1
|
Harrison BR, Wang L, Gajda E, Hoffman EV, Chung BY, Pletcher SD, Raftery D, Promislow DEL. The metabolome as a link in the genotype-phenotype map for peroxide resistance in the fruit fly, Drosophila melanogaster. BMC Genomics 2020; 21:341. [PMID: 32366330 PMCID: PMC7199327 DOI: 10.1186/s12864-020-6739-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/15/2020] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genetic association studies that seek to explain the inheritance of complex traits typically fail to explain a majority of the heritability of the trait under study. Thus, we are left with a gap in the map from genotype to phenotype. Several approaches have been used to fill this gap, including those that attempt to map endophenotype such as the transcriptome, proteome or metabolome, that underlie complex traits. Here we used metabolomics to explore the nature of genetic variation for hydrogen peroxide (H2O2) resistance in the sequenced inbred Drosophila Genetic Reference Panel (DGRP). RESULTS We first studied genetic variation for H2O2 resistance in 179 DGRP lines and along with identifying the insulin signaling modulator u-shaped and several regulators of feeding behavior, we estimate that a substantial amount of phenotypic variation can be explained by a polygenic model of genetic variation. We then profiled a portion of the aqueous metabolome in subsets of eight 'high resistance' lines and eight 'low resistance' lines. We used these lines to represent collections of genotypes that were either resistant or sensitive to the stressor, effectively modeling a discrete trait. Across the range of genotypes in both populations, flies exhibited surprising consistency in their metabolomic signature of resistance. Importantly, the resistance phenotype of these flies was more easily distinguished by their metabolome profiles than by their genotypes. Furthermore, we found a metabolic response to H2O2 in sensitive, but not in resistant genotypes. Metabolomic data further implicated at least two pathways, glycogen and folate metabolism, as determinants of sensitivity to H2O2. We also discovered a confounding effect of feeding behavior on assays involving supplemented food. CONCLUSIONS This work suggests that the metabolome can be a point of convergence for genetic variation influencing complex traits, and can efficiently elucidate mechanisms underlying trait variation.
Collapse
Affiliation(s)
- Benjamin R Harrison
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, 98105, USA
| | - Erika Gajda
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Elise V Hoffman
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - Brian Y Chung
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daniel Raftery
- Northwest Metabolomics Research Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Gupta V, Stewart CO, Rund SSC, Monteith K, Vale PF. Costs and benefits of sublethal Drosophila C virus infection. J Evol Biol 2017; 30:1325-1335. [PMID: 28425174 DOI: 10.1111/jeb.13096] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 01/24/2023]
Abstract
Viruses are major evolutionary drivers of insect immune systems. Much of our knowledge of insect immune responses derives from experimental infections using the fruit fly Drosophila melanogaster. Most experiments, however, employ lethal pathogen doses through septic injury, frequently overwhelming host physiology. While this approach has revealed several immune mechanisms, it is less informative about the fitness costs hosts may experience during infection in the wild. Using both systemic and oral infection routes, we find that even apparently benign, sublethal infections with the horizontally transmitted Drosophila C virus (DCV) can cause significant physiological and behavioural morbidity that is relevant for host fitness. We describe DCV-induced effects on fly reproductive output, digestive health and locomotor activity, and we find that viral morbidity varies according to the concentration of pathogen inoculum, host genetic background and sex. Notably, sublethal DCV infection resulted in a significant increase in fly reproduction, but this effect depended on host genotype. We discuss the relevance of sublethal morbidity for Drosophila ecology and evolution, and more broadly, we remark on the implications of deleterious and beneficial infections for the evolution of insect immunity.
Collapse
Affiliation(s)
- V Gupta
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - C O Stewart
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - S S C Rund
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, Scotland
| | - K Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland
| | - P F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, Scotland.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
3
|
Yamada R, Deshpande SA, Keebaugh ES, Ehrlich MR, Soto Obando A, Ja WW. Mifepristone Reduces Food Palatability and Affects Drosophila Feeding and Lifespan. J Gerontol A Biol Sci Med Sci 2016; 72:173-180. [PMID: 27093874 DOI: 10.1093/gerona/glw072] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/04/2016] [Indexed: 02/01/2023] Open
Abstract
The Drosophila GeneSwitch system facilitates the spatial and temporal control of gene expression through dietary supplementation of mifepristone (RU486). Because experimental and control groups differ only by treatment with RU486, confounding results from using flies of different genetic backgrounds are eliminated, making GeneSwitch especially useful in studies of aging. However, the effect of RU486 itself on longevity has not been well characterized, particularly in relation to nutritional states known to affect lifespan. Here, we show that RU486 has dose- and diet-dependent effects on longevity in both sexes. On low nutrient diets, RU486 supplementation reduces total food consumption, perhaps exacerbating undernutrition to shorten life. RU486 also inhibits proboscis extension responses to low nutrient diets, suggesting that RU486 has an aversive taste which leads to decreased food consumption and diminished longevity. RU486 is not detrimental to fly lifespan on high nutrient food, correlating with reduced effects of the drug on palatability and total consumption on rich diets. Our results highlight the critical importance of considering how food palatability and nutrient intake might be altered by dietary or drug manipulations in studies of aging and behavior.
Collapse
Affiliation(s)
- Ryuichi Yamada
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida.,Present address: Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Sonali A Deshpande
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida.,Present address: Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, Hatos Center for Neuropharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Erin S Keebaugh
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Margaux R Ehrlich
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - Alina Soto Obando
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida
| | - William W Ja
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida.
| |
Collapse
|
4
|
Garlapow ME, Huang W, Yarboro MT, Peterson KR, Mackay TFC. Quantitative Genetics of Food Intake in Drosophila melanogaster. PLoS One 2015; 10:e0138129. [PMID: 26375667 PMCID: PMC4574202 DOI: 10.1371/journal.pone.0138129] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022] Open
Abstract
Food intake is an essential animal activity, regulated by neural circuits that motivate food localization, evaluate nutritional content and acceptance or rejection responses through the gustatory system, and regulate neuroendocrine feedback loops that maintain energy homeostasis. Excess food consumption in people is associated with obesity and metabolic and cardiovascular disorders. However, little is known about the genetic basis of natural variation in food consumption. To gain insights in evolutionarily conserved genetic principles that regulate food intake, we took advantage of a model system, Drosophila melanogaster, in which food intake, environmental conditions and genetic background can be controlled precisely. We quantified variation in food intake among 182 inbred, sequenced lines of the Drosophila melanogaster Genetic Reference Panel (DGRP). We found significant genetic variation in the mean and within-line environmental variance of food consumption and observed sexual dimorphism and genetic variation in sexual dimorphism for both food intake traits (mean and variance). We performed genome wide association (GWA) analyses for mean food intake and environmental variance of food intake (using the coefficient of environmental variation, CVE, as the metric for environmental variance) and identified molecular polymorphisms associated with both traits. Validation experiments using RNAi-knockdown confirmed 24 of 31 (77%) candidate genes affecting food intake and/or variance of food intake, and a test cross between selected DGRP lines confirmed a SNP affecting mean food intake identified in the GWA analysis. The majority of the validated candidate genes were novel with respect to feeding behavior, and many had mammalian orthologs implicated in metabolic diseases.
Collapse
Affiliation(s)
- Megan E. Garlapow
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Wen Huang
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Michael T. Yarboro
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Kara R. Peterson
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Trudy F. C. Mackay
- Program in Genetics, North Carolina State University, Raleigh, NC, 27695–7614, United States of America
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, United States of America
- W. M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, NC, 27695, United States of America
- * E-mail:
| |
Collapse
|
5
|
Tatar M, Post S, Yu K. Nutrient control of Drosophila longevity. Trends Endocrinol Metab 2014; 25:509-17. [PMID: 24685228 PMCID: PMC4177520 DOI: 10.1016/j.tem.2014.02.006] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 02/24/2014] [Accepted: 02/25/2014] [Indexed: 01/22/2023]
Abstract
Dietary restriction (DR) extends the lifespan of many animals, including Drosophila melanogaster. Recent work with flies shows that longevity is controlled by the ratio of consumed protein relative to carbohydrates. Given that reduced insulin and/or insulin-like growth factor (IGF) and target of rapamycin (TOR) signaling increase Drosophila lifespan, these pathways are candidate mediators of DR. However, this idea has ambiguous experimental support. The Nutritional Geometric Framework (NGF), which dissects the impact of nutrient protein relative to carbohydrates, may provide an approach to resolving the roles for these pathways in DR. Nutrient sensing of protein and carbohydrate may occur in the fat body through signals to hypothalamic-like neurons in the fly brain and, thus, control secretion of insulin-like peptides that regulate longevity.
Collapse
Affiliation(s)
- Marc Tatar
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA.
| | - Stephanie Post
- Department of Ecology and Evolutionary Biology, Brown University, Providence RI 02912, USA
| | - Kweon Yu
- Neurophysiology Research Group, Korea Research Institute of Bioscience and Biotechnology, Daejon, 305-806, Korea
| |
Collapse
|
6
|
Deshpande SA, Carvalho GB, Amador A, Phillips AM, Hoxha S, Lizotte KJ, Ja WW. Quantifying Drosophila food intake: comparative analysis of current methodology. Nat Methods 2014; 11:535-40. [PMID: 24681694 PMCID: PMC4008671 DOI: 10.1038/nmeth.2899] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/05/2014] [Indexed: 11/18/2022]
Abstract
Food intake is a fundamental parameter in animal studies. Despite the prevalent use of Drosophila in laboratory research, precise measurements of food intake remain challenging in this model organism. Here, we compare several common Drosophila feeding assays: the Capillary Feeder (CAFE), food-labeling with a radioactive tracer or a colorimetric dye, and observations of proboscis extension (PE). We show that the CAFE and radioisotope-labeling provide the most consistent results, have the highest sensitivity, and can resolve differences in feeding that dye-labeling and PE fail to distinguish. We conclude that performing the radiolabeling and CAFE assays in parallel is currently the best approach for quantifying Drosophila food intake. Understanding the strengths and limitations of food intake methodology will greatly advance Drosophila studies of nutrition, behavior, and disease.
Collapse
Affiliation(s)
- Sonali A Deshpande
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2]
| | - Gil B Carvalho
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] [3]
| | - Ariadna Amador
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA. [3]
| | - Angela M Phillips
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2]
| | - Sany Hoxha
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA
| | - Keith J Lizotte
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA
| | - William W Ja
- 1] Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, Florida, USA. [2] Scripps Graduate Program, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
7
|
Bruce KD, Hoxha S, Carvalho GB, Yamada R, Wang HD, Karayan P, He S, Brummel T, Kapahi P, Ja WW. High carbohydrate-low protein consumption maximizes Drosophila lifespan. Exp Gerontol 2013; 48:1129-35. [PMID: 23403040 DOI: 10.1016/j.exger.2013.02.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 12/12/2012] [Accepted: 02/04/2013] [Indexed: 01/31/2023]
Abstract
Dietary restriction extends lifespan in a variety of organisms, but the key nutritional components driving this process and how they interact remain uncertain. In Drosophila, while a substantial body of research suggests that protein is the major dietary component affecting longevity, recent studies claim that carbohydrates also play a central role. To clarify how nutritional factors influence longevity, nutrient consumption and lifespan were measured on a series of diets with varying yeast and sugar content. We show that optimal lifespan requires both high carbohydrate and low protein consumption, but neither nutrient by itself entirely predicts lifespan. Increased dietary carbohydrate or protein concentration does not always result in reduced feeding-the regulation of food consumption is best described by a constant daily caloric intake target. Moreover, due to differences in food intake, increased concentration of a nutrient within the diet does not necessarily result in increased consumption of that particular nutrient. Our results shed light on the issue of dietary effects on lifespan and highlight the need for accurate measures of nutrient intake in dietary manipulation studies.
Collapse
Affiliation(s)
- Kimberley D Bruce
- Department of Metabolism and Aging, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Wang C, Wheeler CT, Alberico T, Sun X, Seeberger J, Laslo M, Spangler E, Kern B, de Cabo R, Zou S. The effect of resveratrol on lifespan depends on both gender and dietary nutrient composition in Drosophila melanogaster. AGE (DORDRECHT, NETHERLANDS) 2013; 35:69-81. [PMID: 22083438 PMCID: PMC3543742 DOI: 10.1007/s11357-011-9332-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/15/2011] [Indexed: 05/05/2023]
Abstract
Resveratrol, a polyphenolic compound, has been shown to extend lifespan in different organisms. Emerging evidence suggests that the prolongevity effect of resveratrol depends on dietary composition. However, the mechanisms underlying the interaction of resveratrol and dietary nutrients in modulating lifespan remain elusive. Here, we investigated the effect of resveratrol on lifespan of Drosophila melanogaster fed diets differing in the concentrations of sugar, yeast extract, and palmitic acid representing carbohydrate, protein, and fat, respectively. Resveratrol at up to 200 μM in diets did not affect lifespan of wild-type female flies fed a standard, restricted or high sugar-low protein diet, but extended lifespan of females fed a low sugar-high protein diet. Resveratrol at 400 μM extended lifespan of females fed a high-fat diet. Lifespan extension by resveratrol was associated with downregulation of genes in aging-related pathways, including antioxidant peroxiredoxins, insulin-like peptides involved in insulin-like signaling and several downstream genes in Jun-kinase signaling involved in oxidative stress response. Furthermore, resveratrol increased lifespan of superoxide dismutase 1 (sod1) knockdown mutant females fed a standard or high-fat diet. No lifespan extension by resveratrol was observed in wild-type and sod1 knockdown males under the culture conditions in this study. Our results suggest that the gender-specific prolongevity effect of resveratrol is influenced by dietary composition and resveratrol promotes the survival of flies by modulating genetic pathways that can reduce cellular damage. This study reveals the context-dependent effect of resveratrol on lifespan and suggests the importance of dietary nutrients in implementation of effective aging interventions using dietary supplements.
Collapse
Affiliation(s)
- Chunxu Wang
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
- />Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Habei 430074 People’s Republic of China
| | - Charles T. Wheeler
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Thomas Alberico
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Xiaoping Sun
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Jeanne Seeberger
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Mara Laslo
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Edward Spangler
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Bradley Kern
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Rafael de Cabo
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Sige Zou
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
- />Functional Genomics Unit, Laboratory of Experimental Gerontology, National Institute on Aging, 251 Bayview Blvd., Suite 100, Baltimore, MD 21224 USA
| |
Collapse
|
9
|
Effects of resveratrol on longevity, cognitive ability and aging-related histological markers in the annual fish Nothobranchius guentheri. Exp Gerontol 2012; 47:940-9. [PMID: 22960591 DOI: 10.1016/j.exger.2012.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/29/2022]
Abstract
Aging research was hindered because of the long lifespan of available vertebrates. Annual fishes of Nothobranchius have become a new model organism for aging studies. Resveratrol, a natural plant-derived chemical, prolongs lifespan in many animals. Here we used the wild strain of N. guentheri, which has the mean lifespan of 12months, to detect the effects of resveratrol on the longevity, cognitive ability and aging-related histological markers. Our results showed that the pharmaceutical treatment of resveratrol prolonged the lifespan of N. guentheri but did not affect their body size. Three behavioral assays for cognitive ability and locomotor activity demonstrated that the resveratrol-treated fish exhibited the higher rate of performances than the fish in the control group. Further data indicated that resveratrol not only had the property of protecting N. guentheri from neurodegeneration, but retarded the aging-related histological markers in lipofuscin formation and in the expression of senescence-associated beta-galactosidase activity.
Collapse
|