1
|
Jaroszeski MJ, Harvey-Chapman T, Hoff A, Atkins R, Connolly RJ. Direct Current Helium Plasma for In vivo Delivery of Plasmid DNA Encoding Erythropoietin to Murine Skin. PLASMA MEDICINE 2017; 7:261-271. [PMID: 30854158 DOI: 10.1615/plasmamed.2017019506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The use of electric fields in vivo to deliver DNA, called electroporation, has the potential to broadly impact vaccination and disease treatment. The evidence for this has emerged from a large number of recently completed and ongoing clinical trials. The methods for applying electric fields to tissues traditionally involve contact between metal electrodes and the tissue. In this study, we investigated the use of helium plasma as a noncontact method for electrically treating tissue in a manner that results in the uptake and expression of foreign DNA in murine skin. More specifically, our goal was to demonstrate that DNA encoding a model-secreted protein could be delivered, detected in the blood, and remain functional to produce its known biological effect. Murine erythropoietin (EPO) was the model-secreted protein. Results clearly demonstrated that an intradermal DNA injection followed by plasma treatment for 2 min resulted in elevated levels of EPO in the blood and corresponding hemoglobin increases that were statistically significant relative to DNA injection alone.
Collapse
Affiliation(s)
- Mark J Jaroszeski
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Taryn Harvey-Chapman
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Andrew Hoff
- Center for Molecular Delivery, University of South Florida, Tampa, FL.,Department of Electrical Engineering, University of South Florida College of Engineering, Tampa, FL
| | - Reginald Atkins
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| | - Richard J Connolly
- Dept of Chemical and Biomedical Engineering, University of South Florida, College of Engineering, Tampa, FL.,Center for Molecular Delivery, University of South Florida, Tampa, FL
| |
Collapse
|
2
|
Edelblute CM, Heller LC, Malik MA, Bulysheva A, Heller R. Plasma-activated air mediates plasmid DNA delivery in vivo. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16028. [PMID: 27110584 PMCID: PMC4830379 DOI: 10.1038/mtm.2016.28] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/10/2016] [Accepted: 03/07/2016] [Indexed: 11/12/2022]
Abstract
Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets.
Collapse
Affiliation(s)
- Chelsea M Edelblute
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; Department of Biology, College of Science, Old Dominion University, Norfolk, VA, USA
| | - Loree C Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| | - Muhammad A Malik
- Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk, VA, USA
| | - Anna Bulysheva
- Frank Reidy Research Center for Bioelectrics, Old Dominion University , Norfolk, VA, USA
| | - Richard Heller
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA; School of Medical Diagnostic & Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, VA, USA
| |
Collapse
|
3
|
Interleukin-28A enhances autoimmune disease in a retinal autoimmunity model. Cytokine 2014; 70:179-84. [PMID: 25138017 DOI: 10.1016/j.cyto.2014.07.252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 07/04/2014] [Accepted: 07/24/2014] [Indexed: 11/20/2022]
Abstract
Interleukin-28A (IL-28A), a member of type III interferons (IFN-λs), promotes antiviral, antitumor and immune responses. However, its ability to regulate autoimmune diseases is poorly understood. In this study, we examined the effect of IL-28A on retinal antigen-induced experimental autoimmune uveoretinitis (EAU), a mouse model of human T-cell-mediated autoimmune eye disease. We found that administration of IL-28A enhanced EAU scores and autoimmune response parameters including delayed-type hypersensitivity (DTH), Ag-specific T cell proliferation and the production of Ag-specific IL-17 and IFN-γ in the priming phase. The effect of IL-28A was abrogated by administration of a neutralizing antibody against IL-28A. Our results suggest that IL-28A is capable of exacerbating a T-cell-mediated autoimmune disease. Thus, targeting IL-28A may provide a new therapeutic approach to T cell-mediated autoimmune diseases such as uveitis.
Collapse
|