1
|
Plaisance EP, Bergeron JM, Bolyard ML, Hathorne HY, Graziano CM, Hartzes A, Genschmer KR, Alvarez JA, Goss AM, Gaggar A, Fontaine KR. Low-Dose Ketone Monoester Administration in Adults with Cystic Fibrosis: A Pilot and Feasibility Study. Nutrients 2024; 16:3957. [PMID: 39599743 PMCID: PMC11597165 DOI: 10.3390/nu16223957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Cystic fibrosis transmembrane conductance regulator (CFTR) modulators have greatly improved outcomes in persons with CF (pwCF); however, there is still significant heterogeneity in clinical responses, particularly with regard to respiratory infection and inflammation. Exogenous administration of ketones has profound systemic anti-inflammatory effects and produces several nutrient-signaling and metabolic effects that may benefit multiple organ systems affected in pwCF. This pilot study was designed to determine the feasibility of administration of a ketone monoester (KME) to increase circulating D-beta hydroxybutyrate concentrations (D-βHB) and to improve subjective measures of CF-specific quality of life and markers of inflammation in serum and sputum in adults with CF. METHODS Fourteen participants receiving modulator therapy were randomized to receive either KME (n = 9) or placebo control (PC, n = 5) for 5-7 days during hospitalization for treatment of acute pulmonary exacerbation or as outpatients under standard care. RESULTS The KME was well tolerated, with only mild reports of gastrointestinal distress. D-βHB concentrations increased from 0.2 ± 0.1 mM to 1.6 ± 0.6 mM in the KME group compared to 0.2 ± 0.0 to 0.3 ± 0.1 in the PC group (p = 0.011) within 15 min following consumption and remained elevated, relative to baseline, for over 2 h. Pulmonary function was not altered after single- or short-term KME administration, but participants in the KME group self-reported higher subjective respiratory scores compared to PC in both cases (p = 0.031). Plasma inflammatory markers were not statistically different between groups following the short-term (5-7 d) intervention (p > 0.05). However, an exploratory analysis of plasma pre- and post-IL-6 concentrations was significant (p = 0.028) in the KME group but not PC. Sputum IFNγ (p = 0.057), IL-12p70 (p = 0.057), IL-1β (p = 0.100), IL-15 (p = 0.057), IL-1α (p = 0.114), and MPO (p = 0.133) were lower in the KME group compared to PC but did not achieve statistical significance. CONCLUSIONS With the emerging role of exogenous ketones as nutrient signaling molecules and mediators of metabolism, we showed that KME is well tolerated, increases circulating D-βHB concentrations, and produces outcomes that justify the need for large-scale clinical trials to investigate the role of KME on whole-body and tissue lipid accumulation and inflammation in pwCF.
Collapse
Affiliation(s)
- Eric P. Plaisance
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jonathan M. Bergeron
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Mickey L. Bolyard
- Department of Health & Kinesiology, University of Utah, Salt Lake City, UT 84112, USA
| | - Heather Y. Hathorne
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Christina M. Graziano
- Department of Human Studies, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Anastasia Hartzes
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristopher R. Genschmer
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Jessica A. Alvarez
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, Emory University, Atlanta, GA 30322, USA;
| | - Amy M. Goss
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Amit Gaggar
- Division of Pulmonary, Allergy, & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA (K.R.G.)
| | - Kevin R. Fontaine
- Department of Health Behavior, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| |
Collapse
|
2
|
Tabatabaii SA, Khanbabaee G, Sadr S, Farahbakhsh N, Modarresi SZ, Pourghasem M, Hajipour M. The effect of Lactobacillus reuteri on pulmonary function test and growth of cystic fibrosis patients. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9056-9061. [PMID: 38982876 DOI: 10.1002/jsfa.13732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/10/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
INTRODUCTION Cystic fibrosis (CF) patients frequently experience gut microbiota dysbiosis. Probiotic supplementation is a potential therapeutic approach to modify gut microbiota and improve CF management through the gut-lung axis. The aim of this study was to investigate the effect of Lactobacillus reuteri supplementation on pulmonary function test, respiratory symptoms and growth in CF patients. METHODS A randomized, placebo-controlled clinical trial was carried out on 40 children with CF aged from 6 to 20 years. Participants were designated to receive either L. reuteri or placebo daily for 4 months. Pulmonary function tests, weight, height and body mass index (BMI) z-scores were measured pre and post treatment. RESULTS The median baseline BMI of the patients was 16.28 kg m-2. A significant change in the probiotic group's BMI z-score after the study period was observed (P = 0.034) but not for weight and height z-scores (P > 0.05). After treatment, Pseudomonas aeruginosa grew in sputum cultures of seven in the placebo and one patient in the intervention group (P = 0.03) while at baseline it grew in the sputum of four patients in each group. There was no significant difference in forced expiratory volume in the first second, forced expiratory flow at 25-75% or forced vital capacity change between the two groups after the treatment period (P > 0.05). Additionally, no significant differences were found in pulmonary exacerbations, hospitalization frequencies or COVID-19 infection between the two groups during the study (P > 0.05). CONCLUSION The results suggest that L. reuteri supplementation may impact the growth of severely malnourished CF patients. Furthermore, it may be concluded that this strain might reduce P. aeruginosa in the sputum culture of CF patients. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Seyed Ahmad Tabatabaii
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghamartaj Khanbabaee
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Sadr
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nazanin Farahbakhsh
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Zalfa Modarresi
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Children Growth Disorder Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Matin Pourghasem
- Department of Pediatric Pulmonology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Hajipour
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Reasoner SA, Bernard R, Waalkes A, Penewit K, Lewis J, Sokolow AG, Brown RF, Edwards KM, Salipante SJ, Hadjifrangiskou M, Nicholson MR. Longitudinal profiling of the intestinal microbiome in children with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor. mBio 2024; 15:e0193523. [PMID: 38275294 PMCID: PMC10865789 DOI: 10.1128/mbio.01935-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores the function of the pathogenic mutated CF transmembrane conductance regulator (CFTR) channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in body mass index and percent predicted forced expiratory volume in one second, and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.IMPORTANCECystic fibrosis (CF) is an autosomal recessive disease with significant gastrointestinal symptoms in addition to pulmonary complications. Recently approved treatments for CF, CF transmembrane conductance regulator (CFTR) modulators, are anticipated to substantially improve the care of people with CF and extend their lifespans. Prior work has shown that the intestinal microbiome correlates with health outcomes in CF, particularly in children. Here, we study the intestinal microbiome of children with CF before and after the CFTR modulator, ELX/TEZ/IVA. We identify promising improvements in microbiome diversity, reduced measures of intestinal inflammation, and reduced antibiotic resistance genes. We present specific bacterial taxa and protein groups which change following ELX/TEZ/IVA. These results will inform future mechanistic studies to understand the microbial improvements associated with CFTR modulator treatment. This study demonstrates how the microbiome can change in response to a targeted medication that corrects a genetic disease.
Collapse
Affiliation(s)
- Seth A. Reasoner
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rachel Bernard
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Janessa Lewis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Andrew G. Sokolow
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Rebekah F. Brown
- Department of Pediatrics, Division of Allergy, Immunology, and Pulmonary Medicine, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Kathryn M. Edwards
- Department of Pediatrics, Division of Infectious Diseases, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology, and Immunology, Division of Molecular Pathogenesis, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maribeth R. Nicholson
- Department of Pediatrics, Division of Gastroenterology, Hepatology, and Nutrition, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
4
|
Reasoner SA, Bernard R, Waalkes A, Penewit K, Lewis J, Sokolow AG, Brown RF, Edwards KM, Salipante SJ, Hadjifrangiskou M, Nicholson MR. Longitudinal Profiling of the Intestinal Microbiome in Children with Cystic Fibrosis Treated with Elexacaftor-Tezacaftor-Ivacaftor. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.08.11.23293949. [PMID: 37645804 PMCID: PMC10462202 DOI: 10.1101/2023.08.11.23293949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The intestinal microbiome influences growth and disease progression in children with cystic fibrosis (CF). Elexacaftor-tezacaftor-ivacaftor (ELX/TEZ/IVA), the newest pharmaceutical modulator for CF, restores function of the pathogenic mutated CFTR channel. We performed a single-center longitudinal analysis of the effect of ELX/TEZ/IVA on the intestinal microbiome, intestinal inflammation, and clinical parameters in children with CF. Following ELX/TEZ/IVA, children with CF had significant improvements in BMI, ppFEV1 and required fewer antibiotics for respiratory infections. Intestinal microbiome diversity increased following ELX/TEZ/IVA coupled with a decrease in the intestinal carriage of Staphylococcus aureus, the predominant respiratory pathogen in children with CF. There was a reduced abundance of microbiome-encoded antibiotic-resistance genes. Microbial pathways for aerobic respiration were reduced after ELX/TEZ/IVA. The abundance of microbial acid tolerance genes was reduced, indicating microbial adaptation to increased CFTR function. In all, this study represents the first comprehensive analysis of the intestinal microbiome in children with CF receiving ELX/TEZ/IVA.
Collapse
Affiliation(s)
- Seth A. Reasoner
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rachel Bernard
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Adam Waalkes
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Kelsi Penewit
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Janessa Lewis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Andrew G. Sokolow
- Division of Allergy, and Immunology, and Pulmonary Medicine, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Rebekah F. Brown
- Division of Allergy, and Immunology, and Pulmonary Medicine, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
| | - Kathryn M. Edwards
- Division of Infectious Diseases, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, Tennessee, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Maria Hadjifrangiskou
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Center for Personalized Microbiology (CPMi), Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maribeth R. Nicholson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Monroe Carrell Junior Children’s Hospital at Vanderbilt, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
5
|
Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O. Gut microbiota in various childhood disorders: Implication and indications. World J Gastroenterol 2022; 28:1875-1901. [PMID: 35664966 PMCID: PMC9150060 DOI: 10.3748/wjg.v28.i18.1875] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/08/2022] [Accepted: 03/27/2022] [Indexed: 02/06/2023] Open
Abstract
Gut microbiota has a significant role in gut development, maturation, and immune system differentiation. It exerts considerable effects on the child's physical and mental development. The gut microbiota composition and structure depend on many host and microbial factors. The host factors include age, genetic pool, general health, dietary factors, medication use, the intestine's pH, peristalsis, and transit time, mucus secretions, mucous immunoglobulin, and tissue oxidation-reduction potentials. The microbial factors include nutrient availability, bacterial cooperation or antagonism, and bacterial adhesion. Each part of the gut has its microbiota due to its specific characteristics. The gut microbiota interacts with different body parts, affecting the pathogenesis of many local and systemic diseases. Dysbiosis is a common finding in many childhood disorders such as autism, failure to thrive, nutritional disorders, coeliac disease, Necrotizing Enterocolitis, helicobacter pylori infection, functional gastrointestinal disorders of childhood, inflammatory bowel diseases, and many other gastrointestinal disorders. Dysbiosis is also observed in allergic conditions like atopic dermatitis, allergic rhinitis, and asthma. Dysbiosis can also impact the development and the progression of immune disorders and cardiac disorders, including heart failure. Probiotic supplements could provide some help in managing these disorders. However, we are still in need of more studies. In this narrative review, we will shed some light on the role of microbiota in the development and management of common childhood disorders.
Collapse
Affiliation(s)
- Nermin Kamal Saeed
- Medical Microbiology Section, Department of Pathology, Salmaniya Medical Complex, Ministry of Health, Manama 12, Bahrain
- Microbiology Section, Department of Pathology, Irish Royal College of Surgeon, Busaiteen 15503, Bahrain
| | - Mohammed Al-Beltagi
- Department of Pediatrics, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| | - Adel Salah Bediwy
- Department of Chest Disease, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Pulmonology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al Habib Medical Group, Manama 26671, Bahrain
| | - Yasser El-Sawaf
- Department of Tropical Medicine, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
- Department of Gastroenterology, University Medical Center, Arabian Gulf University, Dr. Sulaiman Al-Habib Medical Group, Manama 26671, Bahrain
| | - Osama Toema
- Department of Pediatrics, Faculty of Medicine, Tanta University, Tanta 31511, Egypt
| |
Collapse
|
6
|
Abuqwider J, Altamimi M, Mauriello G. Limosilactobacillus reuteri in Health and Disease. Microorganisms 2022; 10:microorganisms10030522. [PMID: 35336098 PMCID: PMC8953724 DOI: 10.3390/microorganisms10030522] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/01/2023] Open
Abstract
Limosilactobacillus reuteri is a microorganism with valuable probiotic qualities that has been widely employed in humans to promote health. It is a well-studied probiotic bacterium that exerts beneficial health effects due to several metabolic mechanisms that enhance the production of anti-inflammatory cytochines and modulate the gut microbiota by the production of antimicrobial molecules, including reuterin. This review provides an overview of the data that support the role of probiotic properties, and the antimicrobial and immunomodulatory effects of some L. reuteri strains in relation to their metabolite production profile on the amelioration of many diseases and disorders. Although the results discussed in this paper are strain dependent, they show that L. reuteri, by different mechanisms and various metabolites, may control body weight and obesity, improve insulin sensitivity and glucose homeostasis, increase gut integrity and immunomodulation, and attenuate hepatic disorders. Gut microbiota modulation by ingesting probiotic L. reuteri strains could be a promising preventative and therapeutic approach against many diseases and disorders.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
| | - Mohammad Altamimi
- Department of Nutrition and Food Technology, Faculty of Agriculture and Veterinary Medicine, An-Najah National University, Nablus P.O. Box 7, Palestine;
| | - Gianluigi Mauriello
- Department of Agricultural Science, University of Naples Federico II, 80049 Naples, Italy;
- Correspondence: ; Tel.: +39-081-2539452
| |
Collapse
|
7
|
Graf AC, Striesow J, Pané-Farré J, Sura T, Wurster M, Lalk M, Pieper DH, Becher D, Kahl BC, Riedel K. An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Front Cell Infect Microbiol 2021; 11:724569. [PMID: 34513734 PMCID: PMC8432295 DOI: 10.3389/fcimb.2021.724569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/11/2021] [Indexed: 12/28/2022] Open
Abstract
Hallmarks of cystic fibrosis (CF) are increased viscosity of mucus and impaired mucociliary clearance within the airways due to mutations of the cystic fibrosis conductance regulator gene. This facilitates the colonization of the lung by microbial pathogens and the concomitant establishment of chronic infections leading to tissue damage, reduced lung function, and decreased life expectancy. Although the interplay between key CF pathogens plays a major role during disease progression, the pathophysiology of the microbial community in CF lungs remains poorly understood. Particular challenges in the analysis of the microbial population present in CF sputum is (I) the inhomogeneous, viscous, and slimy consistence of CF sputum, and (II) the high number of human proteins masking comparably low abundant microbial proteins. To address these challenges, we used 21 CF sputum samples to develop a reliable, reproducible and widely applicable protocol for sputum processing, microbial enrichment, cell disruption, protein extraction and subsequent metaproteomic analyses. As a proof of concept, we selected three sputum samples for detailed metaproteome analyses and complemented and validated metaproteome data by 16S sequencing, metabolomic as well as microscopic analyses. Applying our protocol, the number of bacterial proteins/protein groups increased from 199-425 to 392-868 in enriched samples compared to nonenriched controls. These early microbial metaproteome data suggest that the arginine deiminase pathway and multiple proteases and peptidases identified from various bacterial genera could so far be underappreciated in their contribution to the CF pathophysiology. By providing a standardized and effective protocol for sputum processing and microbial enrichment, our study represents an important basis for future studies investigating the physiology of microbial pathogens in CF in vivo – an important prerequisite for the development of novel antimicrobial therapies to combat chronic recurrent airway infection in CF.
Collapse
Affiliation(s)
- Alexander C Graf
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| | - Johanna Striesow
- Research Group ZIK Plasmatis, Leibniz Institute for Plasma Science and Technology, Greifswald, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology, Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Thomas Sura
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Martina Wurster
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Michael Lalk
- Institute of Biochemistry, Department of Cellular Biochemistry & Metabolomics, University of Greifswald, Greifswald, Germany
| | - Dietmar H Pieper
- Research Group Microbial Interactions and Processes, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Dörte Becher
- Institute of Microbiology, Department of Microbial Proteomics, University of Greifswald, Greifswald, Germany
| | - Barbara C Kahl
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Katharina Riedel
- Institute of Microbiology, Department of Microbial Physiology & Molecular Biology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
The Effect of Probiotics on Various Diseases and their Therapeutic Role: An Update Review. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Probiotic bacteria play a critical and functional role in clinical and nutritional applications. In the present study, the ability of various probiotics and their metabolites in the prevention and treatment of different diseases, infections and disorders was reviewed. The issues that were noticed are included: Fibrocystic, diabetes, acne, colon cancer, cardiovascular, urinary tract infections, atopic eczema syndrome, food allergies and obesity. Enhancement in using drug treatment has led to the appearance of drug-resistance concern, thus probiotics can be a suitable choice. This review focuses on the effect of probiotic bacteria and their metabolites on immune-boosting, prevention and treatment of these diseases. For this purpose, after a short glance at each disease, infection and disorder, the mechanism of probiotic action and recent studies about that disease are reviewed. It could be recommended that probiotics consumption, perhaps from birth to all stages of life, would be effective in the life-long, development of health effects and disease treatments.
Collapse
|
9
|
Liu X, Chen Y, You B, Peng Y, Chen Y, Yang Z, Zhang Y, Chen J. Molecular mechanism mediating enteric bacterial translocation after severe burn: the role of cystic fibrosis transmembrane conductance regulator. BURNS & TRAUMA 2021; 9:tkaa042. [PMID: 33501367 PMCID: PMC7809362 DOI: 10.1093/burnst/tkaa042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/28/2020] [Indexed: 11/23/2022]
Abstract
Background Gut ischemia and hypoxia post severe burn leads to breakdown of intestinal epithelial
barrier and enteric bacterial translocation (EBT), resulting in serious complications,
such as systemic inflammatory response syndrome, sepsis and multiple organ failure.
Cystic fibrosis transmembrane conductance regulator (CFTR) is known to be downregulated
by hypoxia and modulate junctional complexes, which are crucial structures maintaining
the intestinal barrier. This study aimed to investigate whether CFTR plays a role in
both regulating the intestinal barrier and mediating EBT post severe burn, as well as
the signaling pathways involved in these processes. Methods An in vitro Caco-2 cell model subjected to hypoxic injury and an
in vivo mouse model with a 30% total body surface area full-thickness
dermal burn were established. DF 508 mice (mice with F508del CFTR gene mutation) were
used as an in vivo model to further demonstrate the role of CFTR in maintaining normal
intestinal barrier function. QRT-PCR, western blot, ELISA, TER assay and
immunofluorescence staining were used to detect the expression and localization of CFTR
and tight junction proteins, as well as the function of tight junctions. Results Our data indicated that, in Caco-2 cells, the hypoxia condition significantly reduced
CFTR expression; activated extracellular signal-regulated kinase and nuclear factor-κB
signaling; elevated secretion of inflammatory factors (tumor necrosis factor-α,
interleukin-1β and interleukin-8); downregulated zonula occludens-1, occludin and
E-cadherin expression; decreased transepithelial electrical resistance values; and led
to a cellular mislocation of ZO-1. More importantly, knockdown of CFTR caused similar
alterations. The upregulation of inflammatory factors and downregulation of tight
junction proteins (ZO-1 and occludin) induced by knockdown of CFTR could be reversed by
specific extracellular signal-regulated kinase or nuclear factor-κB inhibition. In
support of the in vitro data, exuberant secretion of pro-inflammatory
mediators and EBT was observed in the intestine of severely burnt mice in
vivo. EBT occurred in DF508 mice (mice with the F508del CFTR gene mutation),
accompanied by augmented tumor necrosis factor-α, interleukin-1β and interleukin-8
levels in the ileum compared to wildtype mice. In addition, vitamin D3 was shown to
protect the intestinal epithelial barrier from hypoxic injury. Conclusions Collectively, the present study illustrated that CFTR and downstream signaling were
critical in modulating the intestinal epithelial junction and EBT post severe burn.
Collapse
Affiliation(s)
- Xinzhu Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Bo You
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China.,Department of Burn and Plastic Surgery, No. 958 Hospital of Army, Southwest Hospital, Third Military Medical University (Army Military Medical University), Jian Xin Dong Street, Chongqing 400020, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Yajie Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Zichen Yang
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| | - Yixin Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Zhi Zao Ju Road, Shanghai 200011, China
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Key Laboratory for Proteomics Disease, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Military Medical University), Gao Tan Yan Street, Chongqing 400038, China
| |
Collapse
|
10
|
Lee AJ, Einarsson GG, Gilpin DF, Tunney MM. Multi-Omics Approaches: The Key to Improving Respiratory Health in People With Cystic Fibrosis? Front Pharmacol 2020; 11:569821. [PMID: 33013411 PMCID: PMC7509435 DOI: 10.3389/fphar.2020.569821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The advent of high-throughput multi-omics technologies has underpinned the expansion in lung microbiome research, increasing our understanding of the nature, complexity and significance of the polymicrobial communities harbored by people with CF (PWCF). Having established that structurally complex microbial communities exist within the airways, the focus of recent research has now widened to investigating the function and dynamics of the resident microbiota during disease as well as in health. With further refinement, multi-omics approaches present the opportunity to untangle the complex interplay between microbe-microbe and microbe-host interactions in the lung and the relationship with respiratory disease progression, offering invaluable opportunities to discover new therapeutic approaches for our management of airway infection in CF.
Collapse
Affiliation(s)
- Andrew J. Lee
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Gisli G. Einarsson
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Deirdre F. Gilpin
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| | - Michael M. Tunney
- Halo Research Group, Queen’s University Belfast, Belfast, United Kingdom
- School of Pharmacy, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
11
|
Walkenhorst MS, Reyes L, Perez G, Progulske-Fox A, Brown MB, Phillips PL. A Uniquely Altered Oral Microbiome Composition Was Observed in Pregnant Rats With Porphyromonas gingivalis Induced Periodontal Disease. Front Cell Infect Microbiol 2020; 10:92. [PMID: 32211345 PMCID: PMC7069352 DOI: 10.3389/fcimb.2020.00092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 02/21/2020] [Indexed: 12/13/2022] Open
Abstract
Porphyromonas gingivalis is an anaerobic bacterium commonly found in the oral cavity and associated with the development of periodontal disease. P. gingivalis has also been linked to several systemic vascular and inflammatory diseases including poor pregnancy outcomes. Little is known about the changes in the oral flora during pregnancy in connection to P. gingivalis infection. This pilot study aims to explore changes in the oral microbiome due to P. gingivalis inoculation and pregnancy in an in vivo rat model of periodontal disease. A metagenomic sequencing analysis targeting seven of the 16S rRNA gene variable regions was performed for oral samples collected at the following time points: baseline control (week 0), P. gingivalis inoculated (week 11), P. gingivalis inoculated and pregnant rat at necropsy (week 16). A second set of animals were also sampled to generate a sham-inoculated (week 11) control group. We found that the rat oral microbiome profiles were more similar to that of the human oral cavity compared to previous reports targeting one or two 16S variable regions. Overall, there appears to be a relatively stable core microbiome in the oral cavity. As expected, P. gingivalis induced periodontal disease resulted in oral microbiome dysbiosis. During pregnancy, some aspects of the oral microbiome shifted toward a more baseline-like profile. However, population analyses in terms of dissimilarity measures and especially metagenomic based predictions of select characteristics such as cell morphology, oxygen requirement, and major metabolite synthesis showed that pregnancy did not restore the composition of the oral microbiome. Rather, a uniquely altered oral microbiome composition was observed in pregnant rats with pre-established periodontal disease.
Collapse
Affiliation(s)
- Molly S Walkenhorst
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, United States
| | - Leticia Reyes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Gonzalo Perez
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - Mary B Brown
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, United States
| | - Priscilla L Phillips
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still University of Health Sciences, Kirksville, MO, United States
| |
Collapse
|
12
|
Hagihara M, Yamashita R, Matsumoto A, Mori T, Inagaki T, Nonogaki T, Kuroki Y, Higashi S, Oka K, Takahashi M, Mikamo H. The impact of probiotic Clostridium butyricum MIYAIRI 588 on murine gut metabolic alterations. J Infect Chemother 2019; 25:571-577. [PMID: 31101528 DOI: 10.1016/j.jiac.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/24/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium used in antidiarrheal medicine in Japan. A few studies analyzed the changes in gut microbiome in patients treated with antimicrobials based on metagenomics sequencing. However, the impact of CBM 588 on gut metabolic alterations has not been fully elucidated. This study was to reveal the impact of CBM 588 on gut metabolic alterations. MATERIAL AND METHODS In this in vivo study, mice were divided into four groups and CBM 588, clindamycin (CLDM), and normal saline (control) was orally administered (1. CLDM, 2. CBM 588, 3. CBM 588 + CLDM, 4. water) for 4 days. Fecal samples were collected to extract DNA for metagenomics analysis. Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) was used to obtain relative Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway abundance information derived from metagenomics data. RESULTS CLDM treatment resulted in a dramatic increase in Firmicutes phylum compared to non-CLDM-treated groups (control and CBM 588-treated group). Then, the CBM 588 + CLDM-treated group showed a trend similar in many metabolic pathways to the CLDM-treated group. On the other hand, the CBM 588 + CLDM-treated group showed higher relative abundance compared to the CLDM-treated group especially in starch and sucrose metabolism. DISCUSSION We concluded that CBM 588 caused a gut microbiome functional shift toward increased carbohydrate metabolism. These results support the hypothesis that CBM 588 treatment modulates gut microbiome under dysbiosis conditions due to antimicrobials.
Collapse
Affiliation(s)
- Mao Hagihara
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan
| | - Rieko Yamashita
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan
| | - Asami Matsumoto
- Department of Molecular Epidemiology and Biomedical Sciences, Aichi Medical University, Japan; Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | - Takeshi Mori
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan
| | | | - Tsunemasa Nonogaki
- Department of Pharmacy, College of Pharmacy Kinjyo Gakuin University, Japan
| | - Yasutoshi Kuroki
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | | | - Kentaro Oka
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | - Motomichi Takahashi
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan; Miyarisan Pharmaceutical Co., Ltd., Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University, Japan.
| |
Collapse
|
13
|
Zhai J, Knox K, Twigg HL, Zhou H, Zhou JJ. Exact variance component tests for longitudinal microbiome studies. Genet Epidemiol 2019; 43:250-262. [PMID: 30623484 DOI: 10.1002/gepi.22185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 10/28/2018] [Accepted: 11/26/2018] [Indexed: 01/12/2023]
Abstract
In metagenomic studies, testing the association between microbiome composition and clinical outcomes translates to testing the nullity of variance components. Motivated by a lung human immunodeficiency virus (HIV) microbiome project, we study longitudinal microbiome data by using variance component models with more than two variance components. Current testing strategies only apply to models with exactly two variance components and when sample sizes are large. Therefore, they are not applicable to longitudinal microbiome studies. In this paper, we propose exact tests (score test, likelihood ratio test, and restricted likelihood ratio test) to (a) test the association of the overall microbiome composition in a longitudinal design and (b) detect the association of one specific microbiome cluster while adjusting for the effects from related clusters. Our approach combines the exact tests for null hypothesis with a single variance component with a strategy of reducing multiple variance components to a single one. Simulation studies demonstrate that our method has a correct type I error rate and superior power compared to existing methods at small sample sizes and weak signals. Finally, we apply our method to a longitudinal pulmonary microbiome study of HIV-infected patients and reveal two interesting genera Prevotella and Veillonella associated with forced vital capacity. Our findings shed light on the impact of the lung microbiome on HIV complexities. The method is implemented in the open-source, high-performance computing language Julia and is freely available at https://github.com/JingZhai63/VCmicrobiome.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Kenneth Knox
- Division of Pulmonary, Allergy, Critical Care, Sleep Medicine, Department of Medicine, University of Arizona, Tucson, Arizona
| | - Homer L Twigg
- Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University Medical Center, Indianapolis, Indiana
| | - Hua Zhou
- Department of Biostatistics, University of California, Los Angeles, California
| | - Jin J Zhou
- Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| |
Collapse
|
14
|
Pearl JE, Das M, Cooper AM. Immunological roulette: Luck or something more? Considering the connections between host and environment in TB. Cell Mol Immunol 2018; 15:226-232. [PMID: 29375129 DOI: 10.1038/cmi.2017.145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 02/07/2023] Open
Abstract
Accurate prediction of which patient will progress from a sub-clinical Mycobacterium tuberculosis infection to active tuberculosis represents an elusive, yet critical, clinical research objective. From the individual perspective, progression can be considered to be the product of a series of unfortunate events or even a run of bad luck. Here, we identify the subtle physiological relationships that can influence the odds of progression to active TB and how this progression may reflect directed dysbiosis in a number of interrelated systems. Most infected individuals who progress to disease have apparently good immune responses, but these responses are, at times, compromised by either local or systemic environmental factors. Obvious disease promoting processes, such as tissue-damaging granulomata, usually manifest in the lung, but illness is systemic. This apparent dichotomy between local and systemic reflects a clear need to define the factors that promote progression to active disease within the context of the body as a physiological whole. We discuss aspects of the host environment that can impact expression of immunity, including the microbiome, glucocorticoid-mediated regulation, catecholamines and interaction between the gut, liver and lung. We suggest the importance of integrating precision medicine into our analyses of experimental outcomes such that apparently conflicting results are not contentious, but rather reflect the impact of these subtle relationships with our environment and microbiota.
Collapse
Affiliation(s)
- John E Pearl
- Leicester Tuberculosis Research Group (LTBRG), Department of Infection Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mrinal Das
- Leicester Tuberculosis Research Group (LTBRG), Department of Infection Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Andrea M Cooper
- Leicester Tuberculosis Research Group (LTBRG), Department of Infection Immunity and Inflammation, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
15
|
A Metagenomic and in Silico Functional Prediction of Gut Microbiota Profiles May Concur in Discovering New Cystic Fibrosis Patient-Targeted Probiotics. Nutrients 2017; 9:nu9121342. [PMID: 29232848 PMCID: PMC5748792 DOI: 10.3390/nu9121342] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/15/2022] Open
Abstract
Cystic fibrosis (CF) is a life-limiting hereditary disorder that results in aberrant mucosa in the lungs and digestive tract, chronic respiratory infections, chronic inflammation, and the need for repeated antibiotic treatments. Probiotics have been demonstrated to improve the quality of life of CF patients. We investigated the distribution of gut microbiota (GM) bacteria to identify new potential probiotics for CF patients on the basis of GM patterns. Fecal samples of 28 CF patients and 31 healthy controls (HC) were collected and analyzed by 16S rRNA-based pyrosequencing analysis of GM, to produce CF-HC paired maps of the distribution of operational taxonomic units (OTUs), and by Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) for Kyoto Encyclopedia of Genes and Genomes (KEGG) biomarker prediction. The maps were scanned to highlight the distribution of bacteria commonly claimed as probiotics, such as bifidobacteria and lactobacilli, and of butyrate-producing colon bacteria, such as Eubacterium spp. and Faecalibacterium prausnitzii. The analyses highlighted 24 OTUs eligible as putative probiotics. Eleven and nine species were prevalently associated with the GM of CF and HC subjects, respectively. Their KEGG prediction provided differential CF and HC pathways, indeed associated with health-promoting biochemical activities in the latter case. GM profiling and KEGG biomarkers concurred in the evaluation of nine bacterial species as novel putative probiotics that could be investigated for the nutritional management of CF patients.
Collapse
|
16
|
Early-Life Intestine Microbiota and Lung Health in Children. J Immunol Res 2017; 2017:8450496. [PMID: 29359170 PMCID: PMC5735664 DOI: 10.1155/2017/8450496] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 07/03/2017] [Accepted: 07/20/2017] [Indexed: 12/20/2022] Open
Abstract
The gastrointestinal microbiota plays a critical role in nutritional, metabolic, and immune functions in infants and young children and has implications for future lung health status. Understanding the role of intestinal dysbiosis in chronic lung disease progression will provide opportunities to design early interventions to improve the course of the disease. Gut microbiota is established within the first 1 to 3 years of life and remains relatively stable throughout the life span. In this review, we report the recent development in research in gut-lung axis, with focus on the effects of targeting microbiota of infants and children at risk of or with progressive lung diseases. The basic concept is to exploit this approach in critical window to achieve the best results in the control of future health.
Collapse
|
17
|
Boutin S, Dalpke AH. Acquisition and adaptation of the airway microbiota in the early life of cystic fibrosis patients. Mol Cell Pediatr 2017; 4:1. [PMID: 28097632 PMCID: PMC5241261 DOI: 10.1186/s40348-016-0067-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/15/2016] [Indexed: 12/26/2022] Open
Abstract
Cystic fibrosis (CF) is a genetic disease in which bacterial infections of the airways play a major role in the long-term clinical outcome. In recent years, a number of next-generation sequencing (NGS)-based studies aimed at deciphering the structure and composition of the airways’ microbiota. It was shown that the nasal cavity of CF patients displays dysbiosis early in life indicating a failure in the first establishment of a healthy microbiota. In contrast, within the conducting and lower airways, the establishment occurs normally first, but is sensitive to future dysbiosis including chronic infections with classical pathogens in later life. The objective of this mini-review is to give an update on the current knowledge about the development of the microbiota in the early life of CF patients. Microbial acquisition in the human airways can be described by the island model: Microbes found in the lower airways of CF patients represent “islands” that are at first populated from the upper airways reflecting the “mainland.” Colonization can be modeled following the neutral theory in which the most abundant bacteria in the mainland are also frequently found in the lower airways initially. At later times, however, the colonization process of the lower airways segregates by active selection of specific microbes. Future research should focus on those processes of microbial and host interactions to understand how microbial communities are shaped on short- and long-term scales. We point out what therapeutic consequences arise from the microbiome data obtained within ecological framework models.
Collapse
Affiliation(s)
- Sébastien Boutin
- Department of Infectious Disease, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Alexander H Dalpke
- Department of Infectious Disease, Medical Microbiology and Hygiene, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120, Heidelberg, Germany. .,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany.
| |
Collapse
|
18
|
Microbiome in the pathogenesis of cystic fibrosis and lung transplant-related disease. Transl Res 2017; 179:84-96. [PMID: 27559681 DOI: 10.1016/j.trsl.2016.07.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/26/2016] [Accepted: 07/27/2016] [Indexed: 01/01/2023]
Abstract
Significant advances in culture-independent methods have expanded our knowledge about the diversity of the lung microbial environment. Complex microorganisms and microbial communities can now be identified in the distal airways in a variety of respiratory diseases, including cystic fibrosis (CF) and the posttransplantation lung. Although there are significant methodologic concerns about sampling the lung microbiome, several studies have now shown that the microbiome of the lower respiratory tract is distinct from the upper airway. CF is a disease characterized by chronic airway infections that lead to significant morbidity and mortality. Traditional culture-dependent methods have identified a select group of pathogens that cause exacerbations in CF, but studies using bacterial 16S rRNA gene-based microarrays have shown that the CF microbiome is an intricate and dynamic bacterial ecosystem, which influences both host immune health and disease pathogenesis. These microbial communities can shift with external influences, including antibiotic exposure. In addition, there have been a number of studies suggesting a link between the gut microbiome and respiratory health in CF. Compared with CF, there is significantly less knowledge about the microbiome of the transplanted lung. Risk factors for bronchiolitis obliterans syndrome, one of the leading causes of death, include microbial infections. Lung transplant patients have a unique lung microbiome that is different than the pretransplanted microbiome and changes with time. Understanding the host-pathogen interactions in these diseases may suggest targeted therapies and improve long-term survival in these patients.
Collapse
|
19
|
Taylor SL, Wesselingh S, Rogers GB. Host-microbiome interactions in acute and chronic respiratory infections. Cell Microbiol 2016; 18:652-62. [PMID: 26972325 DOI: 10.1111/cmi.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/03/2016] [Indexed: 12/11/2022]
Abstract
Respiratory infection is a leading cause of global morbidity and mortality. Understanding the factors that influence risk and outcome of these infections is essential to improving care. We increasingly understand that interactions between the microbial residents of our mucosal surfaces and host regulatory systems is fundamental to shaping local and systemic immunity. These mechanisms are most well defined in the gastrointestinal tract, however analogous systems also occur in the airways. Moreover, we now appreciate that the host-microbiota interactions at a given mucosal surface influence systemic host processes, in turn, affecting the course of infection at other anatomical sites. This review discusses the mechanisms by which the respiratory microbiome influences acute and chronic airway disease and examines the contribution of cross-talk between the gastrointestinal and respiratory compartments to microbe-mucosa interactions.
Collapse
Affiliation(s)
- Steven L Taylor
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Steve Wesselingh
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| | - Geraint B Rogers
- SAHMRI Infection and Immunity Theme, School of Medicine, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
20
|
Ananthan A, Balasubramanian H, Rao S, Patole S. Probiotic supplementation in children with cystic fibrosis-a systematic review. Eur J Pediatr 2016; 175:1255-66. [PMID: 27576473 DOI: 10.1007/s00431-016-2769-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 08/09/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED Probiotics may benefit in cystic fibrosis (CF) as gut dysbiosis is associated with gastrointestinal symptoms and exacerbation of respiratory symptoms in CF. We conducted a systematic review of randomized controlled trials (RCTs) and non-RCTs of probiotic supplementation in children with CF, using the Cochrane methodology, preferred reporting items for systematic reviews (PRISMA) statement, and meta-analysis of observational studies in epidemiology (MOOSE) guidelines. Primary outcomes were pulmonary exacerbations, duration of hospitalization and antibiotics, and all-cause mortality. Secondary outcomes included gastrointestinal symptoms, markers of gut inflammation, and intestinal microbial balance. A total of nine studies (RCTs, 6, non-RCTs, 3; N = 275) with some methodological weaknesses were included in the review. The pooled estimate showed significant reduction in the rate of pulmonary exacerbation (fixed effects model, two parallel group RCTs and one cross-over trial: relative risk (RR) 0.25, (95 % confidence interval (95 % CI) 0.15,0.41); p < 0.00001; level of evidence: low) and decrease in fecal calprotectin (FCLP) levels (fixed effect model, three RCTs: mean difference (MD) -16.71, 95 % CI -27.30,-6.13); p = 0.002; level of evidence: low) after probiotic supplementation. Probiotic supplementation significantly improved gastrointestinal symptoms (one RCT, one non-RCT) and gut microbial balance (decreased Proteobacteria, increased Firmicutes, and Bacteroides in one RCT, one non-RCT). CONCLUSION Limited low-quality evidence exists on the effects of probiotics in children with CF. Well-designed adequately powered RCTs assessing clinically meaningful outcomes are required to study this important issue. WHAT IS KNOWN • Gut dysbiosis is frequent in children with cystic fibrosis due to frequent exposure to pathogens and antibiotics. • Probiotics decrease gut dysbiosis and improve gut maturity and function. What is New: • This comprehensive systematic review shows that current evidence on the safety and efficacy of probiotics in children with cystic fibrosis is limited and of low quality. • Well-designed and adequately powered trials assessing clinically important outcomes are required considering the health burden of cystic fibrosis and the potential benefits of probiotics.
Collapse
Affiliation(s)
- Anitha Ananthan
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia.
| | - Haribalakrishna Balasubramanian
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia
| | - Shripada Rao
- Department of Neonatal Paediatrics, Princess Margaret Hospital for Children, Perth, WA, Australia.,Centre for Neonatal Research and Education, University of Western Australia, Crawley, Australia
| | - Sanjay Patole
- Department of Neonatal Paediatrics, King Edward Memorial Hospital for Women, 378 Bagot Road, Subiaco, Perth, WA, 6008, Australia.,Centre for Neonatal Research and Education, University of Western Australia, Crawley, Australia
| |
Collapse
|
21
|
Anderson JL, Miles C, Tierney AC. Effect of probiotics on respiratory, gastrointestinal and nutritional outcomes in patients with cystic fibrosis: A systematic review. J Cyst Fibros 2016; 16:186-197. [PMID: 27693010 DOI: 10.1016/j.jcf.2016.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/12/2016] [Accepted: 09/13/2016] [Indexed: 12/21/2022]
Abstract
BACKGROUND An increasing body of research investigating the use of probiotics to improve health outcomes in patients with cystic fibrosis (CF) prompted the need to systematically assess and summarise the relevant literature. METHODS An electronic search of five databases and three trial databases was conducted. Studies describing the administration of probiotics to patients with CF older than 2years, with a comparator group on respiratory, gastrointestinal and nutritional outcomes were included. RESULTS Three pre-post studies and six randomised controlled trials met the inclusion criteria. Overall studies showed a positive effect of probiotics on reducing the number of pulmonary exacerbations and decreasing gastrointestinal inflammation. There was limited effect of probiotics on other outcomes and inadequate evidence for the effects of specific probiotic species and strains. CONCLUSION The findings suggest that probiotics may improve respiratory and gastrointestinal outcomes in a stable CF clinic population with no reported evidence of harm. There is inadequate evidence at this time to recommend a specific species, strain or dose of probiotic as likely to be of significant benefit.
Collapse
Affiliation(s)
- Jacqueline L Anderson
- Dietetics and Human Nutrition, School of Allied Health, La Trobe University, Bundoora, Melbourne, Australia.
| | - Caitlin Miles
- Nutrition and Dietetics, Monash Health, Clayton, Victoria, Australia
| | - Audrey C Tierney
- Dietetics and Human Nutrition, School of Allied Health, La Trobe University, Bundoora, Melbourne, Australia; Department of Nutrition and Dietetics, Alfred Health, Prahran, Melbourne, Australia
| |
Collapse
|
22
|
Bacci G, Paganin P, Lopez L, Vanni C, Dalmastri C, Cantale C, Daddiego L, Perrotta G, Dolce D, Morelli P, Tuccio V, De Alessandri A, Fiscarelli EV, Taccetti G, Lucidi V, Bevivino A, Mengoni A. Pyrosequencing Unveils Cystic Fibrosis Lung Microbiome Differences Associated with a Severe Lung Function Decline. PLoS One 2016; 11:e0156807. [PMID: 27355625 PMCID: PMC4927098 DOI: 10.1371/journal.pone.0156807] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/19/2016] [Indexed: 02/07/2023] Open
Abstract
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.
Collapse
Affiliation(s)
- Giovanni Bacci
- Department of Biology, University of Florence, Florence, Italy
| | - Patrizia Paganin
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loredana Lopez
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Chiara Vanni
- Department of Biology, University of Florence, Florence, Italy
| | - Claudia Dalmastri
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Cristina Cantale
- Department for Sustainability of Production and Territorial Systems, Biotechnologies and Agro-Industry Division, ENEA Casaccia Research Center, Rome, Italy
| | - Loretta Daddiego
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Gaetano Perrotta
- Department of Energy Technologies, Bioenergy, Biorefinery and Green Chemistry Division, ENEA Trisaia Research Center, Rotondella (MT), Italy
| | - Daniela Dolce
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Patrizia Morelli
- Department of Pediatrics, Cystic Fibrosis Center, G. Gaslini Institute, Genoa, Italy
| | - Vanessa Tuccio
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Ersilia Vita Fiscarelli
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | - Giovanni Taccetti
- Department of Pediatrics, Cystic Fibrosis Center, Meyer Hospital, Florence, Italy
| | - Vincenzina Lucidi
- Cystic Fibrosis Microbiology and Cystic Fibrosis Center, Children's Hospital and Research Institute Bambino Gesù, Rome, Italy
| | | | - Alessio Mengoni
- Department of Biology, University of Florence, Florence, Italy
| |
Collapse
|
23
|
Putignani L, Dallapiccola B. Foodomics as part of the host-microbiota-exposome interplay. J Proteomics 2016; 147:3-20. [PMID: 27130534 DOI: 10.1016/j.jprot.2016.04.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/10/2016] [Accepted: 04/20/2016] [Indexed: 02/08/2023]
Abstract
UNLABELLED The functional complexity of human gut microbiota and its relationship with host physiology and environmental modulating factors, offers the opportunity to investigate (i) the host and microbiota role in organism-environment relationship; (ii) the individual functional diversity and response to environmental stimuli (exposome); (iii) the host genome and microbiota metagenomes' modifications by diet-mediated epigenomic controls (nutriepigenomics); and (iv) the genotype-phenotype "trajectories" under physiological and disease constraints. Systems biology-based approaches aim at integrating biological data at cellular, tissue and organ organization levels, using computational modeling to interpret diseases' physiopathological mechanisms (i.e., onset and progression). Proteomics improves the existing gene models by profiling molecular phenotypes at protein abundance level, by analyzing post-translational modifications and protein-protein interactions and providing specific pathway information, hence contributing to functional molecular networks. Transcriptomics and metabolomics may determine host ad microbiota changes induced by food ingredients at molecular level, complementing functional genomics and proteomics data. Since foodomics is an -omic wide methodology may feed back all integrative data to foster the omics-based systems medicine field. Hence, coupled to ecological genomics of gut microbial communities, foodomics may highlight health benefits from nutrients, dissecting diet-induced gut microbiota eubiosis mechanisms and significantly contributing to understand and prevent complex disease phenotypes. BIOLOGICAL SIGNIFICANCE Besides transcriptomics and proteomics there is a growing interest in applying metabolic profiling to food science for the development of functional foods. Indeed, one of the biggest challenges of modern nutrition is to propose a healthy diet to populations worldwide, intrinsically respecting the high inter-individual variability, driven by complex host/nutrients/microbiota/environment interactions. Therefore, metabolic profiling can assist at various levels for the development of functional foods, starting from screening for food composition to identification of new biomarkers to trace food intake. This current approach can support diet intervention strategies, epidemiological studies, and controlling of metabolic disorders worldwide spreading, hence ensuring healthy aging. With high-throughput molecular technologies driving foodomics, studying bidirectional interactions of host-microbial co-metabolism, innate immune development, dysfunctional nutrient absorption and processing, complex signaling pathways involved in nutritional metabolism, is now likely. In all cases, as microbiome pipeline efforts continue, it is possible that enhanced standardized protocols can be developed, which may lead to new testable biological and clinical hypotheses. This Review provides a comprehensive update on the current state-of-the-art of the integrated -omics route in food, microbiota and host co-metabolism studies, which may revolutionize the design of new dietary intervention strategies.
Collapse
Affiliation(s)
- Lorenza Putignani
- Units of Parasitology and Human Microbiome, Bambino Gesù Children's Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy.
| | - Bruno Dallapiccola
- Scientific Directorate, Bambino Gesù Children's Hospital and Research Institute, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| |
Collapse
|
24
|
Madan JC. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health. Clin Ther 2016; 38:740-6. [PMID: 26973296 DOI: 10.1016/j.clinthera.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. METHODS Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. FINDINGS New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. IMPLICATIONS Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF.
Collapse
Affiliation(s)
- Juliette C Madan
- Division of Neonatology, Department of Pediatrics, Children's Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
25
|
Rogers GB, Wesselingh S. Precision respiratory medicine and the microbiome. THE LANCET RESPIRATORY MEDICINE 2015; 4:73-82. [PMID: 26700443 DOI: 10.1016/s2213-2600(15)00476-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 02/06/2023]
Abstract
A decade of rapid technological advances has provided an exciting opportunity to incorporate information relating to a range of potentially important disease determinants in the clinical decision-making process. Access to highly detailed data will enable respiratory medicine to evolve from one-size-fits-all models of care, which are associated with variable clinical effectiveness and high rates of side-effects, to precision approaches, where treatment is tailored to individual patients. The human microbiome has increasingly been recognised as playing an important part in determining disease course and response to treatment. Its inclusion in precision models of respiratory medicine, therefore, is essential. Analysis of the microbiome provides an opportunity to develop novel prognostic markers for airways disease, improve definition of clinical phenotypes, develop additional guidance to aid treatment selection, and increase the accuracy of indicators of treatment effect. In this Review we propose that collaboration between researchers and clinicians is needed if respiratory medicine is to replicate the successes of precision medicine seen in other clinical specialties.
Collapse
Affiliation(s)
- Geraint B Rogers
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; SAHMRI Microbiome Research Laboratory Flinders University School of Medicine, Adelaide, SA, Australia.
| | - Steve Wesselingh
- South Australian Health and Medical Research Institute, Adelaide, SA, Australia; SAHMRI Microbiome Research Laboratory Flinders University School of Medicine, Adelaide, SA, Australia
| |
Collapse
|
26
|
Rogers GB. The human microbiome: opportunities and challenges for clinical care. Intern Med J 2015; 45:889-98. [DOI: 10.1111/imj.12650] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 11/19/2014] [Indexed: 12/11/2022]
Affiliation(s)
- G. B. Rogers
- Microbiome Research; South Australian Health and Medical Research Institute Infection and Immunity Theme; School of Medicine; Flinders University; Adelaide South Australia Australia
| |
Collapse
|
27
|
Hoen AG, Li J, Moulton LA, O’Toole GA, Housman ML, Koestler DC, Guill MF, Moore JH, Hibberd PL, Morrison HG, Sogin ML, Karagas MR, Madan JC. Associations between Gut Microbial Colonization in Early Life and Respiratory Outcomes in Cystic Fibrosis. J Pediatr 2015; 167:138-47.e1-3. [PMID: 25818499 PMCID: PMC4674690 DOI: 10.1016/j.jpeds.2015.02.049] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 01/28/2015] [Accepted: 02/18/2015] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To examine patterns of microbial colonization of the respiratory and intestinal tracts in early life in infants with cystic fibrosis (CF) and their associations with breastfeeding and clinical outcomes. STUDY DESIGN A comprehensive, prospective longitudinal analysis of the upper respiratory and intestinal microbiota in a cohort of infants and young children with CF followed from birth was performed. Genus-level microbial community composition was characterized using 16S-targeted pyrosequencing, and relationships with exposures and outcomes were assessed using linear mixed-effects models, time-to-event analysis, and principal components analysis. RESULTS Sequencing of 120 samples from 13 subjects collected from birth to 34 months revealed relationships between breastfeeding, microbial diversity in the respiratory and intestinal tracts, and the timing of onset of respiratory complications, including exacerbations and colonization with Pseudomonas aeruginosa. Fluctuations in the abundance of specific bacterial taxa preceded clinical outcomes, including a significant decrease in bacteria of the genus Parabacteroides within the intestinal tract prior to the onset of chronic P aeruginosa colonization. Specific assemblages of bacteria in intestinal samples, but not respiratory samples, were associated with CF exacerbation in early life, indicating that the intestinal microbiome may play a role in lung health. CONCLUSIONS Our findings relating breastfeeding to respiratory outcomes, gut diversity to prolonged periods of health, and specific bacterial communities in the gut prior to respiratory complications in CF highlight a connection between the intestinal microbiome and health and point to potential opportunities for antibiotic or probiotic interventions. Further studies in larger cohorts validating these findings are needed.
Collapse
Affiliation(s)
- Anne G. Hoen
- Computational Genetics Laboratory, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755,Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755
| | - Jing Li
- Computational Genetics Laboratory, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755
| | - Lisa A. Moulton
- Division of Allergy and Pediatric Pulmonology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon NH 03756
| | - George A. O’Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Molly L. Housman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755
| | - Devin C. Koestler
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160
| | - Margaret F. Guill
- Division of Allergy and Pediatric Pulmonology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon NH 03756
| | - Jason H. Moore
- Computational Genetics Laboratory, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755
| | - Patricia L. Hibberd
- Division of Global Health, Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114
| | - Hilary G. Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Mitchell L. Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH 03755
| | - Juliette C. Madan
- Division of Neonatology, Department of Pediatrics, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756
| |
Collapse
|
28
|
High individuality of respiratory bacterial communities in a large cohort of adult cystic fibrosis patients under continuous antibiotic treatment. PLoS One 2015; 10:e0117436. [PMID: 25671713 PMCID: PMC4324987 DOI: 10.1371/journal.pone.0117436] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 12/22/2014] [Indexed: 12/14/2022] Open
Abstract
Background Routine clinical diagnostics of CF patients focus only on a restricted set of well-known pathogenic species. Recent molecular studies suggest that infections could be polymicrobial with many bacteria not detected by culture-based diagnostics. Methodology and Principal Findings A large cohort of 56 adults with continuous antibiotic treatment was studied and different microbial diagnostic methods were compared, including culture-independent and culture-based bacterial diagnostics. A total of 72 sputum samples including longitudinal observations was analysed by 16S rRNA gene sequence comparison. Prevalence of known pathogens was highly similar among all methods but the vast spectrum of bacteria associated with CF was only revealed by culture-independent techniques. The sequence comparison enabled confident determination of the bacterial community composition and revealed a high diversity and individuality in the communities across the cohort. Results of microbiological analyses were further compared with individual host factors, such as age, lung function and CFTR genotype. No statistical relationship between these factors and the diversity of the entire community or single bacterial species could be identified. However, patients with non-ΔF508 mutations in the CFTR gene often had low abundances of Pseudomonas aeruginosa. Persistence of specific bacteria in some communities was demonstrated by longitudinal analyses of 13 patients indicating a potential clinical relevance of anaerobic bacteria, such as Fusobacterium nucleatum and Streptococcus millerii. Conclusions The high individuality in community composition and the lack of correlation to clinical host factors might be due to the continuous treatment with antibiotics. Since this is current practice for adult CF patients, the life-long history of the patient and the varying selection pressure on the related microbial communities should be a focus of future studies and its relation to disease progression. These studies should be substantially larger, providing more molecular information on the microbial communities complemented by detailed genetic assessment of the host.
Collapse
|
29
|
Hosseinkhan N, Zarrineh P, Masoudi-Nejad A. Analysis of Genome-scale Expression Network in Four Major Bacterial Residents of Cystic Fibrosis Lung. Curr Genomics 2014; 15:408-18. [PMID: 25435803 PMCID: PMC4245700 DOI: 10.2174/1389202915666140818205444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/06/2014] [Accepted: 08/15/2014] [Indexed: 11/22/2022] Open
Abstract
In polymicrobial communities where several species co-exist in a certain niche and consequently the possibility of interactions among species is very high, gene expression data sources can give better insights in to underlying adaptation mechanisms assumed by bacteria. Furthermore, several possible synergistic or antagonistic interactions among species can be investigated through gene expression comparisons. Lung is one of the habitats harboring several distinct pathogens during severe pulmonary disorders such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Expression data analysis of these lung residents can help to gain a better understanding on how these species interact with each other within the host cells. The first part of this paper deals with introducing available data sources for the major bacteria responsible for causing lung diseases and their genomic relations. In the second part, the main focus is on the studies concerning gene expression analyses of these species.
Collapse
Affiliation(s)
- Nazanin Hosseinkhan
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Peyman Zarrineh
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Masoudi-Nejad
- Laboratory of Systems Biology and Bioinformatics (LBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
30
|
Haller W, Ledder O, Lewindon PJ, Couper R, Gaskin KJ, Oliver M. Cystic fibrosis: An update for clinicians. Part 1: Nutrition and gastrointestinal complications. J Gastroenterol Hepatol 2014; 29:1344-55. [PMID: 25587613 DOI: 10.1111/jgh.12546] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Pyocyanin stimulates quorum sensing-mediated tolerance to oxidative stress and increases persister cell populations in Acinetobacter baumannii. Infect Immun 2014; 82:3417-25. [PMID: 24891106 DOI: 10.1128/iai.01600-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are nosocomial pathogens with overlapping sites of infection. This work reports that the two can coexist stably in mixed-culture biofilms. In a study intended to improve our understanding of the mechanism of their coexistence, it was found that pyocyanin, produced by P. aeruginosa that generally eliminates competition from other pathogens, led to the generation of reactive oxygen species (ROS) in A. baumannii cells, which in response showed a significant (P ≤ 0.05) increase in production of enzymes, specifically, catalase and superoxide dismutase (SOD). This work shows for the first time that the expression of catalase and SOD is under the control of a quorum-sensing system in A. baumannii. In support of this observation, a quorum-sensing mutant of A. baumannii (abaI::Km) was found to be sensitive to pyocyanin compared to its wild type and showed significantly (P ≤ 0.001) lower levels of the antioxidant enzymes, which increased on addition of 5 μM N-(3-hydroxydodecanoyl)-l-homoserine lactone. Likewise, in wild-type A. baumannii, there was a significant (P < 0.01) decrease in the level of anti-oxidant enzymes in the presence of salicylic acid, a known quencher of quorum sensing. In the presence of amikacin and carbenicillin, A. baumannii formed 0.07 and 0.02% persister cells, which increased 4- and 3-fold, respectively, in the presence of pyocyanin. These findings show that pyocyanin induces a protective mechanism in A. baumannii against oxidative stress and also increases its persistence against antibiotics which could be of clinical significance in the case of coinfections with A. baumannii and P. aeruginosa.
Collapse
|
32
|
Li L, Somerset S. The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies. Clin Nutr 2014; 33:571-80. [PMID: 24767984 DOI: 10.1016/j.clnu.2014.04.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/08/2023]
Abstract
Cystic fibrosis (CF) is characterised by many comorbidities related to aberrant mucosa and chronic inflammation in the respiratory and digestive systems. The intestinal mucosa serves as the primary interface between the gut microbiota and endocrine, neural and immune systems. There is emerging evidence that aberrant intestinal mucosa in CF may associate with an altered gut microbiota. Compared to healthy subjects, the overall bacterial abundance and species richness seems to be reduced in CF, accompanied by a trend in suppression of Firmicutes and Bacteroidetes spp. and an augmentation of potentially pathogenic species. There is also some concordance of gut and respiratory microbiotas in CF infants over time. The clinical significance of these observations awaits investigation. The gut microbiota have some potential in CF management by affecting inflammatory and immune responses, and influencing aberrant mucosa. As an important modifiable factor, diet therapies such as probiotics and prebiotics have shown initial promise in improving CF related conditions associated with chronic inflammation. More studies are needed to confirm this, as well as the efficacy of other dietary strategies such as modulating dietary fat and indigestible carbohydrate. Similarly, dietary modification of gut microbiota to optimise nutritional status in CF may be feasible, although more CF-specific studies are warranted.
Collapse
Affiliation(s)
- Li Li
- School of Public Health, Griffith Health Institute, Griffith University, Brisbane, Queensland, Australia.
| | - Shawn Somerset
- School of Allied Health, Australian Catholic University, PO Box 456, Virginia, Brisbane, Queensland 4014, Australia.
| |
Collapse
|
33
|
Sun X, Olivier AK, Liang B, Yi Y, Sui H, Evans TIA, Zhang Y, Zhou W, Tyler SR, Fisher JT, Keiser NW, Liu X, Yan Z, Song Y, Goeken JA, Kinyon JM, Fligg D, Wang X, Xie W, Lynch TJ, Kaminsky PM, Stewart ZA, Pope RM, Frana T, Meyerholz DK, Parekh K, Engelhardt JF. Lung phenotype of juvenile and adult cystic fibrosis transmembrane conductance regulator-knockout ferrets. Am J Respir Cell Mol Biol 2014; 50:502-12. [PMID: 24074402 DOI: 10.1165/rcmb.2013-0261oc] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Chronic bacterial lung infections in cystic fibrosis (CF) are caused by defects in the CF transmembrane conductance regulator chloride channel. Previously, we described that newborn CF transmembrane conductance regulator-knockout ferrets rapidly develop lung infections within the first week of life. Here, we report a more slowly progressing lung bacterial colonization phenotype observed in juvenile to adult CF ferrets reared on a layered antibiotic regimen. Even on antibiotics, CF ferrets were still very susceptible to bacterial lung infection. The severity of lung histopathology ranged from mild to severe, and variably included mucus obstruction of the airways and submucosal glands, air trapping, atelectasis, bronchopneumonia, and interstitial pneumonia. In all CF lungs, significant numbers of bacteria were detected and impaired tracheal mucociliary clearance was observed. Although Streptococcus, Staphylococcus, and Enterococcus were observed most frequently in the lungs of CF animals, each animal displayed a predominant bacterial species that accounted for over 50% of the culturable bacteria, with no one bacterial taxon predominating in all animals. Matrix-assisted laser desorption-ionization time-of-flight mass spectrometry fingerprinting was used to quantify lung bacteria in 10 CF animals and demonstrated Streptococcus, Staphylococcus, Enterococcus, or Escherichia as the most abundant genera. Interestingly, there was significant overlap in the types of bacteria observed in the lung and intestine of a given CF animal, including bacterial taxa unique to the lung and gut of each CF animal analyzed. These findings demonstrate that CF ferrets develop lung disease during the juvenile and adult stages that is similar to patients with CF, and suggest that enteric bacterial flora may seed the lung of CF ferrets.
Collapse
|
34
|
del Campo R, Garriga M, Pérez-Aragón A, Guallarte P, Lamas A, Máiz L, Bayón C, Roy G, Cantón R, Zamora J, Baquero F, Suárez L. Improvement of digestive health and reduction in proteobacterial populations in the gut microbiota of cystic fibrosis patients using a Lactobacillus reuteri probiotic preparation: a double blind prospective study. J Cyst Fibros 2014; 13:716-22. [PMID: 24636808 DOI: 10.1016/j.jcf.2014.02.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/10/2014] [Accepted: 02/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Although scientific knowledge about the benefits of probiotic use in cystis fibrosis (CF) is scarce, their expectative is promising. The aim of this work was to analyze the effect of a Lactobacillus reuteri probiotic preparation versus placebo in CF patients. METHODS A prospective, double blind, crossover and with placebo study was carried out in 30 CF patients from two Spanish hospitals. Patients were randomized in Group A (6 months of probiotic followed by 6 months of placebo) and Group B (6 months of placebo followed by 6 months of probiotic). GIQLI (gastrointestinal) and SF-12 (general) health tests were performed after probiotic and placebo intakes. Fat absorption coefficient, calprotectin, and inflammatory interleukin quantification were determined in fecal samples. Total fecal DNA was obtained and metagenomic 454-pyrosequencing was applied to analyze the microbiome composition. STATA v12 MP software was used for statistical analyses. RESULTS Statistically significant improvement in the gastrointestinal health and decrease of the calprotectin levels were demonstrated in patients after probiotic exposure, in comparison with placebo. All CF subjects reported good tolerance to L. reuteri without secondary effects. Metagenomic analysis showed an important dysbiosis in CF gut microbiota associated with a high concentration of Proteobacteria. Probiotic intake was followed by a reduction in the total bacterial density, mostly due to a considerable reduction in the γ-Proteobacteria phylum; and an important increase of the microbial diversity with a higher representation of Firmicutes. CONCLUSIONS Probiotics might ameliorate the dysbiosis of CF gut microbiota, characterized by a high density of Proteobacterial organisms. L. reuteri significantly decrease intestinal inflammation and increase digestive comfort.
Collapse
Affiliation(s)
- Rosa del Campo
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Spain.
| | - María Garriga
- Cystic Fibrosis Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Pérez-Aragón
- Department of Pediatrics, Virgen de las Nieves and San Cecilio University Hospitals, Granada, Spain
| | - Pilar Guallarte
- Department of Gastroenterology, Hospital Parc Tauli, Sabadell, Spain
| | - Adelaida Lamas
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Cystic Fibrosis Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Luis Máiz
- Cystic Fibrosis Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Carmen Bayón
- Deparment of Biochemistry, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Garbiñe Roy
- Department of Immunology, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Rafael Cantón
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI), Instituto de Salud Carlos III, Spain
| | - Javier Zamora
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Clinical Biostatistics Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain; Center for Network Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Fernando Baquero
- Department of Microbiology, Hospital Universitario Ramón y Cajal, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain; Center for Network Research in Epidemiology and Public Health (CIBERESP), Spain
| | - Lucrecia Suárez
- Cystic Fibrosis Unit, Hospital Universitario Ramón y Cajal, Madrid, Spain
| |
Collapse
|
35
|
Manavathu EK, Vager DL, Vazquez JA. Development and antimicrobial susceptibility studies of in vitro monomicrobial and polymicrobial biofilm models with Aspergillus fumigatus and Pseudomonas aeruginosa. BMC Microbiol 2014; 14:53. [PMID: 24588809 PMCID: PMC3973989 DOI: 10.1186/1471-2180-14-53] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 02/17/2014] [Indexed: 12/13/2022] Open
Abstract
Background Mixed microbial infections of the respiratory tracts with P. aeruginosa and A. fumigatus capable of producing biofilms are commonly found in cystic fibrosis patients. The primary objective of this study was to develop an in vitro model for P. aeruginosa and A. fumigatus polymicrobial biofilm to study the efficacy of various antimicrobial drugs alone and in combinations against biofilm-embedded cells. Simultaneous static cocultures of P. aeruginosa and sporelings were used for the development of in vitro P. aeruginosa-A. fumigatus polymicrobial biofilm in SD broth in 24-well cell culture plates at 35°C, and the biofilm formation was monitored microscopically and spectrophotometrically. Using P. aeruginosa-A. fumigatus sporelings cocultures we examined the effects of various antimicrobial drugs alone and in combination against polymicrobial biofilm by CFU and tetrazolium reduction assays. Results In simultaneous static cocultures P. aeruginosa cells killed A. fumigatus conidia, whereas the bacterial cells showed no substantial fungicidal effect on sporelings grown for 12 h or longer at 35°C. Monospecies cultures of P. aeruginosa produced loosely adhered monomicrobial biofilm and addition of 10% bovine serum to the growth medium inhibited the formation of monomicrobial biofilm by P. aeruginosa whereas it produced tightly adhered polymicrobial biofilm in the presence of A. fumigatus mycelial growth. A. fumigatus produced firmly adherent monomicrobial and polymicrobial biofilms. A comparison of CFU and MTT assays showed that the latter is unsuitable for studying the effectiveness of antimicrobial treatment against polymicrobial biofilm. Tobramycin alone and in combination with posaconazole was highly effective against monomicrobial and polymicrobial biofilms of P. aeruginosa whereas cefepime alone and in combination with posaconazole showed excellent activity against monomicrobial biofilm of P. aeruginosa but was less effective against polymicrobial biofilm. Monomicrobial and polymicrobial biofilms of A. fumigatus showed similar susceptibility to posaconazole with and without the antibacterial drug. Conclusions Simultaneous static coculture of A. fumigatus sporelings grown for 12 h or longer was superior to ungerminated conidia with P. aeruginosa for the development of A. fumigatus-P. aeruginosa biofilm. P. aeruginosa-A. fumigatus polymicrobial biofilm shows differential susceptibility to antimicrobial drugs whereas the susceptibility of A. fumigatus to antimicrobial drugs was unchanged.
Collapse
Affiliation(s)
| | | | - Jose A Vazquez
- Henry Ford Hospital, 2799 West Grand Boulevard, Detroit, Michigan 48202, USA.
| |
Collapse
|
36
|
Aliouat-Denis CM, Chabé M, Delhaes L, Dei-Cas E. Aerially transmitted human fungal pathogens: what can we learn from metagenomics and comparative genomics? Rev Iberoam Micol 2013; 31:54-61. [PMID: 24286763 DOI: 10.1016/j.riam.2013.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 10/04/2013] [Indexed: 12/25/2022] Open
Abstract
In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012).
Collapse
Affiliation(s)
- Cécile-Marie Aliouat-Denis
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France; Parasitology-Medical Mycology Department, Faculty of Pharmacy, Lille, France
| | - Magali Chabé
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France; Parasitology-Medical Mycology Department, Faculty of Pharmacy, Lille, France
| | - Laurence Delhaes
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France; Parasitology-Medical Mycology Department, Regional Hospital Center, Faculty of Medicine, Lille, France.
| | - Eduardo Dei-Cas
- Biology & Diversity of Emerging Eukaryotic Pathogens (BDEEP), Center for Infection and Immunity of Lille (CIIL), INSERM U1019, CNRS UMR8204, IFR142, Lille Pasteur Institute, Lille Nord de France University (EA4547), Lille, France; Parasitology-Medical Mycology Department, Regional Hospital Center, Faculty of Medicine, Lille, France
| |
Collapse
|
37
|
Williams EJ. Drivers of Post-partum Uterine Disease in Dairy Cattle. Reprod Domest Anim 2013; 48 Suppl 1:53-8. [DOI: 10.1111/rda.12205] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- EJ Williams
- Veterinary Sciences Centre; School of Veterinary Medicine; University College Dublin; Dublin; Ireland
| |
Collapse
|
38
|
Abstract
The incidence, morbidity, and mortality associated with Clostridium difficile gastrointestinal infections has increased greatly over recent years, reaching epidemic proportions; a trend due, in part, to the emergence of hypervirulent and antibiotic-resistant strains. The need to identify alternative, non-antibiotic, treatment strategies is therefore urgent. The ability of bacteria in faecal matter transplanted from healthy individuals to displace pathogen populations is well recognized. Further, there is growing evidence that such faecal microbiota transplantation can be of benefit in a wide range of conditions associated with gut dysbiosis. Recent technical advances have greatly increased our ability to understand the processes that underpin the beneficial changes in bacterial community composition, as well as to characterize their extent and duration. However, while much of the research into faecal microbiota transplantation focuses currently on achieving clinical efficacy, the potential for such therapies to contribute to the transmission of infective agents also requires careful consideration.
Collapse
|
39
|
Schippa S, Iebba V, Santangelo F, Gagliardi A, De Biase RV, Stamato A, Bertasi S, Lucarelli M, Conte MP, Quattrucci S. Cystic fibrosis transmembrane conductance regulator (CFTR) allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients. PLoS One 2013; 8:e61176. [PMID: 23613805 PMCID: PMC3629184 DOI: 10.1371/journal.pone.0061176] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/05/2013] [Indexed: 12/12/2022] Open
Abstract
Introduction In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR) gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF). CFTR mutations (F508del is the most common) lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. Methods Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. Results Patients were classified by two different criteria: 1) presence/absence of F508del mutation; 2) disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme) were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum) were reduced. Conclusions This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a ‘systemic disease’, linking the lung and the gut in a joined axis.
Collapse
Affiliation(s)
- Serena Schippa
- Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
| | - Valerio Iebba
- Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
- * E-mail:
| | - Floriana Santangelo
- Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
| | - Antonella Gagliardi
- Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
| | - Riccardo Valerio De Biase
- Regional Cystic Fibrosis Centre, Paediatrics and Infant Neuropsychiatry Department, ‘Sapienza’ University of Rome, Rome, Italy
| | - Antonella Stamato
- Regional Cystic Fibrosis Centre, Paediatrics and Infant Neuropsychiatry Department, ‘Sapienza’ University of Rome, Rome, Italy
| | - Serenella Bertasi
- Regional Cystic Fibrosis Centre, Paediatrics and Infant Neuropsychiatry Department, ‘Sapienza’ University of Rome, Rome, Italy
| | - Marco Lucarelli
- Department of Haematology and Cellular Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Maria Pia Conte
- Public Health and Infectious Diseases Department, Microbiology Unit, ‘Sapienza’ University of Rome, Rome, Italy
| | - Serena Quattrucci
- Regional Cystic Fibrosis Centre, Paediatrics and Infant Neuropsychiatry Department, ‘Sapienza’ University of Rome, Rome, Italy
| |
Collapse
|
40
|
|
41
|
Serial analysis of the gut and respiratory microbiome in cystic fibrosis in infancy: interaction between intestinal and respiratory tracts and impact of nutritional exposures. mBio 2012; 3:mBio.00251-12. [PMID: 22911969 PMCID: PMC3428694 DOI: 10.1128/mbio.00251-12] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pulmonary damage caused by chronic colonization of the cystic fibrosis (CF) lung by microbial communities is the proximal cause of respiratory failure. While there has been an effort to document the microbiome of the CF lung in pediatric and adult patients, little is known regarding the developing microflora in infants. We examined the respiratory and intestinal microbiota development in infants with CF from birth to 21 months. Distinct genera dominated in the gut compared to those in the respiratory tract, yet some bacteria overlapped, demonstrating a core microbiota dominated by Veillonella and Streptococcus. Bacterial diversity increased significantly over time, with evidence of more rapidly acquired diversity in the respiratory tract. There was a high degree of concordance between the bacteria that were increasing or decreasing over time in both compartments; in particular, a significant proportion (14/16 genera) increasing in the gut were also increasing in the respiratory tract. For 7 genera, gut colonization presages their appearance in the respiratory tract. Clustering analysis of respiratory samples indicated profiles of bacteria associated with breast-feeding, and for gut samples, introduction of solid foods even after adjustment for the time at which the sample was collected. Furthermore, changes in diet also result in altered respiratory microflora, suggesting a link between nutrition and development of microbial communities in the respiratory tract. Our findings suggest that nutritional factors and gut colonization patterns are determinants of the microbial development of respiratory tract microbiota in infants with CF and present opportunities for early intervention in CF with altered dietary or probiotic strategies. While efforts have been focused on assessing the microbiome of pediatric and adult cystic fibrosis (CF) patients to understand how chronic colonization by these microbes contributes to pulmonary damage, little is known regarding the earliest development of respiratory and gut microflora in infants with CF. Our findings suggest that colonization of the respiratory tract by microbes is presaged by colonization of the gut and demonstrated a role of nutrition in development of the respiratory microflora. Thus, targeted dietary or probiotic strategies may be an effective means to change the course of the colonization of the CF lung and thereby improve patient outcomes.
Collapse
|
42
|
Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabé M, Viscogliosi E. The airway microbiota in cystic fibrosis: a complex fungal and bacterial community--implications for therapeutic management. PLoS One 2012; 7:e36313. [PMID: 22558432 PMCID: PMC3338676 DOI: 10.1371/journal.pone.0036313] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 04/01/2012] [Indexed: 12/12/2022] Open
Abstract
Background Given the polymicrobial nature of pulmonary infections in patients with cystic fibrosis (CF), it is essential to enhance our knowledge on the composition of the microbial community to improve patient management. In this study, we developed a pyrosequencing approach to extensively explore the diversity and dynamics of fungal and prokaryotic populations in CF lower airways. Methodology and Principal Findings Fungi and bacteria diversity in eight sputum samples collected from four adult CF patients was investigated using conventional microbiological culturing and high-throughput pyrosequencing approach targeting the ITS2 locus and the 16S rDNA gene. The unveiled microbial community structure was compared to the clinical profile of the CF patients. Pyrosequencing confirmed recently reported bacterial diversity and observed complex fungal communities, in which more than 60% of the species or genera were not detected by cultures. Strikingly, the diversity and species richness of fungal and bacterial communities was significantly lower in patients with decreased lung function and poor clinical status. Values of Chao1 richness estimator were statistically correlated with values of the Shwachman-Kulczycki score, body mass index, forced vital capacity, and forced expiratory volume in 1 s (p = 0.046, 0.047, 0.004, and 0.001, respectively for fungal Chao1 indices, and p = 0.010, 0.047, 0.002, and 0.0003, respectively for bacterial Chao1 values). Phylogenetic analysis showed high molecular diversities at the sub-species level for the main fungal and bacterial taxa identified in the present study. Anaerobes were isolated with Pseudomonas aeruginosa, which was more likely to be observed in association with Candida albicans than with Aspergillus fumigatus. Conclusions In light of the recent concept of CF lung microbiota, we viewed the microbial community as a unique pathogenic entity. We thus interpreted our results to highlight the potential interactions between microorganisms and the role of fungi in the context of improving survival in CF.
Collapse
Affiliation(s)
- Laurence Delhaes
- Center for Infection and Immunity of Lille (CIIL), Institut Pasteur de Lille, Biology and Diversity of Emerging Eukaryotic Pathogens (BDEEP), BP 245, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bhargava N, Sharma P, Capalash N. N-acyl homoserine lactone mediated interspecies interactions between A. baumannii and P. aeruginosa. BIOFOULING 2012; 28:813-822. [PMID: 22867087 DOI: 10.1080/08927014.2012.714372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Acinetobacter baumannii and Pseudomonas aeruginosa are pathogens capable of colonizing the same infection sites and employing N-acyl homoserine lactone (AHL) based quorum-sensing systems to co-ordinate biofilm formation. Hence, the effect of P. aeruginosa AHLs on biofilm formation by A. baumannii and vice versa were investigated using the biofilm impaired quorum sensing mutants, A. baumannii M2 (abaI::Km) and P. aeruginosa PAO-JP2. Complementing the mutants with heterologous, extracted and pure AHLs increased biofilm mass significantly. The surface area coverage and biovolume also increased significantly as observed by confocal scanning laser microscopy which corroborated scanning electron microscope analysis. Autoinducer synthase gene promoters of A. baumannii, P( abaI)-lacZ, and P. aeruginosa, P( lasI)-lacZ, were induced (p < 0.05) by heterologous AHLs. Growth of A. baumannii was not inhibited by pyocyanin of P. aeruginosa which may allow their co-existence and interaction in the clinical setting, thereby affecting the severity of combined infections and therapeutic measures to control them.
Collapse
Affiliation(s)
- Nidhi Bhargava
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | |
Collapse
|