1
|
Caspani G, Ruffell SGD, Tsang W, Netzband N, Rohani-Shukla C, Swann JR, Jefferies WA. Mind over matter: the microbial mindscapes of psychedelics and the gut-brain axis. Pharmacol Res 2024; 207:107338. [PMID: 39111558 DOI: 10.1016/j.phrs.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 07/31/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
Psychedelics have emerged as promising therapeutics for several psychiatric disorders. Hypotheses around their mechanisms have revolved around their partial agonism at the serotonin 2 A receptor, leading to enhanced neuroplasticity and brain connectivity changes that underlie positive mindset shifts. However, these accounts fail to recognise that the gut microbiota, acting via the gut-brain axis, may also have a role in mediating the positive effects of psychedelics on behaviour. In this review, we present existing evidence that the composition of the gut microbiota may be responsive to psychedelic drugs, and in turn, that the effect of psychedelics could be modulated by microbial metabolism. We discuss various alternative mechanistic models and emphasize the importance of incorporating hypotheses that address the contributions of the microbiome in future research. Awareness of the microbial contribution to psychedelic action has the potential to significantly shape clinical practice, for example, by allowing personalised psychedelic therapies based on the heterogeneity of the gut microbiota.
Collapse
Affiliation(s)
- Giorgia Caspani
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| | - Simon G D Ruffell
- Psychae Institute, Melbourne, Australia; School of Population and Global Health, University of Melbourne, 207 Bouverie St, Carlton, VIC 3053, Australia
| | - WaiFung Tsang
- Institute of Psychiatry, Psychology & Neuroscience, King'sCollege London, Department of Psychology, De Crespigny Park, London SE5 8AF, UK
| | - Nigel Netzband
- University of West of England, Frenchay Campus, Coldharbour Lane, Bristol BS16 1QY, UK
| | - Cyrus Rohani-Shukla
- Centre for Psychedelic Research, Imperial College London, Hammersmith Hospital, Du Cane Rd, London W12 0HS, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, 12 University Rd, Southampton SO17 1BJ, UK; Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Wilfred A Jefferies
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, East Mall, BC V6T 1Z4, Canada; Department of Microbiology and Immunology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC V6T 1Z4, Canada; The Vancouver Prostate Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; Department of Medical Genetics, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z4, Canada; Department of Urologic Sciences, University of British Columbia, Gordon & Leslie Diamond Health Care Centre, Level 6, 2775 Laurel Street, Vancouver, BC V5Z 1M9, Canada.
| |
Collapse
|
2
|
Yadav M, Chauhan NS. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics. J Appl Microbiol 2020; 130:1425-1441. [PMID: 33022786 DOI: 10.1111/jam.14883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/18/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022]
Abstract
Human gut microbiome is a diversified, resilient, immuno-stabilized, metabolically active and physiologically essential component of the human body. Scientific explorations have been made to seek in-depth information about human gut microbiome establishment, microbiome functioning, microbiome succession, factors influencing microbial community dynamics and the role of gut microbiome in health and diseases. Extensive investigations have proposed the microbiome therapeutics as a futuristic medicine for various physiological and metabolic disorders. A comprehensive outlook of microbial colonization, host-microbe interactions, microbial adaptation, commensal selection and immuno-survivability is still required to catalogue the essential genetic and physiological features for the commensal engagement. Evolution of a structured human gut microbiome relies on the microbial flexibility towards genetic, immunological and physiological adaptation in the human gut. Key features for commensalism could be utilized in developing tailor-made microbiome-based therapy to overcome various physiological and metabolic disorders. This review describes the key genetics and physiological traits required for host-microbe interaction and successful commensalism to institute a human gut microbiome.
Collapse
Affiliation(s)
- M Yadav
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| | - N S Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
3
|
Caspani G, Kennedy S, Foster JA, Swann J. Gut microbial metabolites in depression: understanding the biochemical mechanisms. MICROBIAL CELL 2019; 6:454-481. [PMID: 31646148 PMCID: PMC6780009 DOI: 10.15698/mic2019.10.693] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gastrointestinal and central function are intrinsically connected by the gut microbiota, an ecosystem that has co-evolved with the host to expand its biotransformational capabilities and interact with host physiological processes by means of its metabolic products. Abnormalities in this microbiota-gut-brain axis have emerged as a key component in the pathophysiology of depression, leading to more research attempting to understand the neuroactive potential of the products of gut microbial metabolism. This review explores the potential for the gut microbiota to contribute to depression and focuses on the role that microbially-derived molecules – neurotransmitters, short-chain fatty acids, indoles, bile acids, choline metabolites, lactate and vitamins – play in the context of emotional behavior. The future of gut-brain axis research lies is moving away from association, towards the mechanisms underlying the relationship between the gut bacteria and depressive behavior. We propose that direct and indirect mechanisms exist through which gut microbial metabolites affect depressive behavior: these include (i) direct stimulation of central receptors, (ii) peripheral stimulation of neural, endocrine, and immune mediators, and (iii) epigenetic regulation of histone acetylation and DNA methylation. Elucidating these mechanisms is essential to expand our understanding of the etiology of depression, and to develop new strategies to harness the beneficial psychotropic effects of these molecules. Overall, the review highlights the potential for dietary interventions to represent such novel therapeutic strategies for major depressive disorder.
Collapse
Affiliation(s)
- Giorgia Caspani
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| | - Sidney Kennedy
- Centre for Mental Health and Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON, CA.,Mental Health Services, St. Michael's Hospital, University of Toronto, Toronto, ON, CA.,Department of Psychiatry, University of Toronto, Toronto, ON, CA.,Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, CA
| | - Jane A Foster
- Department of Psychiatry & Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan Swann
- Computational Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK
| |
Collapse
|
4
|
Functional metagenomics identifies novel genes ABCTPP, TMSRP1 and TLSRP1 among human gut enterotypes. Sci Rep 2018; 8:1397. [PMID: 29362424 PMCID: PMC5780487 DOI: 10.1038/s41598-018-19862-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/09/2018] [Indexed: 01/08/2023] Open
Abstract
Every niche in the biosphere is touched by the seemingly endless capacity of microbes to transform the world around them by adapting swiftly and flexibly to the environmental changes, likewise the gastrointestinal tract is no exception. The ability to cope with rapid changes in external osmolarity is an important aspect of gut microbes for their survival and colonization. Identification of these survival mechanisms is a pivotal step towards understanding genomic suitability of a symbiont for successful human gut colonization. Here we highlight our recent work applying functional metagenomics to study human gut microbiome to identify candidate genes responsible for the salt stress tolerance. A plasmid borne metagenomic library of Bacteroidetes enriched human fecal metagenomic DNA led to identification of unique salt osmotolerance clones SR6 and SR7. Subsequent gene analysis combined with functional studies revealed that TLSRP1 within pSR7 and TMSRP1 and ABCTPP of pSR6 are the active loci responsible for osmotolerance through an energy dependent mechanism. Our study elucidates the novel genetic machinery involved in bestowing osmotolerance in Prevotella and Bacteroidetes, the predominant microbial groups in a North Indian population. This study unravels an alternative method for imparting ionic stress tolerance, which may be prevalent in the human gut microbiome.
Collapse
|
5
|
Pinto E, Anselmo M, Calha M, Bottrill A, Duarte I, Andrew PW, Faleiro ML. The intestinal proteome of diabetic and control children is enriched with different microbial and host proteins. MICROBIOLOGY-SGM 2017; 163:161-174. [PMID: 28270263 DOI: 10.1099/mic.0.000412] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this study, the intestinal microbial proteome of children with established type 1 diabetes (T1D) was compared with the proteome of healthy children (Control) with the aim to identify differences in the activity of the intestinal microbiota that not only will contribute to a deeper knowledge of the functionality of the gut in these children but also may provide new approaches to improve the control of the disease. Faecal protein extracts collected from three T1D children (aged 9.3±0.6 years) and three Control children (aged 9.3±1.5 years) were analysed using a combination of 2D gel electrophoresis and spectral counting. The results evidenced markedly differences between the intestinal proteome of T1D children and the Control. The T1D microbial intestinal proteome was enriched with proteins of clostridial cluster XVa and cluster IV and Bacteroides. In contrast, the Control proteome was enriched with bifidobacterial proteins. In both groups, proteins with moonlight function were observed. Human proteins also distinguished the two groups with T1D children depleted in exocrine pancreatic enzymes.
Collapse
Affiliation(s)
- Elsa Pinto
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marisol Anselmo
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Manuela Calha
- Núcleo de Diabetologia, Nutrição e Doenças Metabólicas (NDNDM) do Hospital de Faro, 8000-386 Faro, Portugal
| | - Andrew Bottrill
- Protein and Nucleic Acid Chemistry Laboratory (PNACL), University of Leicester, Leicester LE1 7RH, UK
| | - Isabel Duarte
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| | - Peter W Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK
| | - Maria L Faleiro
- Faculdade de Ciências e Tecnologia, Centro de Investigação em Biomedicina, Universidade do Algarve Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
6
|
Hiraoka S, Yang CC, Iwasaki W. Metagenomics and Bioinformatics in Microbial Ecology: Current Status and Beyond. Microbes Environ 2016; 31:204-12. [PMID: 27383682 PMCID: PMC5017796 DOI: 10.1264/jsme2.me16024] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Metagenomic approaches are now commonly used in microbial ecology to study microbial communities in more detail, including many strains that cannot be cultivated in the laboratory. Bioinformatic analyses make it possible to mine huge metagenomic datasets and discover general patterns that govern microbial ecosystems. However, the findings of typical metagenomic and bioinformatic analyses still do not completely describe the ecology and evolution of microbes in their environments. Most analyses still depend on straightforward sequence similarity searches against reference databases. We herein review the current state of metagenomics and bioinformatics in microbial ecology and discuss future directions for the field. New techniques will allow us to go beyond routine analyses and broaden our knowledge of microbial ecosystems. We need to enrich reference databases, promote platforms that enable meta- or comprehensive analyses of diverse metagenomic datasets, devise methods that utilize long-read sequence information, and develop more powerful bioinformatic methods to analyze data from diverse perspectives.
Collapse
Affiliation(s)
- Satoshi Hiraoka
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo
| | | | | |
Collapse
|
7
|
Yang Y, Liu Y, Yuan H, Liu X, Gao Y, Gong M, Zou Z. Membrane-bound pyrophosphatase of human gut microbe Clostridium methylpentosum confers improved salt tolerance in Escherichia coli, Saccharomyces cerevisiae and tobacco. Mol Membr Biol 2016; 33:39-50. [PMID: 29025361 DOI: 10.1080/09687688.2017.1370145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Membrane-bound pyrophosphatases (PPases) are involved in the adaption of organisms to stress conditions, which was substantiated by numerous plant transgenic studies with H+-PPase yet devoid of any correlated evidences for other two subfamilies, Na+-PPase and Na+,H+-PPase. Herein, we demonstrate the gene cloning and functional evaluation of the membrane-bound PPase (CmPP) of the human gut microbe Clostridium methylpentosum. The CmPP gene encodes a single polypeptide of 699 amino acids that was predicted as a multi-spanning membrane and K+-dependent Na+,H+-PPase. Heterologous expression of CmPP could significantly enhance the salt tolerance of both Escherichia coli and Saccharomyces cerevisiae, and this effect in yeast could be fortified by N-terminal addition of a vacuole-targeting signal peptide from the H+-PPase of Trypanosoma cruzi. Furthermore, introduction of CmPP could remarkably improve the salt tolerance of tobacco, implying its potential use in constructing salt-resistant transgenic crops. Consequently, the possible mechanisms of CmPP to underlie salt tolerance are discussed.
Collapse
Affiliation(s)
- Yumei Yang
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Yanjuan Liu
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Hang Yuan
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Xian Liu
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Yanxiu Gao
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Ming Gong
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| | - Zhurong Zou
- a School of Life Sciences, Engineering Research Center of Sustainable Development and Utilization of Biomass Energy , Ministry of Education, Key Laboratory of Biomass Energy and Environmental Biotechnology of Yunnan Province, Yunnan Normal University , Kunming , Yunnan , China
| |
Collapse
|
8
|
Abstract
The review centers on the human gastrointestinal tract; focusing first on the bacterial stress responses needed to overcome the physiochemical defenses of the host, specifically how these stress survival strategies can be used as targets for alternative infection control strategies. The concluding section focuses on recent developments in molecular diagnostics; centring on the shifting paradigm from culture to molecular based diagnostics.
Collapse
Affiliation(s)
- Roy D Sleator
- a Department of Biological Sciences ; Cork Institute of Technology ; Bishopstown , Cork , Ireland
| |
Collapse
|
9
|
Sleator RD. Designer probiotics: Development and applications in gastrointestinal health. World J Gastrointest Pathophysiol 2015; 6:73-78. [PMID: 26301121 PMCID: PMC4540709 DOI: 10.4291/wjgp.v6.i3.73] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/23/2015] [Accepted: 07/14/2015] [Indexed: 02/06/2023] Open
Abstract
Given the increasing commercial and clinical relevance of probiotics, improving their stress tolerance profile and ability to overcome the physiochemical defences of the host is an important biological goal. Herein, I review the current state of the art in the design of engineered probiotic cultures, with a specific focus on their utility as therapeutics for the developing world; from the treatment of chronic and acute enteric infections, and their associated diarrhoeal complexes, to targeting HIV and application as novel mucosal vaccine delivery vehicles.
Collapse
|
10
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomic identification of a novel salt tolerance gene from the human gut microbiome which encodes a membrane protein with homology to a brp/blh-family β-carotene 15,15'-monooxygenase. PLoS One 2014; 9:e103318. [PMID: 25058308 PMCID: PMC4110020 DOI: 10.1371/journal.pone.0103318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 06/29/2014] [Indexed: 12/30/2022] Open
Abstract
The human gut microbiome consists of at least 3 million non-redundant genes, 150 times that of the core human genome. Herein, we report the identification and characterisation of a novel stress tolerance gene from the human gut metagenome. The locus, assigned brpA, encodes a membrane protein with homology to a brp/blh-family β-carotene monooxygenase. Cloning and heterologous expression of brpA in Escherichia coli confers a significant salt tolerance phenotype. Furthermore, when cultured in the presence of exogenous β-carotene, cell pellets adopt a red/orange pigmentation indicating the incorporation of carotenoids in the cell membrane.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Roy D. Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Hepatology and Gastroenterology, Imperial College London, London, United Kingdom
- * E-mail: (CH); (RDS); (JRM)
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (CH); (RDS); (JRM)
| |
Collapse
|
11
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Metagenomics and novel gene discovery: promise and potential for novel therapeutics. Virulence 2014; 5:399-412. [PMID: 24317337 PMCID: PMC3979868 DOI: 10.4161/viru.27208] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/21/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
Metagenomics provides a means of assessing the total genetic pool of all the microbes in a particular environment, in a culture-independent manner. It has revealed unprecedented diversity in microbial community composition, which is further reflected in the encoded functional diversity of the genomes, a large proportion of which consists of novel genes. Herein, we review both sequence-based and functional metagenomic methods to uncover novel genes and outline some of the associated problems of each type of approach, as well as potential solutions. Furthermore, we discuss the potential for metagenomic biotherapeutic discovery, with a particular focus on the human gut microbiome and finally, we outline how the discovery of novel genes may be used to create bioengineered probiotics.
Collapse
Affiliation(s)
- Eamonn P Culligan
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| | - Roy D Sleator
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - Julian R Marchesi
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- Cardiff School of Biosciences; Cardiff University; Cardiff, UK
- Department of Hepatology and Gastroenterology; Imperial College London; London, UK
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; Cork, Ireland
- School of Microbiology; University College Cork; Cork, Ireland
| |
Collapse
|
12
|
Culligan EP, Sleator RD, Marchesi JR, Hill C. Functional environmental screening of a metagenomic library identifies stlA; a unique salt tolerance locus from the human gut microbiome. PLoS One 2013; 8:e82985. [PMID: 24349412 PMCID: PMC3861447 DOI: 10.1371/journal.pone.0082985] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/29/2013] [Indexed: 12/27/2022] Open
Abstract
Functional environmental screening of metagenomic libraries is a powerful means to identify and assign function to novel genes and their encoded proteins without any prior sequence knowledge. In the current study we describe the identification and subsequent analysis of a salt-tolerant clone from a human gut metagenomic library. Following transposon mutagenesis we identified an unknown gene (stlA, for “salt tolerance locus A”) with no current known homologues in the databases. Subsequent cloning and expression in Escherichia coli MKH13 revealed that stlA confers a salt tolerance phenotype in its surrogate host. Furthermore, a detailed in silico analysis was also conducted to gain additional information on the properties of the encoded StlA protein. The stlA gene is rare when searched against human metagenome datasets such as MetaHit and the Human Microbiome Project and represents a novel and unique salt tolerance determinant which appears to be found exclusively in the human gut environment.
Collapse
Affiliation(s)
- Eamonn P. Culligan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Roy D. Sleator
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Department of Biological Sciences, Cork Institute of Technology, Cork, Ireland
- * E-mail: (RS); (JM); (CH)
| | - Julian R. Marchesi
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
- Department of Hepatology and Gastroenterology, Imperial College London, London, United Kingdom
- * E-mail: (RS); (JM); (CH)
| | - Colin Hill
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- * E-mail: (RS); (JM); (CH)
| |
Collapse
|
13
|
Feeney A, Sleator RD. The human gut microbiome: the ghost in the machine. Future Microbiol 2013; 7:1235-7. [PMID: 23075440 DOI: 10.2217/fmb.12.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|