response: The Cholinergic Neuropeptide SLURP-1 Can Activate Mast Cells and Alter Cytokine Production in Mice. Front Immunol 2021; 12:631881. [PMID: 33815383 PMCID: PMC8012551 DOI: 10.3389/fimmu.2021.631881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/24/2021] [Indexed: 12/20/2022] Open
Abstract
Background: The alpha7 nicotinic acetylcholine receptor (Chrna7) plays an essential anti-inflammatory role in immune homeostasis and was recently found on mast cells (MC). Psychosocial stress can trigger MC hyperactivation and increases pro-inflammatory cytokines in target tissues such as the skin. If the cholinergic system (CS) and Chrna7 ligands play a role in these cascades is largely unknown. Objective: To elucidate the role of the CS in the response to psychosocial stress using a mouse-model for stress-triggered cutaneous inflammatory circuits. Methods: Key CS markers (ACh, Ch, SLURP-1, SLURP-2, Lynx1, Chrm3, Chrna7, Chrna9, ChAT, VAChT, Oct3, AChE, and BChE) in skin and its MC (sMC), MC activation, immune parameters (TNFα, IL1β, IL10, TGFβ, HIF1α, and STAT3) and oxidative stress were analyzed in skin from 24 h noise-stressed mice and in cultured MC (cMC) from C57BL/6 or Chrna7-Knockout mice. Results: First, Chrna7 and SLURP-1 mRNA were exclusively upregulated in stressed skin. Second, histomorphometry located Chrna7 and SLURP-1 in nerves and sMC and demonstrated upregulated contacts and increased Chrna7+ sMC in stressed skin, while 5 ng/mL SLURP-1 degranulated cMC. Third, IL1β+ sMC were high in stressed skin, and while SLURP-1 alone had no significant effect on cMC cytokines, it upregulated IL1β in cMC from Chrna7-KO and in IL1β-treated wildtype cMC. In addition, HIF1α+ sMC were high in stressed skin and Chrna7-agonist AR-R 17779 induced ROS in cMC while SLURP-1 upregulated TNFα and IL1β in cMC when HIF1α was blocked. Conclusions: These data infer that the CS plays a role in the regulation of stress-sensitive inflammatory responses but may have a surprising pro-inflammatory effect in healthy skin, driving IL1β expression if SLURP-1 is involved.
Collapse
Affiliation(s)
- Christoph M Ertle
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Frank R Rommel
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Susanne Tumala
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Jochen Klein
- Department of Pharmacology, Biocenter N260, Goethe University Frankfurt, Frankfurt, Germany
| | - Johannes Kruse
- Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Clinic for Psychosomatic Medicine and Psychotherapy, Philipps University of Marburg, Marburg, Germany
| | - Uwe Gieler
- Department of Dermatology, University Hospital Giessen, Giessen, Germany
| | - Eva M J Peters
- Psychoneuroimmunology Laboratory, Clinic for Psychosomatic Medicine and Psychotherapy, Justus-Liebig-University Giessen, Giessen, Germany.,Charité Center 12 for Internal Medicine and Dermatology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
2
|
Swamynathan S, Tiwari A, Loughner CL, Gnalian J, Alexander N, Jhanji V, Swamynathan SK. The secreted Ly6/uPAR-related protein-1 suppresses neutrophil binding, chemotaxis, and transmigration through human umbilical vein endothelial cells. Sci Rep 2019; 9:5898. [PMID: 30976100 PMCID: PMC6459912 DOI: 10.1038/s41598-019-42437-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/29/2019] [Indexed: 11/09/2022] Open
Abstract
The secreted Ly-6/uPAR Related Protein-1 (SLURP1) is an immunomodulatory protein that promotes corneal immune- and angiogenic-privilege. Here, we have examined the influence of SLURP1 on neutrophil-vascular endothelial cell interactions using human umbilical vein endothelial cells (HUVEC) and differentiated neutrophil-like HL-60 (dHL-60) cells, or primary human neutrophils. SLURP1 blocked the tumor necrosis factor-alpha (TNF-α)-activated dHL-60 cells (i) binding to TNF-α-activated HUVEC with a concurrent reduction in endothelial cell adhesion molecule E-selectin, (ii) transmigration through TNF-α-activated confluent HUVEC monolayer by stabilizing VE-cadherin and β-catenin on endothelial cell cytoplasmic membranes, (iii) chemotaxis towards chemoattractant formyl Met-Leu-Phe (fMLP) coupled with their decreased polarization, and (iv) TNF-α-stimulated matrix metalloproteinase-9 (MMP9) expression and activity. SLURP1 also suppressed the primary human neutrophil chemotaxis, and interaction with HUVEC. Furthermore, SLURP1 suppressed fMLP-induced phosphorylation of protein kinase-B (AKT) in dHL-60 cells. Collectively, these results provide evidence that SLURP1 suppresses neutrophil (i) docking on HUVEC cells by decreasing endothelial cell adhesion molecule E-Selectin production, (ii) transmigration through HUVEC monolayer by stabilizing endothelial cell membrane localization of VE-cadherin and β-catenin complex and promoting their barrier function, and (iii) chemotaxis by modulating their polarization and TNF-α-stimulated MMP9 production.
Collapse
Affiliation(s)
- Sudha Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Anil Tiwari
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Chelsea L Loughner
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA.,Lake Erie College of Osteopathic Medicine, Greensburg, PA, USA
| | - John Gnalian
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA.,School of Biological Sciences, University of Pittsburgh, Pittsburgh, USA
| | - Nicholas Alexander
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, USA. .,Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, USA. .,Fox Center for Vision Restoration, University of Pittsburgh School of Medicine, Pittsburgh, USA. .,McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, USA.
| |
Collapse
|
3
|
Lyukmanova EN, Bychkov ML, Sharonov GV, Efremenko AV, Shulepko MA, Kulbatskii DS, Shenkarev ZO, Feofanov AV, Dolgikh DA, Kirpichnikov MP. Human secreted proteins SLURP-1 and SLURP-2 control the growth of epithelial cancer cells via interactions with nicotinic acetylcholine receptors. Br J Pharmacol 2018; 175:1973-1986. [PMID: 29505672 DOI: 10.1111/bph.14194] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/19/2018] [Accepted: 02/22/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nicotinic acetylcholine receptors (nAChRs) are a promising target for development of new anticancer therapies. Here we have investigated the effects of the endogenous human proteins SLURP-1 and SLURP-2, antagonists of nAChRs, on human epithelial cancer cells. EXPERIMENTAL APPROACH Growth of epithelial cancer cells (A431, SKBR3, MCF-7, A549, HT-29) exposed to SLURP-1, SLURP-2, mecamylamine, atropine, timolol and gefitinib was measured by the WST-1 test. Expression levels of SLURP-1, α7-nAChR and EGF receptors and their distribution in cancer cells were studied by confocal microscopy and flow cytometry. Secretion of endogenous SLURP-1 by A431 cells under treatment with recombinant SLURP-1 was analysed by Western-blotting. KEY RESULTS SLURP-1 and SLURP-2 significantly inhibited growth of A431, SKBR3, MCF-7 and HT-29 cells at concentrations above 1 nM, to 40-70% of the control, in 24 h. Proliferation of A549 cells was inhibited only by SLURP-1. The anti-proliferative activity of SLURPs on A431 cells was associated with nAChRs, but not with β-adrenoceptors or EGF receptors. Action of gefitinib and SLURPs was additive and resulted almost complete inhibition of A431 cell proliferation during 24 h. Exposure of A431 cells to recombinant SLURP-1 down-regulated α7-nAChR expression and induced secretion of endogenous SLURP-1 from intracellular depots, increasing its concentration in the extracellular media. CONCLUSIONS AND IMPLICATIONS SLURPs inhibit growth of epithelial cancer cells in vitro and merit further investigation as potential agents for anticancer therapy. LINKED ARTICLES This article is part of a themed section on Nicotinic Acetylcholine Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.11/issuetoc.
Collapse
Affiliation(s)
- E N Lyukmanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Moscow Institute of Physics and Technology, Moscow Region, Russian Federation
| | - M L Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - G V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - A V Efremenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - M A Shulepko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - D S Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - Z O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation.,Moscow Institute of Physics and Technology, Moscow Region, Russian Federation
| | - A V Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - D A Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| | - M P Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russian Federation.,Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
4
|
Throm VM, Männle D, Giese T, Bauer AS, Gaida MM, Kopitz J, Bruckner T, Plaschke K, Grekova SP, Felix K, Hackert T, Giese NA, Strobel O. Endogenous CHRNA7-ligand SLURP1 as a potential tumor suppressor and anti-nicotinic factor in pancreatic cancer. Oncotarget 2018; 9:11734-11751. [PMID: 29545933 PMCID: PMC5837762 DOI: 10.18632/oncotarget.24312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 12/05/2017] [Indexed: 01/18/2023] Open
Abstract
Smoking is associated with increased risk and poorer prognosis of pancreatic ductal adenocarcinoma (PDAC). Nicotine acts through cholinergic nicotinic receptors, preferentially α7 (CHRNA7) that also binds the endogenous ligand SLURP1 (Secreted Ly-6/uPAR-Related Protein 1). The clinical significance of SLURP1 and its interaction with nicotine in PDAC are unclear. We detected similar levels of SLURP1 in sera from healthy donors and patients with chronic pancreatitis or PDAC; higher preoperative values were associated with significantly better survival in patients with resected tumors. Pancreatic tissue was not a source of circulating SLURP1 but contained diverse CHRNA7-expressing cells, preferentially epithelial and immune, whereas stromal stellate cells and a quarter of the tumor cells lacked CHRNA7. The CHRNA7 mRNA levels were decreased in PDAC, and CHRNA7high-PDAC patients lived longer. In CHRNA7high COLO357 and PANC-1 cultures, opposing activities of SLURP1 (anti-malignant/CHRNA7-dependent) and nicotine (pro-malignant/CHRNA7-infidel) were exerted without reciprocally interfering with receptor binding or downstream signaling. These data suggested that the ligands act independently and abolish each other’s effects through a mechanism resembling functional antagonism. Thus, SLURP1 might represent an inborn anti-PDAC defense being sensitive to and counteracting nicotine. Boosting SLURP1-CHRNA7 interaction might represent a novel strategy for treatment in high-risk individuals, i.e., smokers with pancreatic cancer.
Collapse
Affiliation(s)
- Verena M Throm
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - David Männle
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Giese
- Institute of Immunology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andrea S Bauer
- Department of Functional Genomics, DKFZ, Heidelberg, Germany
| | - Matthias M Gaida
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juergen Kopitz
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Thomas Bruckner
- Institute of Medical Biometry and Informatics/IMBI, University Hospital Heidelberg, Heidelberg, Germany
| | - Konstanze Plaschke
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Svetlana P Grekova
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Felix
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Thilo Hackert
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalia A Giese
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Oliver Strobel
- European Pancreas Centre/EPZ, Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
5
|
Swamynathan S, Delp EE, Harvey SAK, Loughner CL, Raju L, Swamynathan SK. Corneal Expression of SLURP-1 by Age, Sex, Genetic Strain, and Ocular Surface Health. Invest Ophthalmol Vis Sci 2016; 56:7888-96. [PMID: 26670825 DOI: 10.1167/iovs.15-18206] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Although secreted Ly6/urokinase-type plasminogen activator receptor-related protein-1 (Slurp1) transcript is highly abundant in the mouse cornea, corresponding protein expression remains uncharacterized. Also, SLURP1 was undetected in previous tear proteomics studies, resulting in ambiguity about its baseline levels. Here, we examine mouse corneal Slurp1 expression in different sexes, age groups, strains, and health conditions, and quantify SLURP1 in human tears from healthy or inflamed ocular surfaces. METHODS Expression of Slurp1 in embryonic day-13 (E13), E16, postnatal day-1 (PN1), PN10, PN20, and PN70 Balb/C, FVBN, C57Bl/6, and DBA/2J mouse corneas, Klf4Δ/ΔCE corneas with corneal epithelial-specific ablation of Klf4, migrating cells in wild-type corneal epithelial wound edge, and in corneas exposed to pathogen-associated molecular patterns (PAMPs) poly(I:C), zymosan-A, or Pam3Csk4 was examined by QPCR, immunoblots, and immunofluorescent staining. Human SLURP1 levels were quantified by ELISA in tears from 34 men and women aged 18 to 80 years. RESULTS Expression of Slurp1, comparable in different strains and sexes, was low in E13, E16, PN1, and PN10 mouse corneas, and increased rapidly after eyelid opening in a Klf4-dependent manner. We found Slurp1 was downregulated in corneas exposed to PAMPs, and in migrating cells at the wound edge. Human SLURP1 expression, comparable in different sexes and age groups, was significantly decreased in tears from inflamed ocular surfaces (0.34%) than those from healthy individuals (0.77%). CONCLUSIONS These data describe the influence of age, sex, genetic background, and ocular surface health on mouse corneal expression of Slurp1, establish the baseline for human tear SLURP1 expression, and identify SLURP1 as a useful diagnostic and/or therapeutic target for inflammatory ocular surface disorders.
Collapse
Affiliation(s)
- Sudha Swamynathan
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Emili E Delp
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Stephen A K Harvey
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Chelsea L Loughner
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Leela Raju
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Shivalingappa K Swamynathan
- Department of Ophthalmology University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States 2McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States 3Department of Cell Biology, Un
| |
Collapse
|
6
|
Lyukmanova EN, Shulepko MA, Bychkov ML, Shenkarev ZO, Paramonov AS, Chugunov AO, Arseniev AS, Dolgikh DA, Kirpichnikov MP. Human SLURP-1 and SLURP-2 Proteins Acting on Nicotinic Acetylcholine Receptors Reduce Proliferation of Human Colorectal Adenocarcinoma HT-29 Cells. Acta Naturae 2014; 6:60-6. [PMID: 25558396 PMCID: PMC4273093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
Human secreted Ly-6/uPAR related proteins (SLURP-1 and SLURP-2) are produced by various cells, including the epithelium and immune system. These proteins act as autocrine/paracrine hormones regulating the growth and differentiation of keratinocytes and are also involved in the control of inflammation and malignant cell transformation. These effects are assumed to be mediated by the interactions of SLURP-1 and SLURP-2 with the α7 and α3β2 subtypes of nicotinic acetylcholine receptors (nAChRs), respectively. Available knowledge about the molecular mechanism underling the SLURP-1 and SLURP-2 effects is very limited. SLURP-2 remains one of the most poorly studied proteins of the Ly-6/uPAR family. In this study, we designed for the first time a bacterial system for SLURP-2 expression and a protocol for refolding of the protein from cytoplasmic inclusion bodies. Milligram quantities of recombinant SLURP-2 and its 13C-15N-labeled analog were obtained. The recombinant protein was characterized by NMR spectroscopy, and a structural model was developed. A comparative study of the SLURP-1 and SLURP-2 effects on the epithelial cell growth was conducted using human colorectal adenocarcinoma HT-29 cells, which express only α7-nAChRs. A pronounced antiproliferative effect of both proteins was observed. Incubation of cells with 1 μM SLURP-1 and 1 μM SLURP-2 during 48 h led to a reduction in the cell number down to ~ 54 and 63% relative to the control, respectively. Fluorescent microscopy did not reveal either apoptotic or necrotic cell death. An analysis of the dose-response curve revealed the concentration-dependent mode of the SLURP-1 and SLURP-2 action with EC50 ~ 0.1 and 0.2 nM, respectively. These findings suggest that the α7-nAChR is the main receptor responsible for the antiproliferative effect of SLURP proteins in epithelial cells.
Collapse
Affiliation(s)
- E. N. Lyukmanova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - M. A. Shulepko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - M. L. Bychkov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - Z. O. Shenkarev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - A. S. Paramonov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - A. O. Chugunov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - A. S. Arseniev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Moscow Institute of Physics and Technology (State University), Institutskii per., 9, Dolgoprudny, Moscow Region, 141700, Russia
| | - D. A. Dolgikh
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| | - M. P. Kirpichnikov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str., 16/10, Moscow, 117997, Russian Federation
- Biological Department, Lomonosov Moscow State University, Vorobievy Gory, 1, Moscow, 119991, Russia
| |
Collapse
|
7
|
Anti-inflammatory effects of the nicotinergic peptides SLURP-1 and SLURP-2 on human intestinal epithelial cells and immunocytes. BIOMED RESEARCH INTERNATIONAL 2014; 2014:609086. [PMID: 24877120 PMCID: PMC4024406 DOI: 10.1155/2014/609086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022]
Abstract
A search for novel and more efficient therapeutic modalities of inflammatory bowel disease (IBD) is one of the most important tasks of contemporary medicine. The anti-inflammatory action of nicotine in IBD might be therapeutic, but its toxicity due to off-target and nonreceptor effects limited its use and prompted a search for nontoxic nicotinergic drugs. We tested the hypothesis that SLURP-1 and -2—the physiological nicotinergic substances produced by the human intestinal epithelial cells (IEC) and immunocytes—can mimic the anti-inflammatory effects of nicotine. We used human CCL-241 enterocytes, CCL-248 colonocytes, CCRF-CEM T-cells, and U937 macrophages. SLURP-1 diminished the TLR9-dependent secretion of IL-8 by CCL-241, and IFNγ-induced upregulation of ICAM-1 in both IEC types. rSLURP-2 inhibited IL-1β-induced secretion of IL-6 and TLR4- and TLR9-dependent induction of CXCL10 and IL-8, respectively, in CCL-241. rSLURP-1 decreased production of TNFα by T-cells, downregulated IL-1β and IL-6 secretion by macrophages, and moderately upregulated IL-10 production by both types of immunocytes. SLURP-2 downregulated TNFα and IFNγR in T-cells and reduced IL-6 production by macrophages. Combining both SLURPs amplified their anti-inflammatory effects. Learning the pharmacology of SLURP-1 and -2 actions on enterocytes, colonocytes, T cells, and macrophages may help develop novel effective treatments of IBD.
Collapse
|
8
|
Fujii T, Horiguchi K, Sunaga H, Moriwaki Y, Misawa H, Kasahara T, Tsuji S, Kawashima K. SLURP-1, an endogenous α7 nicotinic acetylcholine receptor allosteric ligand, is expressed in CD205+ dendritic cells in human tonsils and potentiates lymphocytic cholinergic activity. J Neuroimmunol 2014; 267:43-9. [DOI: 10.1016/j.jneuroim.2013.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/01/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|