1
|
Phillips M, Malone KL, Boyle BW, Montgomery C, Kressy IA, Joseph FM, Bright KM, Boyson SP, Chang S, Nix JC, Young NL, Jeffers V, Frietze S, Glass KC. Impact of Combinatorial Histone Modifications on Acetyllysine Recognition by the ATAD2 and ATAD2B Bromodomains. J Med Chem 2024; 67:8186-8200. [PMID: 38733345 PMCID: PMC11149620 DOI: 10.1021/acs.jmedchem.4c00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2024]
Abstract
The ATPase family AAA+ domain containing 2 (ATAD2) protein and its paralog ATAD2B have a C-terminal bromodomain (BRD) that functions as a reader of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2/B BRDs to select acetylated lysine among multiple histone post-translational modifications. The ATAD2B BRD can bind acetylated histone ligands that also contain adjacent methylation or phosphorylation marks, while the presence of these modifications significantly weakened the acetyllysine binding activity of the ATAD2 BRD. Our structural studies provide mechanistic insights into how ATAD2/B BRD-binding pocket residues coordinate the acetyllysine group in the context of adjacent post-translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands impact the recognition of an adjacent acetyllysine residue. Our study highlights how the interplay between multiple combinations of histone modifications influences the reader activity of the ATAD2/B BRDs, resulting in distinct binding modes.
Collapse
Affiliation(s)
- Margaret Phillips
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Kiera L Malone
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Brian W Boyle
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Cameron Montgomery
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Isabelle A Kressy
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
| | - Faith M Joseph
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Kathleen M Bright
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Samuel P Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Sunsik Chang
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| | - Jay C Nix
- Molecular Biology Consortium, Advanced Light Source, Berkeley, California 94720, United States
| | - Nicolas L Young
- Verna & Marrs McLean Department of Biochemistry & Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, United States
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas 77030, United States
| | - Victoria Jeffers
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, New Hampshire 03824, United States
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Karen C Glass
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont 05405, United States
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, Vermont 05446, United States
| |
Collapse
|
2
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Boyson SP, Gao C, Quinn K, Boyd J, Paculova H, Frietze S, Glass KC. Functional Roles of Bromodomain Proteins in Cancer. Cancers (Basel) 2021; 13:3606. [PMID: 34298819 PMCID: PMC8303718 DOI: 10.3390/cancers13143606] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Histone acetylation is generally associated with an open chromatin configuration that facilitates many cellular processes including gene transcription, DNA repair, and DNA replication. Aberrant levels of histone lysine acetylation are associated with the development of cancer. Bromodomains represent a family of structurally well-characterized effector domains that recognize acetylated lysines in chromatin. As part of their fundamental reader activity, bromodomain-containing proteins play versatile roles in epigenetic regulation, and additional functional modules are often present in the same protein, or through the assembly of larger enzymatic complexes. Dysregulated gene expression, chromosomal translocations, and/or mutations in bromodomain-containing proteins have been correlated with poor patient outcomes in cancer. Thus, bromodomains have emerged as a highly tractable class of epigenetic targets due to their well-defined structural domains, and the increasing ease of designing or screening for molecules that modulate the reading process. Recent developments in pharmacological agents that target specific bromodomains has helped to understand the diverse mechanisms that bromodomains play with their interaction partners in a variety of chromatin processes, and provide the promise of applying bromodomain inhibitors into the clinical field of cancer treatment. In this review, we explore the expression and protein interactome profiles of bromodomain-containing proteins and discuss them in terms of functional groups. Furthermore, we highlight our current understanding of the roles of bromodomain-containing proteins in cancer, as well as emerging strategies to specifically target bromodomains, including combination therapies using bromodomain inhibitors alongside traditional therapeutic approaches designed to re-program tumorigenesis and metastasis.
Collapse
Affiliation(s)
- Samuel P. Boyson
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Cong Gao
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Kathleen Quinn
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Joseph Boyd
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Hana Paculova
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
| | - Seth Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; (C.G.); (J.B.); (H.P.)
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| | - Karen C. Glass
- Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA;
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
- University of Vermont Cancer Center, Burlington, VT 05405, USA
| |
Collapse
|
4
|
Shatnawi A, Abu Rabe DI, Frigo DE. Roles of the tumor suppressor inhibitor of growth family member 4 (ING4) in cancer. Adv Cancer Res 2021; 152:225-262. [PMID: 34353439 DOI: 10.1016/bs.acr.2021.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inhibitor of growth family member 4 (ING4) is best known as a tumor suppressor that is frequently downregulated, deleted, or mutated in many cancers. ING4 regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, autophagy, invasion, angiogenesis, DNA repair and chromatin remodeling. ING4 alters local chromatin structure by functioning as an epigenetic reader of H3K4 trimethylation histone marks (H3K4Me3) and regulating gene transcription through directing histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes. ING4 may serve as a useful prognostic biomarker for many cancer types and help guide treatment decisions. This review provides an overview of ING4's central functions in gene expression and summarizes current literature on the role of ING4 in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Pharmaceutical and Administrative Sciences, University of Charleston School of Pharmacy, Charleston, WV, United States.
| | - Dina I Abu Rabe
- Integrated Bioscience Program, North Carolina Central University, Durham, NC, United States
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
5
|
Furlan T, Kirchmair A, Sampson N, Puhr M, Gruber M, Trajanoski Z, Santer FR, Parson W, Handle F, Culig Z. MYC-Mediated Ribosomal Gene Expression Sensitizes Enzalutamide-resistant Prostate Cancer Cells to EP300/CREBBP Inhibitors. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1094-1107. [PMID: 33705753 DOI: 10.1016/j.ajpath.2021.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/22/2022]
Abstract
Patients with advanced prostate cancer are frequently treated with the antiandrogen enzalutamide. However, resistance eventually develops in virtually all patients, and various mechanisms have been associated with this process. The histone acetyltransferases EP300 and CREBBP are involved in regulation of cellular events in advanced prostate cancer. This study investigated the role of EP300/CREBBP inhibitors in enzalutamide-resistant prostate cancer. EP300/CREBBP inhibitors led to the same inhibition of androgen receptor activity in enzalutamide-resistant and -sensitive cells. However, enzalutamide-resistant cells were more sensitive to these inhibitors in viability assays. As indicated by the RNA-sequencing-based pathway analysis, genes related to the ribosome and MYC activity were significantly altered upon EP300/CREBBP inhibitor treatment. EP300/CREBBP inhibitors led to the down-regulation of ribosomal proteins RPL36 and RPL29. High-level ribosomal proteins amplifications and MYC amplifications were observed in castration-resistant prostate cancer samples of the publicly available Stand Up to Cancer data set. An inhibitor of RNA polymerase I-mediated transcription was used to evaluate the functional implications of these findings. The enzalutamide-resistant cell lines were more sensitive to this treatment. In addition, the migration rate of enzalutamide-resistant cells was strongly inhibited by this treatment. Taken together, the current data show that EP300/CREBBP inhibitors affect the MYC/ribosomal protein axis in enzalutamide-resistant cells and may have promising therapeutic implications.
Collapse
Affiliation(s)
- Tobias Furlan
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alexander Kirchmair
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Natalie Sampson
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin Puhr
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martina Gruber
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Frédéric R Santer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria; Forensic Science Program, The Pennsylvania State University, University Park, Pennsylvania
| | - Florian Handle
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Iwasaki H, Ichihara Y, Morino K, Lemecha M, Sugawara L, Sawano T, Miake J, Sakurai H, Nishi E, Maegawa H, Imamura T. MicroRNA-494-3p inhibits formation of fast oxidative muscle fibres by targeting E1A-binding protein p300 in human-induced pluripotent stem cells. Sci Rep 2021; 11:1161. [PMID: 33441918 PMCID: PMC7806978 DOI: 10.1038/s41598-020-80742-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023] Open
Abstract
MYOD-induced microRNA-494-3p expression inhibits fast oxidative myotube formation by downregulating myosin heavy chain 2 (MYH2) in human induced pluripotent stem cells (hiPSCs) during skeletal myogenesis. However, the molecular mechanisms regulating MYH2 expression via miR-494-3p remain unknown. Here, using bioinformatic analyses, we show that miR-494-3p potentially targets the transcript of the E1A-binding protein p300 at its 3'-untranslated region (UTR). Myogenesis in hiPSCs with the Tet/ON-myogenic differentiation 1 (MYOD1) gene (MyoD-hiPSCs) was induced by culturing them in doxycycline-supplemented differentiation medium for 7 days. p300 protein expression decreased after transient induction of miR-494-3p during myogenesis. miR-494-3p mimics decreased the levels of p300 and its downstream targets MYOD and MYH2 and myotube formation efficiency. p300 knockdown decreased myotube formation efficiency, MYH2 expression, and basal oxygen consumption rate. The binding of miR-494-3p to the wild type p300 3'-UTR, but not the mutated site, was confirmed using luciferase assay. Overexpression of p300 rescued the miR-494-3p mimic-induced phenotype in MyoD-hiPSCs. Moreover, miR-494-3p mimic reduced the levels of p300, MYOD, and MYH2 in skeletal muscles in mice. Thus, miR-494-3p might modulate MYH2 expression and fast oxidative myotube formation by directly regulating p300 levels during skeletal myogenesis in MyoD-hiPSCs and murine skeletal muscle tissues.
Collapse
Affiliation(s)
- Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Ichihara
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Katsutaro Morino
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan.
| | - Mengistu Lemecha
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
- Department of Molecular and Cellular Biology, City of Hope, Los Angeles, USA
| | - Lucia Sugawara
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Tatsuya Sawano
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Junichiro Miake
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Hidetoshi Sakurai
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Maegawa
- Division of Endocrinology and Metabolism, Department of Medicine, Shiga University of Medical Science, Tsukinowa, Seta, Otsu, Shiga, 520-2192, Japan
| | - Takeshi Imamura
- Division of Pharmacology, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
7
|
Gomathi K, Akshaya N, Srinaath N, Rohini M, Selvamurugan N. Histone acetyl transferases and their epigenetic impact on bone remodeling. Int J Biol Macromol 2020; 170:326-335. [PMID: 33373635 DOI: 10.1016/j.ijbiomac.2020.12.173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 12/13/2022]
Abstract
Bone remodeling is a complex event that maintains bone homeostasis. The epigenetic mechanism of the regulation of bone remodeling has been a major research focus over the past decades. Histone acetylation is an influential post-translational modification in chromatin architecture. Acetylation affects chromatin structure by offering binding signals for reader proteins that harbor acetyl-lysine recognition domains. This review summarizes recent data of histone acetylation in bone remodeling. The crux of this review is the functional role of histone acetyltransferases, the key promoters of histone acetylation. The functional regulation of acetylation via noncoding RNAs in bone remodeling is also discussed. Understanding the principles governing histone acetylation in bone remodeling would lead to the development of better epigenetic therapies for bone diseases.
Collapse
Affiliation(s)
- K Gomathi
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Srinaath
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
8
|
Wang Y, Sun B, Zhang Q, Dong H, Zhang J. p300 Acetylates JHDM1A to inhibit osteosarcoma carcinogenesis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2891-2899. [PMID: 31307234 DOI: 10.1080/21691401.2019.1638790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yongkun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Baozhen Sun
- Department of Hepatopancreatobiliary Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qiao Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hang Dong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jingzhe Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
9
|
Barros L, Eichwald T, Solano AF, Scheffer D, da Silva RA, Gaspar JM, Latini A. Epigenetic modifications induced by exercise: Drug-free intervention to improve cognitive deficits associated with obesity. Physiol Behav 2019; 204:309-323. [PMID: 30876771 DOI: 10.1016/j.physbeh.2019.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/11/2019] [Accepted: 03/11/2019] [Indexed: 12/30/2022]
Abstract
Obesity and metabolic disorders are increasing worldwide and are associated with brain atrophy and dysfunction, which are risk factors for late-onset dementia and Alzheimer's disease. Epidemiological studies demonstrated that changes in lifestyle, including the frequent practice of physical exercise are able to prevent and treat not only obesity/metabolic disorders, but also to improve cognitive function and dementia. Several biochemical pathways and epigenetic mechanisms have been proposed to understand the beneficial effects of physical exercise on cognition. This manuscript revised central ongoing research on epigenetic mechanisms induced by exercise and the beneficial effects on obesity-associated cognitive decline, highlighting potential mechanistic mediators.
Collapse
Affiliation(s)
- Leonardo Barros
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Tuany Eichwald
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Alexandre Francisco Solano
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Débora Scheffer
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Rodrigo Augusto da Silva
- Departamento de Química e Bioquímica, Laboratório de Bioensaios e Dinâmica Celular, Universidade Estadual Paulista (UNESP), Instituto de Biociências, Campus Botucatu, Botucatu, Brazil
| | - Joana M Gaspar
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil; Programa de Pós-Graduação em Bioquímica, UFSC, Florianópolis, Brazil
| | - Alexandra Latini
- Laboratório de Bioenergética e Estresse Oxidativo (LABOX), Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil.
| |
Collapse
|
10
|
Epigenetic regulation and chromatin remodeling in learning and memory. Exp Mol Med 2017; 49:e281. [PMID: 28082740 PMCID: PMC5291841 DOI: 10.1038/emm.2016.140] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/21/2016] [Accepted: 09/25/2016] [Indexed: 01/12/2023] Open
Abstract
Understanding the underlying mechanisms of memory formation and maintenance has been a major goal in the field of neuroscience. Memory formation and maintenance are tightly controlled complex processes. Among the various processes occurring at different levels, gene expression regulation is especially crucial for proper memory processing, as some genes need to be activated while some genes must be suppressed. Epigenetic regulation of the genome involves processes such as DNA methylation and histone post-translational modifications. These processes edit genomic properties or the interactions between the genome and histone cores. They then induce structural changes in the chromatin and lead to transcriptional changes of different genes. Recent studies have focused on the concept of chromatin remodeling, which consists of 3D structural changes in chromatin in relation to gene regulation, and is an important process in learning and memory. In this review, we will introduce three major epigenetic processes involved in memory regulation: DNA methylation, histone methylation and histone acetylation. We will also discuss general mechanisms of long-term memory storage and relate the epigenetic control of learning and memory to chromatin remodeling. Finally, we will discuss how epigenetic mechanisms can contribute to the pathologies of neurological disorders and cause memory-related symptoms.
Collapse
|
11
|
Pifer PM, Farris JC, Thomas AL, Stoilov P, Denvir J, Smith DM, Frisch SM. Grainyhead-like 2 inhibits the coactivator p300, suppressing tubulogenesis and the epithelial-mesenchymal transition. Mol Biol Cell 2016; 27:2479-92. [PMID: 27251061 PMCID: PMC4966987 DOI: 10.1091/mbc.e16-04-0249] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022] Open
Abstract
GRHL2 suppresses EMT to give a default epithelial phenotype. GRHL2 inhibits this process through the histone acetyltransferase coactivator p300, repressing the partial EMT and preventing induction of MMPs. The results demonstrate novel roles for p300 and GRHL2 in promoting or suppressing EMT in morphogenesis and tumor progression. Developmental morphogenesis and tumor progression require a transient or stable breakdown of epithelial junctional complexes to permit programmed migration, invasion, and anoikis resistance, characteristics endowed by the epithelial–mesenchymal transition (EMT). The epithelial master-regulatory transcription factor Grainyhead-like 2 (GRHL2) suppresses and reverses EMT, causing a mesenchymal–epithelial transition to the default epithelial phenotype. Here we investigated the role of GRHL2 in tubulogenesis of Madin–Darby canine kidney cells, a process requiring transient, partial EMT. GRHL2 was required for cystogenesis, but it suppressed tubulogenesis in response to hepatocyte growth factor. Surprisingly, GRHL2 suppressed this process by inhibiting the histone acetyltransferase coactivator p300, preventing the induction of matrix metalloproteases and other p300-dependent genes required for tubulogenesis. A 13–amino acid region of GRHL2 was necessary for inhibition of p300, suppression of tubulogenesis, and interference with EMT. The results demonstrate that p300 is required for partial or complete EMT occurring in tubulogenesis or tumor progression and that GRHL2 suppresses EMT in both contexts through inhibition of p300.
Collapse
Affiliation(s)
- Phillip M Pifer
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Joshua C Farris
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Alyssa L Thomas
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506
| | - Peter Stoilov
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - James Denvir
- Department of Biochemistry and Microbiology, Marshall University, Huntington, WV 25755
| | - David M Smith
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| | - Steven M Frisch
- Mary Babb Randolph Cancer Center, West Virginia University, Morgantown, WV 26506 Department of Biochemistry, West Virginia University, Morgantown, WV 26506
| |
Collapse
|
12
|
Ghosh S, Taylor A, Chin M, Huang HR, Conery AR, Mertz JA, Salmeron A, Dakle PJ, Mele D, Cote A, Jayaram H, Setser JW, Poy F, Hatzivassiliou G, DeAlmeida-Nagata D, Sandy P, Hatton C, Romero FA, Chiang E, Reimer T, Crawford T, Pardo E, Watson VG, Tsui V, Cochran AG, Zawadzke L, Harmange JC, Audia JE, Bryant BM, Cummings RT, Magnuson SR, Grogan JL, Bellon SF, Albrecht BK, Sims RJ, Lora JM. Regulatory T Cell Modulation by CBP/EP300 Bromodomain Inhibition. J Biol Chem 2016; 291:13014-27. [PMID: 27056325 DOI: 10.1074/jbc.m115.708560] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Indexed: 12/31/2022] Open
Abstract
Covalent modification of histones is a fundamental mechanism of regulated gene expression in eukaryotes, and interpretation of histone modifications is an essential feature of epigenetic control. Bromodomains are specialized binding modules that interact with acetylated histones, linking chromatin recognition to gene transcription. Because of their ability to function in a domain-specific fashion, selective disruption of bromodomain:acetylated histone interactions with chemical probes serves as a powerful means for understanding biological processes regulated by these chromatin adaptors. Here we describe the discovery and characterization of potent and selective small molecule inhibitors for the bromodomains of CREBBP/EP300 that engage their target in cellular assays. We use these tools to demonstrate a critical role for CREBBP/EP300 bromodomains in regulatory T cell biology. Because regulatory T cell recruitment to tumors is a major mechanism of immune evasion by cancer cells, our data highlight the importance of CREBBP/EP300 bromodomain inhibition as a novel, small molecule-based approach for cancer immunotherapy.
Collapse
Affiliation(s)
- Srimoyee Ghosh
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Alexander Taylor
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Melissa Chin
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Hon-Ren Huang
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Andrew R Conery
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Jennifer A Mertz
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Andres Salmeron
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Pranal J Dakle
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Deanna Mele
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Alexandre Cote
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Hari Jayaram
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Jeremy W Setser
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Florence Poy
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | | | | | - Peter Sandy
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Charlie Hatton
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | | | - Eugene Chiang
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | | | | | - Eneida Pardo
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Venita G Watson
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Vickie Tsui
- Genentech, Inc., South San Francisco, California 94080
| | | | - Laura Zawadzke
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | | | - James E Audia
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Barbara M Bryant
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | | | | | - Jane L Grogan
- Genentech, Inc., South San Francisco, California 94080
| | - Steve F Bellon
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Brian K Albrecht
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Robert J Sims
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| | - Jose M Lora
- From the Constellation Pharmaceuticals, Inc., Massachusetts 02142 and
| |
Collapse
|
13
|
Chen J, Li Q. Implication of retinoic acid receptor selective signaling in myogenic differentiation. Sci Rep 2016; 6:18856. [PMID: 26830006 PMCID: PMC4735650 DOI: 10.1038/srep18856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/25/2015] [Indexed: 11/18/2022] Open
Abstract
Signaling molecules are important for committing individual cells into tissue-specific lineages during early vertebrate development. Retinoic acid (RA) is an important vertebrate morphogen, in that its concentration gradient is essential for correct patterning of the vertebrate embryo. RA signaling is mediated through the activation of retinoic acid receptors (RARs), which function as ligand-dependent transcription factors. In this study, we examined the molecular mechanisms of RAR-selective signaling in myogenic differentiation. We found that just like natural ligand RA, a RAR-selective ligand is an effective enhancer in the commitment of skeletal muscle lineage at the early stage of myogenic differentiation. Interestingly, the kinetics and molecular basis of the RAR-selective ligand in myogenic differentiation are similar to that of natural ligand RA. Also similar to natural ligand RA, the RAR-selective ligand enhances myogenic differentiation through β-catenin signaling pathway while inhibiting cardiac differentiation. Furthermore, while low concentrations of natural ligand RA or RAR-selective ligand regulate myogenic differentiation through RAR function and coactivator recruitment, high concentrations are critical to the expression of a model RA-responsive gene. Thus our data suggests that RAR-mediated gene regulation may be highly context-dependent, affected by locus-specific interaction or local chromatin environment.
Collapse
Affiliation(s)
- Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Stützer A, Liokatis S, Kiesel A, Schwarzer D, Sprangers R, Söding J, Selenko P, Fischle W. Modulations of DNA Contacts by Linker Histones and Post-translational Modifications Determine the Mobility and Modifiability of Nucleosomal H3 Tails. Mol Cell 2016; 61:247-59. [PMID: 26778125 DOI: 10.1016/j.molcel.2015.12.015] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
Post-translational histone modifications and linker histone incorporation regulate chromatin structure and genome activity. How these systems interface on a molecular level is unclear. Using biochemistry and NMR spectroscopy, we deduced mechanistic insights into the modification behavior of N-terminal histone H3 tails in different nucleosomal contexts. We find that linker histones generally inhibit modifications of different H3 sites and reduce H3 tail dynamics in nucleosomes. These effects are caused by modulations of electrostatic interactions of H3 tails with linker DNA and largely depend on the C-terminal domains of linker histones. In agreement, linker histone occupancy and H3 tail modifications segregate on a genome-wide level. Charge-modulating modifications such as phosphorylation and acetylation weaken transient H3 tail-linker DNA interactions, increase H3 tail dynamics, and, concomitantly, enhance general modifiability. We propose that alterations of H3 tail-linker DNA interactions by linker histones and charge-modulating modifications execute basal control mechanisms of chromatin function.
Collapse
Affiliation(s)
- Alexandra Stützer
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stamatios Liokatis
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Anja Kiesel
- Research Group of Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Dirk Schwarzer
- Department of Chemical Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany
| | - Remco Sprangers
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Johannes Söding
- Research Group of Computational Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Gene Center and Center for Integrated Protein Science Munich (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - Philipp Selenko
- Department of NMR-Supported Structural Biology, Leibniz Institute of Molecular Pharmacology (FMP Berlin), Robert-Rössle Strasse 10, 13125 Berlin, Germany.
| | - Wolfgang Fischle
- Laboratory of Chromatin Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
15
|
Banerjee S, Rakshit T, Sett S, Mukhopadhyay R. Interactions of Histone Acetyltransferase p300 with the Nuclear Proteins Histone and HMGB1, As Revealed by Single Molecule Atomic Force Spectroscopy. J Phys Chem B 2015; 119:13278-87. [PMID: 26419288 DOI: 10.1021/acs.jpcb.5b07795] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
One of the important properties of the transcriptional coactivator p300 is histone acetyltransferase (HAT) activity that enables p300 to influence chromatin action via histone modulation. p300 can exert its HAT action upon the other nuclear proteins too--one notable example being the transcription-factor-like protein HMGB1, which functions also as a cytokine, and whose accumulation in the cytoplasm, as a response to tissue damage, is triggered by its acetylation. Hitherto, no information on the structure and stability of the complexes between full-length p300 (p300FL) (300 kDa) and the histone/HMGB1 proteins are available, probably due to the presence of unstructured regions within p300FL that makes it difficult to be crystallized. Herein, we have adopted the high-resolution atomic force microscopy (AFM) approach, which allows molecularly resolved three-dimensional contour mapping of a protein molecule of any size and structure. From the off-rate and activation barrier values, obtained using single molecule dynamic force spectroscopy, the biochemical proposition of preferential binding of p300FL to histone H3, compared to the octameric histone, can be validated. Importantly, from the energy landscape of the dissociation events, a model for the p300-histone and the p300-HMGB1 dynamic complexes that HAT forms, can be proposed. The lower unbinding forces of the complexes observed in acetylating conditions, compared to those observed in non-acetylating conditions, indicate that upon acetylation, p300 tends to weakly associate, probably as an outcome of charge alterations on the histone/HMGB1 surface and/or acetylation-induced conformational changes. To our knowledge, for the first time, a single molecule level treatment of the interactions of HAT, where the full-length protein is considered, is being reported.
Collapse
Affiliation(s)
- S Banerjee
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - T Rakshit
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - S Sett
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| | - R Mukhopadhyay
- Department of Biological Chemistry, Indian Association for the Cultivation of Science , Jadavpur, Kolkata 700 032, India
| |
Collapse
|
16
|
Molecular Basis for the Regulation of Transcriptional Coactivator p300 in Myogenic Differentiation. Sci Rep 2015; 5:13727. [PMID: 26354606 PMCID: PMC4564756 DOI: 10.1038/srep13727] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/03/2015] [Indexed: 01/02/2023] Open
Abstract
Skeletal myogenesis is a highly ordered process which specifically depends on the function of transcriptional coactivator p300. Previous studies have established that Akt/protein kinase B (PKB), a positive regulator of p300 in proliferating cells, is also important for proper skeletal muscle development. Nevertheless, it is not clear as to how the p300 is regulated by myogenic signaling events given that both p300 and Akt are involved in many cellular processes. Our studies revealed that the levels of p300 protein are temporally maintained in ligand-enhanced skeletal myocyte development. Interestingly, this maintenance of p300 protein is observed at the stage of myoblast differentiation, which coincides with an increase in Akt phosphorylation. Moreover, regulation of p300 during myoblast differentiation appears to be mediated by Akt signaling. Blunting of p300 impairs myogenic expression and myoblast differentiation. Thus, our data suggests a particular role for Akt in myoblast differentiation through interaction with p300. Our studies also establish the potential of exploiting p300 regulation and Akt activation to decipher the complex signaling cascades involved in skeletal muscle development.
Collapse
|
17
|
Smith-Hammond CL, Hoyos E, Miernyk JA. The pea seedling mitochondrial Nε-lysine acetylome. Mitochondrion 2014; 19 Pt B:154-65. [PMID: 24780491 DOI: 10.1016/j.mito.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 12/17/2022]
Abstract
Posttranslational lysine acetylation is believed to occur in all taxa and to affect thousands of proteins. In contrast to the hundreds of mitochondrial proteins reported to be lysine-acetylated in non-plant species, only a handful have been reported from the plant taxa previously examined. To investigate whether this reflects a biologically significant difference or merely a peculiarity of the samples thus far examined, we immunoenriched and analyzed acetylated peptides from highly purified pea seedling mitochondria using mass spectrometry. Our results indicate that a multitude of mitochondrial proteins, involved in a variety of processes, are acetylated in pea seedlings.
Collapse
Affiliation(s)
- Colin L Smith-Hammond
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| | - Elizabeth Hoyos
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA.
| | - Ján A Miernyk
- Division of Biochemistry, University of Missouri, Columbia, MO 65211, USA; Interdisciplinary Plant Group, University of Missouri, Columbia, MO 65211, USA; Plant Genetics Research Unit, USDA, Agricultural Research Service, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
18
|
Cho YA, Hong JS, Choe EJ, Yoon HJ, Hong SD, Lee JI, Hong SP. The role of p300 in the tumor progression of oral squamous cell carcinoma. J Oral Pathol Med 2014; 44:185-92. [PMID: 25154636 DOI: 10.1111/jop.12227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 11/26/2022]
Abstract
BACKGROUND EP300 gene encoding p300 is a candidate tumor suppressor gene. This study investigated p300 expression and gene alteration in oral squamous cell carcinoma (OSCC) specimens to assess its role in OSCC development. METHODS Genomic DNA extracted from 13 human OSCC cell lines and 40 OSCC patient specimens was subjected to methylation-specific PCR and exon sequencing. Immunohistochemical staining with primary antibodies against p300 and p53 was performed in 48 patients with OSCC. We analyzed the association between the data and clinicopathological factors of OSCC patients. RESULTS Methylation-specific PCR revealed that the EP300 promoter region was not hypermethylated in OSCC. Only one cell line demonstrated a point mutation at exon 31. On immunohistochemical examination, patients with metastatic lymph nodes (P = 0.009) and advanced clinical stage (P = 0.046) tended to show increased expression of p300. There was no statistically significant relationship between p300 expression and p53 accumulation in OSCC tissue samples. Patient survival was not correlated with p300 expression. CONCLUSIONS EP300 is not a tumor suppressor gene because there was neither epigenetic inactivation of the gene nor a mutation resulting in functional impairment. Based on p300 overexpression and its association with clinical factors in patients with OSCC, it is likely that p300 itself or one of its target genes plays a key role in the aggressive phenotypes of OSCC.
Collapse
Affiliation(s)
- Young-Ah Cho
- Department of Oral and Maxillofacial Pathology, School of Dentistry and Research Center for Tooth and Periodontal Regeneration (MRC), Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
19
|
Maksimoska J, Segura-Peña D, Cole PA, Marmorstein R. Structure of the p300 histone acetyltransferase bound to acetyl-coenzyme A and its analogues. Biochemistry 2014; 53:3415-22. [PMID: 24819397 PMCID: PMC4045318 DOI: 10.1021/bi500380f] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The
p300 and CBP transcriptional coactivator paralogs (p300/CBP)
regulate a variety of different cellular pathways, in part, by acetylating
histones and more than 70 non-histone protein substrates. Mutation,
chromosomal translocation, or other aberrant activities of p300/CBP
are linked to many different diseases, including cancer. Because of
its pleiotropic biological roles and connection to disease, it is
important to understand the mechanism of acetyl transfer by p300/CBP,
in part so that inhibitors can be more rationally developed. Toward
this goal, a structure of p300 bound to a Lys-CoA bisubstrate HAT
inhibitor has been previously elucidated, and the enzyme’s
catalytic mechanism has been investigated. Nonetheless, many questions
underlying p300/CBP structure and mechanism remain. Here, we report
a structural characterization of different reaction states in the
p300 activity cycle. We present the structures of p300 in complex
with an acetyl-CoA substrate, a CoA product, and an acetonyl-CoA inhibitor.
A comparison of these structures with the previously reported p300/Lys-CoA
complex demonstrates that the conformation of the enzyme active site
depends on the interaction of the enzyme with the cofactor, and is
not apparently influenced by protein substrate lysine binding. The
p300/CoA crystals also contain two poly(ethylene glycol) moieties
bound proximal to the cofactor binding site, implicating the path
of protein substrate association. The structure of the p300/acetonyl-CoA
complex explains the inhibitory and tight binding properties of the
acetonyl-CoA toward p300. Together, these studies provide new insights
into the molecular basis of acetylation by p300 and have implications
for the rational development of new small molecule p300 inhibitors.
Collapse
Affiliation(s)
- Jasna Maksimoska
- Program in Gene Expression and Regulation, The Wistar Institute , 3601 Spruce Street, Philadelphia, Pennsylvania 19104, United States
| | | | | | | |
Collapse
|
20
|
Yilbas AE, Hamilton A, Wang Y, Mach H, Lacroix N, Davis DR, Chen J, Li Q. Activation of GATA4 gene expression at the early stage of cardiac specification. Front Chem 2014; 2:12. [PMID: 24790981 PMCID: PMC3982529 DOI: 10.3389/fchem.2014.00012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 02/26/2014] [Indexed: 01/08/2023] Open
Abstract
Currently, there are no effective treatments to directly repair damaged heart tissue after cardiac injury since existing therapies focus on rescuing or preserving reversibly damaged tissue. Cell-based therapies using cardiomyocytes generated from stem cells present a promising therapeutic approach to directly replace damaged myocardium with new healthy tissue. However, the molecular mechanisms underlying the commitment of stem cells into cardiomyocytes are not fully understood and will be critical to guide this new technology into the clinic. Since GATA4 is a critical regulator of cardiac differentiation, we examined the molecular basis underlying the early activation of GATA4 gene expression during cardiac differentiation of pluripotent stem cells. Our studies demonstrate the direct involvement of histone acetylation and transcriptional coactivator p300 in the regulation of GATA4 gene expression. More importantly, we show that histone acetyltransferase (HAT) activity is important for GATA4 gene expression with the use of curcumin, a HAT inhibitor. In addition, the widely used histone deacetylase inhibitor valproic acid enhances both histone acetylation and cardiac specification.
Collapse
Affiliation(s)
- Ayse E Yilbas
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Alison Hamilton
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Yingjian Wang
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Hymn Mach
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Natascha Lacroix
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada
| | - Darryl R Davis
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Faculty of Medicine, University of Ottawa Heart Institute, University of Ottawa Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine, University of Ottawa Ottawa, ON, Canada ; Department of Pathology and Laboratory Medicine, University of Ottawa Ottawa, ON, Canada
| |
Collapse
|
21
|
Stilling RM, Dinan TG, Cryan JF. Microbial genes, brain & behaviour - epigenetic regulation of the gut-brain axis. GENES BRAIN AND BEHAVIOR 2013; 13:69-86. [PMID: 24286462 DOI: 10.1111/gbb.12109] [Citation(s) in RCA: 417] [Impact Index Per Article: 37.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/13/2013] [Accepted: 11/25/2013] [Indexed: 12/12/2022]
Abstract
To date, there is rapidly increasing evidence for host-microbe interaction at virtually all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic signalling, and involving various organs and organ systems, including the central nervous system. As such, the discovery that differential microbial composition is associated with alterations in behaviour and cognition has significantly contributed to establishing the microbiota-gut-brain axis as an extension of the well-accepted gut-brain axis concept. Many efforts have been focused on delineating a role for this axis in health and disease, ranging from stress-related disorders such as depression, anxiety and irritable bowel syndrome to neurodevelopmental disorders such as autism. There is also a growing appreciation of the role of epigenetic mechanisms in shaping brain and behaviour. However, the role of epigenetics in informing host-microbe interactions has received little attention to date. This is despite the fact that there are many plausible routes of interaction between epigenetic mechanisms and the host-microbiota dialogue. From this new perspective we put forward novel, yet testable, hypotheses. Firstly, we suggest that gut-microbial products can affect chromatin plasticity within their host's brain that in turn leads to changes in neuronal transcription and eventually alters host behaviour. Secondly, we argue that the microbiota is an important mediator of gene-environment interactions. Finally, we reason that the microbiota itself may be viewed as an epigenetic entity. In conclusion, the fields of (neuro)epigenetics and microbiology are converging at many levels and more interdisciplinary studies are necessary to unravel the full range of this interaction.
Collapse
|
22
|
Ojesina AI, Lichtenstein L, Freeman SS, Pedamallu CS, Imaz-Rosshandler I, Pugh TJ, Cherniack AD, Ambrogio L, Cibulskis K, Bertelsen B, Romero-Cordoba S, Treviño V, Vazquez-Santillan K, Guadarrama AS, Wright AA, Rosenberg MW, Duke F, Kaplan B, Wang R, Nickerson E, Walline HM, Lawrence MS, Stewart C, Carter SL, McKenna A, Rodriguez-Sanchez IP, Espinosa-Castilla M, Woie K, Bjorge L, Wik E, Halle MK, Hoivik EA, Krakstad C, Gabiño NB, Gómez-Macías GS, Valdez-Chapa LD, Garza-Rodríguez ML, Maytorena G, Vazquez J, Rodea C, Cravioto A, Cortes ML, Greulich H, Crum CP, Neuberg DS, Hidalgo-Miranda A, Escareno CR, Akslen LA, Carey TE, Vintermyr OK, Gabriel SB, Barrera-Saldaña HA, Melendez-Zajgla J, Getz G, Salvesen HB, Meyerson M. Landscape of genomic alterations in cervical carcinomas. Nature 2013; 506:371-5. [PMID: 24390348 DOI: 10.1038/nature12881] [Citation(s) in RCA: 599] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
Abstract
Cervical cancer is responsible for 10-15% of cancer-related deaths in women worldwide. The aetiological role of infection with high-risk human papilloma viruses (HPVs) in cervical carcinomas is well established. Previous studies have also implicated somatic mutations in PIK3CA, PTEN, TP53, STK11 and KRAS as well as several copy-number alterations in the pathogenesis of cervical carcinomas. Here we report whole-exome sequencing analysis of 115 cervical carcinoma-normal paired samples, transcriptome sequencing of 79 cases and whole-genome sequencing of 14 tumour-normal pairs. Previously unknown somatic mutations in 79 primary squamous cell carcinomas include recurrent E322K substitutions in the MAPK1 gene (8%), inactivating mutations in the HLA-B gene (9%), and mutations in EP300 (16%), FBXW7 (15%), NFE2L2 (4%), TP53 (5%) and ERBB2 (6%). We also observe somatic ELF3 (13%) and CBFB (8%) mutations in 24 adenocarcinomas. Squamous cell carcinomas have higher frequencies of somatic nucleotide substitutions occurring at cytosines preceded by thymines (Tp*C sites) than adenocarcinomas. Gene expression levels at HPV integration sites were statistically significantly higher in tumours with HPV integration compared with expression of the same genes in tumours without viral integration at the same site. These data demonstrate several recurrent genomic alterations in cervical carcinomas that suggest new strategies to combat this disease.
Collapse
Affiliation(s)
- Akinyemi I Ojesina
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA [3]
| | - Lee Lichtenstein
- 1] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA [2]
| | - Samuel S Freeman
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Chandra Sekhar Pedamallu
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | | | - Trevor J Pugh
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Lauren Ambrogio
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Kristian Cibulskis
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Bjørn Bertelsen
- Department of Pathology, Haukeland University Hospital, N5021 Bergen, Norway
| | | | | | | | | | - Alexi A Wright
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Mara W Rosenberg
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Fujiko Duke
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | - Bethany Kaplan
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Rui Wang
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Elizabeth Nickerson
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Heather M Walline
- Cancer Biology Program, Program in the Biomedical Sciences, Rackham Graduate School, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Michael S Lawrence
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Chip Stewart
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Scott L Carter
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Aaron McKenna
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Iram P Rodriguez-Sanchez
- Facultad de Medicina y Hospital Universitario 'Dr. José Eluterio González' de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | | | - Kathrine Woie
- Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway
| | - Line Bjorge
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway
| | - Elisabeth Wik
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway
| | - Mari K Halle
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway
| | - Erling A Hoivik
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway
| | - Camilla Krakstad
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway
| | | | - Gabriela Sofia Gómez-Macías
- Facultad de Medicina y Hospital Universitario 'Dr. José Eluterio González' de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | - Lezmes D Valdez-Chapa
- Facultad de Medicina y Hospital Universitario 'Dr. José Eluterio González' de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | - María Lourdes Garza-Rodríguez
- Facultad de Medicina y Hospital Universitario 'Dr. José Eluterio González' de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | | | - Jorge Vazquez
- Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Carlos Rodea
- Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Adrian Cravioto
- Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Maria L Cortes
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Heidi Greulich
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA [3] Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Christopher P Crum
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | - Donna S Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | - Claudia Rangel Escareno
- 1] Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico [2] Claremont Graduate University, Claremont, California 91711, USA
| | - Lars A Akslen
- 1] Department of Pathology, Haukeland University Hospital, N5021 Bergen, Norway [2] Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, N5020 Bergen, Norway
| | - Thomas E Carey
- Head and Neck Oncology Program and Department of Otolaryngology, University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan 38109, USA
| | - Olav K Vintermyr
- 1] Department of Pathology, Haukeland University Hospital, N5021 Bergen, Norway [2] Centre for Cancer Biomarkers, Department of Clinical Medicine, University of Bergen, N5020 Bergen, Norway
| | - Stacey B Gabriel
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA
| | - Hugo A Barrera-Saldaña
- Facultad de Medicina y Hospital Universitario 'Dr. José Eluterio González' de la Universidad Autónoma de Nuevo León, Monterrey, Nuevo León 64460, México
| | | | - Gad Getz
- 1] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA [2] Massachusetts General Hospital Cancer Center and Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Helga B Salvesen
- 1] Department of Obstetrics and Gynecology, Haukeland University Hospital, N5021 Bergen, Norway [2] Department of Clinical Science, Centre for Cancer Biomarkers, University of Bergen, N5020 Bergen, Norway [3]
| | - Matthew Meyerson
- 1] Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA [2] The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts 02142, USA [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA [4]
| |
Collapse
|
23
|
Pachaiyappan B, Woster PM. Design of small molecule epigenetic modulators. Bioorg Med Chem Lett 2013; 24:21-32. [PMID: 24300735 DOI: 10.1016/j.bmcl.2013.11.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
The field of epigenetics has expanded rapidly to reveal multiple new targets for drug discovery. The functional elements of the epigenomic machinery can be categorized as writers, erasers and readers, and together these elements control cellular gene expression and homeostasis. It is increasingly clear that aberrations in the epigenome can underly a variety of diseases, and thus discovery of small molecules that modulate the epigenome in a specific manner is a viable approach to the discovery of new therapeutic agents. In this Digest, the components of epigenetic control of gene expression will be briefly summarized, and efforts to identify small molecules that modulate epigenetic processes will be described.
Collapse
Affiliation(s)
- Boobalan Pachaiyappan
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States
| | - Patrick M Woster
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC 29425, United States.
| |
Collapse
|
24
|
Induction by fructose force-feeding of histone H3 and H4 acetylation at their lysine residues around the Slc2a5 gene and its expression in mice. Biosci Biotechnol Biochem 2013; 77:2188-91. [PMID: 24200777 DOI: 10.1271/bbb.130300] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been reported that fructose force-feeding rapidly induced jejunal Slc2a5 gene expression in rodents. We demonstrate in this study that acetylation at lysine (K) 9 of histone H3 and acetylation at K5 and K16 of histone H4 were more enhanced in the promoter/enhancer to transcribed regions of the Slc2a5 gene in fructose force-fed mice than in glucose force-fed mice. However, fructose force-feeding did not induce acetylation at K14 of histone H3, or at K8 and K12 of histone H4 around the Slc2a5 gene. These results suggest that fructose force-feeding induced selective histone acetylation, particularly of H3 and H4, around the jejunal Slc2a5 gene in mice.
Collapse
|
25
|
Wang F, Marshall CB, Ikura M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell Mol Life Sci 2013; 70:3989-4008. [PMID: 23307074 PMCID: PMC11113169 DOI: 10.1007/s00018-012-1254-4] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/08/2012] [Accepted: 12/20/2012] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, gene transcription is regulated by sequence-specific DNA-binding transcription factors that recognize promoter and enhancer elements near the transcriptional start site. Some coactivators promote transcription by connecting transcription factors to the basal transcriptional machinery. The highly conserved coactivators CREB-binding protein (CBP) and its paralog, E1A-binding protein (p300), each have four separate transactivation domains (TADs) that interact with the TADs of a number of DNA-binding transcription activators as well as general transcription factors (GTFs), thus mediating recruitment of basal transcription machinery to the promoter. Most promoters comprise multiple activator-binding sites, and many activators contain tandem TADs, thus multivalent interactions may stabilize CBP/p300 at the promoter, and intrinsically disordered regions in CBP/p300 and many activators may confer adaptability to these multivalent complexes. CBP/p300 contains a catalytic histone acetyltransferase (HAT) domain, which remodels chromatin to 'relax' its superstructure and enables transcription of proximal genes. The HAT activity of CBP/p300 also acetylates some transcription factors (e.g., p53), hence modulating the function of key transcriptional regulators. Through these numerous interactions, CBP/p300 has been implicated in complex physiological and pathological processes, and, in response to different signals, can drive cells towards proliferation or apoptosis. Dysregulation of the transcriptional and epigenetic functions of CBP/p300 is associated with leukemia and other types of cancer, thus it has been recognized as a potential anti-cancer drug target. In this review, we focus on recent exciting findings in the structural mechanisms of CBP/p300 involving multivalent and dynamic interactions with binding partners, which may pave new avenues for anti-cancer drug development.
Collapse
Affiliation(s)
- Feng Wang
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
- Present Address: Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232 USA
| | - Christopher B. Marshall
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| | - Mitsuhiko Ikura
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 2M9 Canada
- Campbell Family Cancer Research Institute, Ontario Cancer Institute, Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 1L7 Canada
| |
Collapse
|
26
|
Vischi Winck F, Arvidsson S, Riaño-Pachón DM, Hempel S, Koseska A, Nikoloski Z, Urbina Gomez DA, Rupprecht J, Mueller-Roeber B. Genome-wide identification of regulatory elements and reconstruction of gene regulatory networks of the green alga Chlamydomonas reinhardtii under carbon deprivation. PLoS One 2013; 8:e79909. [PMID: 24224019 PMCID: PMC3816576 DOI: 10.1371/journal.pone.0079909] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas.
Collapse
Affiliation(s)
- Flavia Vischi Winck
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Samuel Arvidsson
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Diego Mauricio Riaño-Pachón
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Sabrina Hempel
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
- Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
- Department of Physics, Humboldt University of Berlin, Berlin, Germany
| | - Aneta Koseska
- University of Potsdam, Institute of Physics, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- Systems Biology and Mathematical Modeling Group, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - David Alejandro Urbina Gomez
- Group of Computational and Evolutionary Biology, Biological Sciences Department, Universidad de los Andes, Bogotá, Colombia
| | - Jens Rupprecht
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Bernd Mueller-Roeber
- GoFORSYS Research Unit for Systems Biology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, Germany
- GoFORSYS Research Unit for Systems Biology, Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- * E-mail:
| |
Collapse
|
27
|
Guérillon C, Larrieu D, Pedeux R. ING1 and ING2: multifaceted tumor suppressor genes. Cell Mol Life Sci 2013; 70:3753-72. [PMID: 23412501 PMCID: PMC11113716 DOI: 10.1007/s00018-013-1270-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/14/2013] [Accepted: 01/17/2013] [Indexed: 01/27/2023]
Abstract
Inhibitor of Growth 1 (ING1) was identified and characterized as a "candidate" tumor suppressor gene in 1996. Subsequently, four more genes, also characterized as "candidate" tumor suppressor genes, were identified by homology search: ING2, ING3, ING4, and ING5. The ING proteins are characterized by a high homology in their C-terminal domain, which contains a Nuclear Localization Sequence and a Plant HomeoDomain (PHD), which has a high affinity to Histone 3 tri-methylated on lysine 4 (H3K4Me3). The ING proteins have been involved in the control of cell growth, senescence, apoptosis, chromatin remodeling, and DNA repair. Within the ING family, ING1 and ING2 form a subgroup since they are evolutionarily and functionally close. In yeast, only one gene, Pho23, is related to ING1 and ING2 and possesses also a PHD. Recently, the ING1 and ING2 tumor suppressor status has been fully established since several studies have described the loss of ING1 and ING2 protein expression in human tumors and both ING1 and ING2 knockout mice were reported to have spontaneously developed tumors, B cell lymphomas, and soft tissue sarcomas, respectively. In this review, we will describe for the first time what is known about the ING1 and ING2 genes, proteins, their regulations in both human and mice, and their status in human tumors. Furthermore, we explore the current knowledge about identified functions involving ING1 and ING2 in tumor suppression pathways especially in the control of cell cycle and in genome stability.
Collapse
Affiliation(s)
- Claire Guérillon
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
| | - Delphine Larrieu
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN UK
| | - Rémy Pedeux
- INSERM U917, Faculté de Médecine de Rennes, Microenvironnement et Cancer, Building 2, Room 117, 2 avenue du Professeur Léon Bernard, 35043 Rennes, France
- Université de Rennes 1, Rennes, France
- Etablissement Français du Sang, Rennes, France
| |
Collapse
|
28
|
Chen J, Li Q. Use of histone deacetylase inhibitors to examine the roles of bromodomain and histone acetylation in p300-dependent gene expression. Methods Mol Biol 2013; 977:353-7. [PMID: 23436376 DOI: 10.1007/978-1-62703-284-1_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The bromodomain is an evolutionarily conserved motif harbored by many transcription regulators and nearly all nuclear histone acetyltransferases including the transcriptional coactivator p300. The function of p300 is required for the expression of an array of genes, in part through histone acetylation. Here, we describe an experimental approach to examine the role of either the wild-type or a bromo-deficient p300 in the expression of p300-dependant genes. The role of histone acetylation in the expression of p300-dependent genes can also be assessed by targeting histone deacetylase activities using an inhibitor approach.
Collapse
Affiliation(s)
- Jihong Chen
- Departments of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | | |
Collapse
|
29
|
Li J, Zhao G, Gao X. Development of neurodevelopmental disorders: a regulatory mechanism involving bromodomain-containing proteins. J Neurodev Disord 2013; 5:4. [PMID: 23425632 PMCID: PMC3585942 DOI: 10.1186/1866-1955-5-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/25/2013] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders are classified as diseases that cause abnormal functions of the brain or central nervous system. Children with neurodevelopmental disorders show impaired language and speech abilities, learning and memory damage, and poor motor skills. However, we still know very little about the molecular etiology of these disorders. Recent evidence implicates the bromodomain-containing proteins (BCPs) in the initiation and development of neurodevelopmental disorders. BCPs have a particular domain, the bromodomain (Brd), which was originally identified as specifically binding acetyl-lysine residues at the N-terminus of histone proteins in vitro and in vivo. Other domains of BCPs are responsible for binding partner proteins to form regulatory complexes. Once these complexes are assembled, BCPs alter chromosomal states and regulate gene expression. Some BCP complexes bind nucleosomes, are involved in basal transcription regulation, and influence the transcription of many genes. However, most BCPs are involved in targeting. For example, some BCPs function as a recruitment platform or scaffold through their Brds-binding targeting sites. Others are recruited to form a complex to bind the targeting sites of their partners. The regulation mediated by these proteins is especially critical during normal and abnormal development. Mutant BCPs or dysfunctional BCP-containing complexes are implicated in the initiation and development of neurodevelopmental disorders. However, the pathogenic molecular mechanisms are not fully understood. In this review, we focus on the roles of regulatory BCPs associated with neurodevelopmental disorders, including mental retardation, Fragile X syndrome (FRX), Williams syndrome (WS), Rett syndrome and Rubinstein-Taybi syndrome (RTS). A better understanding of the molecular pathogenesis, based upon the roles of BCPs, will lead to screening of targets for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Junlin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an 710069, People's Republic of China.
| | | | | |
Collapse
|
30
|
Abstract
Epigenetic mechanisms regulate expression of the genome to generate various cell types during development or orchestrate cellular responses to external stimuli. Recent studies highlight that bacteria can affect the chromatin structure and transcriptional program of host cells by influencing diverse epigenetic factors (i.e., histone modifications, DNA methylation, chromatin-associated complexes, noncoding RNAs, and RNA splicing factors). In this article, we first review the molecular bases of the epigenetic language and then describe the current state of research regarding how bacteria can alter epigenetic marks and machineries. Bacterial-induced epigenetic deregulations may affect host cell function either to promote host defense or to allow pathogen persistence. Thus, pathogenic bacteria can be considered as potential epimutagens able to reshape the epigenome. Their effects might generate specific, long-lasting imprints on host cells, leading to a memory of infection that influences immunity and might be at the origin of unexplained diseases.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France.
| | | | | |
Collapse
|
31
|
Sharma SK, Hazeldine S, Crowley ML, Hanson A, Beattie R, Varghese S, Senanayake TMD, Hirata A, Hirata F, Huang Y, Wu Y, Steinbergs N, Murray-Stewart T, Bytheway I, Casero RA, Woster PM. Polyamine-based small molecule epigenetic modulators. MEDCHEMCOMM 2011; 3:14-21. [PMID: 23293738 PMCID: PMC3535317 DOI: 10.1039/c1md00220a] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chromatin remodelling enzymes such as the histone deacetylases (HDACs) and histone demethylases such as lysine-specific demethylase 1 (LSD1) have been validated as targets for cancer drug discovery. Although a number of HDAC inhibitors have been marketed or are in human clinical trials, the search for isoform-specific HDAC inhibitors is an ongoing effort. In addition, the discovery and development of compounds targeting histone demethylases are in their early stages. Epigenetic modulators used in combination with traditional antitumor agents such as 5-azacytidine represent an exciting new approach to cancer chemotherapy. We have developed multiple series of HDAC inhibitors and LSD1 inhibitors that promote the re-expression of aberrantly silenced genes that are important in human cancer. The design, synthesis and biological activity of these analogues is described herein.
Collapse
Affiliation(s)
- Shiv K. Sharma
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Stuart Hazeldine
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Michael L. Crowley
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Allison Hanson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Ross Beattie
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Sheeba Varghese
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | | | - Aiko Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Fusao Hirata
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, 48202, USA
| | - Yi Huang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Yu Wu
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Nora Steinbergs
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Tracey Murray-Stewart
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Ian Bytheway
- Progen Pharmaceuticals, Ltd., Darra, Queensland, Australia
| | - Robert A. Casero
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, 1650 Orleans Street, Baltimore, MD, 21231, USA
| | - Patrick M. Woster
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, 70 President St., Charleston, SC, 29425, USA
| |
Collapse
|
32
|
Le May M, Mach H, Lacroix N, Hou C, Chen J, Li Q. Contribution of retinoid X receptor signaling to the specification of skeletal muscle lineage. J Biol Chem 2011; 286:26806-12. [PMID: 21653693 PMCID: PMC3143641 DOI: 10.1074/jbc.m111.227058] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Pluripotent stem cells possess a tremendous potential for the treatment of many diseases because of their capacity to differentiate into a variety of cell lineages. However, they provide little promise for muscle-related diseases, mainly because of the lack of small molecule inducers to efficiently direct myogenic conversion. Retinoic acid, acting through the retinoic acid receptor (RAR) and retinoid X receptor (RXR), affects stem cell fate determination in a concentration-dependent manner, but it only has a modest efficacy on the commitment of ES cells into skeletal muscle lineage. The RXR is very important for embryonic development but is generally considered to act as a silent partner of RAR in a non-permissive mode. In this study, we have examined whether activation of the RXR by rexinoid or RXR-specific signaling play a role in the specification of stem cells into muscle lineage. Our findings demonstrate that mouse ES cells generate skeletal myocytes effectively upon treatment with rexinoid at the early stage of differentiation and that on a molecular level, rexinoid-enhanced myogenesis simulates the sequential events observed in vivo. Moreover, RXR-mediated myogenic conversion requires the function of β-catenin but not RAR. Our studies establish the feasibility of applying the RXR agonist in cell-based therapies to treat muscle-related diseases. The aptitude of mouse ES cells to generate skeletal myocytes following rexinoid induction also provides a model system to study the convergence of different signaling pathways in myogenesis.
Collapse
Affiliation(s)
- Melanie Le May
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | |
Collapse
|