1
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
2
|
Jensen EK, Bøgevig S, Balchen T, Springborg AH, Royal MA, Storgaard IK, Lund TM, Møller K, Werner MU. Dose safety and pharmacodynamics of subcutaneous bupivacaine in a novel extended-release microparticle formulation: A phase 1, dose-ascending study in male volunteers. Basic Clin Pharmacol Toxicol 2024; 134:657-675. [PMID: 38482995 DOI: 10.1111/bcpt.13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/16/2024] [Accepted: 02/16/2024] [Indexed: 04/17/2024]
Abstract
A novel microparticle-based extended-release local anaesthetic containing a bupivacaine/poly-lactic-co-glycolic acid (PLGA; LIQ865A) or plain bupivacaine (LIQ865B) was examined in a first-in-human trial. The objectives were to examine the dose safety/tolerability and pharmacodynamics. Randomized subcutaneous injections of LIQ865A (n = 16) or LIQ865B (n = 12) and diluent, contralaterally, were administered in a dose-ascending manner (150- to 600-mg bupivacaine). Subjects were admitted 24 h post-injection and followed for 30 days post-injection. The risk ratios (RRs; 95% CI) of erythematous reactions for LIQ865A versus diluent was 9.00 (1.81-52.23; P = 0.006) and for LIQ865B versus diluent 2.50 (0.69-9.94; P = 0.37). The RR for the development of hematomas (LIQ865A versus diluent) were 3.25 (1.52-8.16; P = 0.004) and 4.00 (0.72-24.89; P = 0.32) (LIQ865B versus diluent). Subcutaneous indurations persisting for 4-13 weeks were seen in 6/16 subjects receiving LIQ865A. One subject receiving LIQ865A (600-mg bupivacaine) developed intermittent central nervous system (CNS) symptoms of local anaesthetic systemic toxicity (85 min to 51 h post-injection) coinciding with plasma peak bupivacaine concentrations (490-533 ng/ml). Both LIQ865 formulations demonstrated dose-dependent hypoesthesia and hypoalgesia. The duration of analgesia ranged between 37 and 86 h. The overall number of local adverse events, however, prohibits clinical application without further pharmacological modifications.
Collapse
Affiliation(s)
- Elisabeth Kjær Jensen
- Department of Anesthesia, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- DanTrials, Zelo Phase 1 Unit, Copenhagen University Hospitals-Bispebjerg Hospital, Copenhagen, Denmark
| | - Søren Bøgevig
- Department of Clinical Pharmacology, Copenhagen University Hospitals-Bispebjerg Hospital, Copenhagen, Denmark
| | - Torben Balchen
- DanTrials, Zelo Phase 1 Unit, Copenhagen University Hospitals-Bispebjerg Hospital, Copenhagen, Denmark
| | - Anders Holten Springborg
- Department of Anesthesia, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- DanTrials, Zelo Phase 1 Unit, Copenhagen University Hospitals-Bispebjerg Hospital, Copenhagen, Denmark
| | | | - Ida Klitzing Storgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine Meldgaard Lund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanaesthesiology, Neuroscience Center, Copenhagen University Hospitals-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads Utke Werner
- Department of Anesthesia, Pain and Respiratory Support, Neuroscience Center, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- DanTrials, Zelo Phase 1 Unit, Copenhagen University Hospitals-Bispebjerg Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Kronenfeld JM, Rother L, Saccone MA, Dulay MT, DeSimone JM. Roll-to-roll, high-resolution 3D printing of shape-specific particles. Nature 2024; 627:306-312. [PMID: 38480965 PMCID: PMC10937373 DOI: 10.1038/s41586-024-07061-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/12/2024] [Indexed: 03/17/2024]
Abstract
Particle fabrication has attracted recent attention owing to its diverse applications in bioengineering1,2, drug and vaccine delivery3-5, microfluidics6,7, granular systems8,9, self-assembly5,10,11, microelectronics12,13 and abrasives14. Herein we introduce a scalable, high-resolution, 3D printing technique for the fabrication of shape-specific particles based on roll-to-roll continuous liquid interface production (r2rCLIP). We demonstrate r2rCLIP using single-digit, micron-resolution optics in combination with a continuous roll of film (in lieu of a static platform), enabling the rapidly permutable fabrication and harvesting of shape-specific particles from a variety of materials and with complex geometries, including geometries not possible to achieve with advanced mould-based techniques. We demonstrate r2rCLIP production of mouldable and non-mouldable shapes with voxel sizes as small as 2.0 × 2.0 µm2 in the print plane and 1.1 ± 0.3 µm unsupported thickness, at speeds of up to 1,000,000 particles per day. Such microscopic particles with permutable, intricate designs enable direct integration within biomedical, analytical and advanced materials applications.
Collapse
Affiliation(s)
| | - Lukas Rother
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Max A Saccone
- Department of Chemical Engineering, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Joseph M DeSimone
- Department of Chemical Engineering, Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Genito CJ, Batty CJ, Bachelder EM, Ainslie KM. Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases. ADVANCED NANOBIOMED RESEARCH 2021; 1:2000041. [PMID: 33681864 PMCID: PMC7917382 DOI: 10.1002/anbr.202000041] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/04/2020] [Indexed: 01/15/2023] Open
Abstract
Vaccines have advanced human health for centuries. To improve upon the efficacy of subunit vaccines they have been formulated into nano/microparticles for infectious diseases. Much progress in the field of polymeric particles for vaccine formulation has been made since the push for a tetanus vaccine in the 1990s. Modulation of particle properties such as size, surface charge, degradation rate, and the co-delivery of antigen and adjuvant has been used. This review focuses on advances in the understanding of how these properties influence immune responses to injectable polymeric particle vaccines. Consideration is also given to how endotoxin, route of administration, and other factors influence conclusions that can be made. Current manufacturing techniques involved in preserving vaccine efficacy and scale-up are discussed, as well as those for progressing polymeric particle vaccines toward commercialization. Consideration of all these factors should aid the continued development of efficacious and marketable polymeric particle vaccines.
Collapse
Affiliation(s)
- Christopher J. Genito
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Cole J. Batty
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Eric M. Bachelder
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| | - Kristy M. Ainslie
- Division of Pharma Engineering & Molecular PharmaceuticsEshelman School of PharmacyUniversity of North Carolina at Chapel Hill4211 Marsico Hall, 125 Mason Farm RoadChapel HillNC27599USA
| |
Collapse
|
5
|
Harnessing the nano-bio interface: Application of membrane coating to long acting silica particles. Eur J Pharm Biopharm 2020; 158:382-389. [PMID: 33309845 DOI: 10.1016/j.ejpb.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/10/2020] [Accepted: 12/02/2020] [Indexed: 01/15/2023]
Abstract
Interaction of conventional drug delivery systems such as polymeric or lipid based nano- and microparticles with the in vivo milieu has garnered significant interest, primarily to orchestrate immune escape and/or improve targeting. Surface modification with targeting ligands has been heavily relied upon for the mentioned purpose in the recent years. However, the surface modified particles can also activate the immune system. Large-scale manufacturing can also be a challenge, as surface modification needs to be reproducible. Furthermore, in vivo, the targeting is dependent on the receptor expression density and number of target sites, which adds to the pharmacokinetic variability of the constructs. An evolving paradigm to overcome complications of surface functionalization is the incorporation of bio-inspired topographies into these conventional delivery systems to enable them to better interact with biological systems. Biomimetic delivery systems combine the unique surface composition of cells or cell membranes, and versatility of synthetic nanoparticles. In this review, we focus on one such delivery system, silica particles, and explore their interaction with different biological membranes.
Collapse
|
6
|
Stiepel RT, Batty CJ, MacRaild CA, Norton RS, Bachelder E, Ainslie KM. Merozoite surface protein 2 adsorbed onto acetalated dextran microparticles for malaria vaccination. Int J Pharm 2020; 593:120168. [PMID: 33309558 DOI: 10.1016/j.ijpharm.2020.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/03/2020] [Accepted: 12/06/2020] [Indexed: 01/24/2023]
Abstract
Malaria remains a global health threat, with significant morbidity and mortality worldwide despite current interventions. The human disease is caused by five different parasitic species, with Plasmodium falciparum being the deadliest. As a result, vaccine research against P. falciparum is a global priority. Merozoite surface protein 2 (MSP2) is a promising vaccine antigen as MSP2-specific antibodies have been shown previously to be protective against malaria infection. In this study, the formulation of an MSP2 vaccine was explored to enhance antigen uptake and achieve both an antibody and Th1 immune response by adsorbing MSP2 antigen onto a biomaterial carrier system. Specifically, MSP2 antigen was adsorbed onto acetalated dextran (Ace-DEX) microparticles (MPs). IgG and IgG2a titers elicited by the Ace-DEX MP platform were compared to titer levels elicited by MSP2 adsorbed to an FDA-approved alum adjuvant, MSP2 alone, and PBS alone. Both adsorption of MSP2 to Ace-DEX MPs and to alum elicited antibody responses in vivo, but only the formulation containing Ace-DEX MPs was able to elicit a significant Th1-biased response needed to combat the intracellular pathogen. As such, MSP2 adsorbed to Ace-DEX MPs demonstrates promise as a malaria vaccine.
Collapse
Affiliation(s)
- Rebeca T Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Christopher A MacRaild
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eric Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Moore KM, Batty CJ, Stiepel RT, Genito CJ, Bachelder EM, Ainslie KM. Injectable, Ribbon-Like Microconfetti Biopolymer Platform for Vaccine Applications. ACS APPLIED MATERIALS & INTERFACES 2020; 12:38950-38961. [PMID: 32805875 PMCID: PMC7484345 DOI: 10.1021/acsami.0c10276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Previously, high-aspect- ratio ribbon-like microconfetti (MC) composed of acetalated dextran (Ace-DEX) have been shown to form a subcutaneous depot for sustained drug release. In this study, MC were explored as an injectable vaccine platform. Production of MC by electrospinning followed by high-shear homogenization allowed for precise control over MC fabrication. Three distinct sizes of MC, small (0.67 × 10.2 μm2), medium (1.28 × 20.7 μm2), and large (5.67 × 90.2 μm2), were fabricated and loaded with the adjuvant, resiquimod. Steady release rates of resiquimod were observed from MC, indicating their ability to create an immunostimulatory depot in vivo. Resiquimod-loaded MC stimulated inflammatory cytokine production in bone marrow-derived dendritic cells without incurring additional cytotoxicity in vitro. Interestingly, even medium and large MC were able to be internalized by antigen-presenting cells and facilitate antigen presentation when ovalbumin was adsorbed onto their surface. After subcutaneous injection in vivo with adsorbed ovalbumin, blank MC of all sizes were found to stimulate a humoral response. Adjuvant activity of resiquimod was enhanced by loading it into MC and small- and medium-sized MC effectively induced a Th1-skewed immune response. Antigen co-delivered with adjuvant-loaded MC of various sizes illustrates a new potential vaccine platform.
Collapse
Affiliation(s)
- Kathryn M. Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Cole J. Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Rebeca T. Stiepel
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Christopher J. Genito
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Eric M. Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M. Ainslie
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
- Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
8
|
|
9
|
Jiang L, Lee HW, Loo SCJ. Therapeutic lipid-coated hybrid nanoparticles against bacterial infections. RSC Adv 2020; 10:8497-8517. [PMID: 35497832 PMCID: PMC9050015 DOI: 10.1039/c9ra10921h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/14/2020] [Indexed: 12/26/2022] Open
Abstract
One of the most important health concerns in society is the development of pathogen-causing nosocomial infections. Since the first discovery of antibiotics, bacterial infections have been highly treatable. However, with evolution and the nondiscretionary usage of antibiotics, pathogens have also found new ways to survive the onslaught of antibiotics by surviving intracellularly or through the formation of obstinate biofilms, and through these, the outcomes of regular antibiotic treatments may now be unsatisfactory. Lipid-coated hybrid nanoparticles (LCHNPs) are the next-generation core–shell structured nanodelivery system, where an inorganic or organic core, loaded with antimicrobials, is enveloped by lipid layers. This core–shell structure, with multifarious decorations, not only improves the loading capabilities of therapeutics but also has the potential to improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections. Although there has been significant interest in the development of LCHNPs, they have yet to be widely exploited for bacterial infections. In this review, we will provide an overview on the latest development of LCHNPs and the various approaches in synthesizing this nano-delivery system. In addition, a discussion on future perspectives of LCHNPs, in combination with other novel anti-bacterial technologies, will be provided towards the end of this review. Lipid-coated hybrid nanoparticles are next-generation core–shell structured nanodelivery systems, which improve the loading capabilities of therapeutics and can improve therapeutic delivery, especially for targeting biofilm-based and intracellular bacterial infections.![]()
Collapse
Affiliation(s)
- Lai Jiang
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Hiang Wee Lee
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
| | - Say Chye Joachim Loo
- School of Materials Science & Engineering
- Nanyang Technological University
- Singapore
- Singapore Centre for Environmental Life Sciences Engineering
- Nanyang Technological University
| |
Collapse
|
10
|
Stein KR, Gardner TJ, Hernandez RE, Kraus TA, Duty JA, Ubarretxena-Belandia I, Moran TM, Tortorella D. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat Commun 2019; 10:2699. [PMID: 31221976 PMCID: PMC6586906 DOI: 10.1038/s41467-019-10587-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 05/20/2019] [Indexed: 11/22/2022] Open
Abstract
Human cytomegalovirus (CMV) causes a wide array of disease to diverse populations of immune-compromised individuals. Thus, a more comprehensive understanding of how CMV enters numerous host cell types is necessary to further delineate the complex nature of CMV pathogenesis and to develop targeted therapeutics. To that end, we establish a vaccination strategy utilizing membrane vesicles derived from epithelial cells to generate a library of monoclonal antibodies (mAbs) targeting cell surface proteins in their native conformation. A high-throughput inhibition assay is employed to screen these antibodies for their ability to limit infection, and mAbs targeting CD46 are identified. In addition, a significant reduction of viral proliferation in CD46-KO epithelial cells confirms a role for CD46 function in viral dissemination. Further, we demonstrate a CD46-dependent entry pathway of virus infection in trophoblasts, but not in fibroblasts, highlighting the complexity of CMV entry and identifying CD46 as an entry factor in congenital infection.
Collapse
Affiliation(s)
- Kathryn R Stein
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas J Gardner
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rosmel E Hernandez
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Thomas A Kraus
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - James A Duty
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Iban Ubarretxena-Belandia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, Leioa, E-48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Thomas M Moran
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center of Therapeutic Antibody Development, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Domenico Tortorella
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Shetab Boushehri MA, Abdel-Mottaleb MMA, Béduneau A, Pellequer Y, Lamprecht A. A nanoparticle-based approach to improve the outcome of cancer active immunotherapy with lipopolysaccharides. Drug Deliv 2018; 25:1414-1425. [PMID: 29902933 PMCID: PMC6058527 DOI: 10.1080/10717544.2018.1469684] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
This study sought to develop a simple nanoparticle-based approach to enhance the efficiency and tolerability of lipopolysaccharide (LPS), a potent ligand of Toll-like Receptor 4 (TLR4), for immunotherapy in cancer. Despite holding promise within this context, the strong pro-inflammatory properties of LPS also account for its low tolerability given localized and systemic side effects, which restrict the administrable dosage. Herein, we investigated the effect of LPS decoration as a surface-active molecule on a polymeric matrix upon its efficiency and tolerability. The LPS-decorated nanoparticles (LPS-NP) were about 150 nm in size, with slightly negative zeta potential (about -15 mV) and acceptable LPS incorporation (about 70%). In vitro, the particles accounted for a higher induction of apoptosis in tumor cells cultured with murine splenocytes compared to LPS solution. When used for the treatment of a murine syngeneic colorectal tumor model, higher intratumoral deposition of the particle-bound LPS was observed. Furthermore, unlike LPS solution, which accounted for localized necrosis at high concentrations, treatment of tumor-bearing animals with equivalent doses of LPS-NP was well tolerated. We propose that the observed localized necrosis can be Shwartzman phenomenon, which, due to modulated 24-h post-injection systemic TNF-α and LPS concentrations, have been avoided in case of LPS-NP. This has in turn enhanced the therapeutic efficiency and enabled complete tumor regression at concentrations at which LPS solution was intolerable. The findings indicate that nanoparticles can serve as beyond carriers for the delivery of superficially decorated LPS molecules, but impact their overall efficiency and tolerability in cancer therapy.
Collapse
Affiliation(s)
| | - Mona M A Abdel-Mottaleb
- a Department of Pharmaceutics , University of Bonn , Bonn , Germany.,b Laboratory of Pharmaceutical Engineering (EA4267) , University of Franche-Comté , Besançon , France.,c Department of Pharmaceutics and Industrial Pharmacy , Faculty of Pharmacy, Ain Shams University , Cairo , Egypt
| | - Arnaud Béduneau
- b Laboratory of Pharmaceutical Engineering (EA4267) , University of Franche-Comté , Besançon , France
| | - Yann Pellequer
- b Laboratory of Pharmaceutical Engineering (EA4267) , University of Franche-Comté , Besançon , France
| | - Alf Lamprecht
- a Department of Pharmaceutics , University of Bonn , Bonn , Germany.,b Laboratory of Pharmaceutical Engineering (EA4267) , University of Franche-Comté , Besançon , France
| |
Collapse
|
12
|
Zhang P, Xia J, Luo S. Generation of Well-Defined Micro/Nanoparticles via Advanced Manufacturing Techniques for Therapeutic Delivery. MATERIALS 2018; 11:ma11040623. [PMID: 29670013 PMCID: PMC5951507 DOI: 10.3390/ma11040623] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/08/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022]
Abstract
Micro/nanoparticles have great potentials in biomedical applications, especially for drug delivery. Existing studies identified that major micro/nanoparticle features including size, shape, surface property and component materials play vital roles in their in vitro and in vivo applications. However, a demanding challenge is that most conventional particle synthesis techniques such as emulsion can only generate micro/nanoparticles with a very limited number of shapes (i.e., spherical or rod shapes) and have very loose control in terms of particle sizes. We reviewed the advanced manufacturing techniques for producing micro/nanoparticles with precisely defined characteristics, emphasizing the use of these well-controlled micro/nanoparticles for drug delivery applications. Additionally, to illustrate the vital roles of particle features in therapeutic delivery, we also discussed how the above-mentioned micro/nanoparticle features impact in vitro and in vivo applications. Through this review, we highlighted the unique opportunities in generating controllable particles via advanced manufacturing techniques and the great potential of using these micro/nanoparticles for therapeutic delivery.
Collapse
Affiliation(s)
- Peipei Zhang
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| | - Junfei Xia
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA.
| | - Sida Luo
- Department of Material Processing and Controlling, School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China.
| |
Collapse
|
13
|
Nanotherapeutics in oral and parenteral drug delivery: Key learnings and future outlooks as we think small. J Control Release 2018; 272:159-168. [PMID: 29355619 DOI: 10.1016/j.jconrel.2018.01.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/30/2022]
Abstract
Nanotechnology ushered the field of medicine in to a new era. Miniaturization, increased surface area, and the unique physicochemical properties in the nano dimension were explored for new applications. Pharmaceutical industry picked up the technology and early success came fast for oral drug delivery through improvement in dissolution properties of the active molecules. Many products were launched using the nanocrystal technology on the oral side. Further development of polymeric nanoparticles led to wide spread research of nanocarriers for parenteral delivery. While considerable efforts have gone in the last two decades for testing nanoparticles for tumor targeting, delivery into tumors has remained challenging and suboptimal. Inadequate in vivo models that didn't accurately reflect the age and vascularity of human tumors, and inability to reproducibly target therapeutic drugs to the tissue of interest due to intrinsic biodistribution of the particles and hence side effects, limited the number of studies that advanced to the clinic. Our article addresses the questions commonly asked by scientific researchers in nanomedicine: "Has nanoparticle technology yielded on its initial promise that scientists predicted towards improving therapeutic index and avoid toxicity by delivering molecules to target tissues or was it more of wishful thinking that had several roadblocks?" We answer this question by linking the relevance of nanoparticles to cancer immunotherapy. The advent of immunotherapy has begun to show the potential applicability of nanoparticles in a different light, to target the immune system. In this approach, nanoparticles may positively influence the immune system rather than create the targeted "magic bullet". Utilizing the intrinsic properties of nanoparticles for immune targeting as opposed to targeting the tumor can bring about a positive difference due to the underlying complex cancer mechanisms that can potentially overlap with the heterogeneous biodistribution of nanoparticles towards improving the acquired and innate immune responses. In this review, we have followed the progress of nanotechnology in pharmaceutical applications with key insights from oral and parenteral drug delivery, and how to modify our thinking to better utilize nanoparticles for immuno-oncology. In contrast to conventional "local" tumor targeting by nanoparticles, we propose a new mechanism whereby nanoparticles trigger priming of the T cells towards tumor destruction. The heterogenous biodistribution of nanoparticles lends itself to stimulating immune cells systemically in a "global" manner and with the right therapeutic combinations will be able to trigger tumor antigens to continually activate, retain memory effects and destroy tumor cells.
Collapse
|
14
|
Jindal AB. The effect of particle shape on cellular interaction and drug delivery applications of micro- and nanoparticles. Int J Pharm 2017; 532:450-465. [PMID: 28917985 DOI: 10.1016/j.ijpharm.2017.09.028] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 01/04/2023]
Abstract
Encapsulation of therapeutic agents in nanoparticles offers several benefits including improved bioavailability, site specific delivery, reduced toxicity and in vivo stability of proteins and nucleotides over conventional delivery options. These benefits are consequence of distinct in vivo pharmacokinetic and biodistribution profile of nanoparticles, which is dictated by the complex interplay of size, surface charge and surface hydrophobicity. Recently, particle shape has been identified as a new physical parameter which has exerted tremendous impact on cellular uptake and biodistribution, thereby in vivo performance of nanoparticles. Improved therapeutic efficacy of anticancer agents using non-spherical particles is the recent development in the field. Additionally, immunological response of nanoparticles was also altered when antigens were loaded in non-spherical nanovehicles. The apparent impact of particle shape inspired the new research in the field of drug delivery. The present review therefore details the research in this field. The review focuses on methods of fabrication of particles of non-spherical geometries and impact of particle shape on cellular uptake, biodistribution, tumor targeting and production of immunological responses.
Collapse
Affiliation(s)
- Anil B Jindal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani,, Pilani Campus,, Rajasthan-333031, India.
| |
Collapse
|
15
|
Abstract
Recently, there has been an emerging interest in controlling 3D structures and designing novel 3D shapes for drug carriers at nano- and micro-scales. Certain 3D shapes and structures of drug particles enable transportation of the drugs to desired areas of the body, allow drugs to target specific cells and tissues, and influence release kinetics. Advanced nano- and micro-manufacturing methods including 3D printing, photolithography-based processes, microfluidics and DNA origami have been developed to generate defined 3D shapes and structures for drug carriers. This paper reviews the importance of 3D structures and shapes on controlled drug delivery, and the current state-of-the-art technologies that allow the creation of novel 3D drug carriers at nano- and micro-scales.
Collapse
|
16
|
Kapadia CH, Tian S, Perry JL, Luft JC, DeSimone JM. Reduction Sensitive PEG Hydrogels for Codelivery of Antigen and Adjuvant To Induce Potent CTLs. Mol Pharm 2016; 13:3381-3394. [PMID: 27551741 DOI: 10.1021/acs.molpharmaceut.6b00288] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Educating our immune system via vaccination is an attractive approach to combat infectious diseases. Eliciting antigen specific cytotoxic T cells (CTLs), CD8+ effector T cells, is essential in controlling intracellular infectious diseases such as influenza (Flu), tuberculosis (TB), hepatitis, and HIV/AIDS, as well as tumors. However, vaccination utilizing subunit peptides to elicit a potent CD8+ T cell response with antigenic peptides is typically ineffective due to poor immunogenicity. Here we have engineered a reduction sensitive nanoparticle (NP) based subunit vaccine for intracellular delivery of an antigenic peptide and immunostimulatory adjuvant. We have co-conjugated an antigenic peptide (ovalbumin-derived CTL epitope [OVA257-264: SIINFEKL]) and an immunostimulatory adjuvant (CpG ODNs, TLR9 agonist) to PEG hydrogel NPs via a reduction sensitive linker. Bone-marrow derived dendritic cells (BMDCs) treated with the SIINFEKL conjugated NPs efficiently cross-presented the antigenic peptide via MHC-I surface receptor and induced proliferation of OT-I T cells. CpG ODN-conjugated NPs induced maturation of BMDCs as evidenced by the overexpression of CD80 and CD40 costimulatory receptors. Moreover, codelivery of NP conjugated SIINFEKL and CpG ODN significantly increased the frequency of IFN-γ producing CD8+ effector T cells in mice (∼6-fold improvement over soluble antigen and adjuvant). Furthermore, the NP subunit vaccine-induced effector T cells were able to kill up to 90% of the adoptively transferred antigenic peptide-loaded target cell. These results demonstrate that the reduction sensitive NP subunit vaccine elicits a potent CTL response and provide compelling evidence that this approach could be utilized to engineer particulate vaccines to deliver tumor or pathogen associated antigenic peptides to harness the immune system to fight against cancer and infectious diseases.
Collapse
Affiliation(s)
| | | | | | | | - Joseph M DeSimone
- Department of Chemical and Biomolecular Engineering, NC State University , Raleigh, North Carolina 27695, United States.,Sloan-Kettering Institute for Cancer Research, Memorial Sloan-Kettering Cancer Center , New York, New York 10021, United States
| |
Collapse
|
17
|
Pires LR, Marques F, Sousa JC, Cerqueira J, Pinto IM. Nano- and micro-based systems for immunotolerance induction in multiple sclerosis. Hum Vaccin Immunother 2016; 12:1886-90. [PMID: 26890336 DOI: 10.1080/21645515.2016.1138190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
It is estimated that more than 2.5 million individuals worldwide have multiple sclerosis (MS). MS is an autoimmune neurodegenerative disease resulting from the destruction of the myelin sheath that enwraps axons driven by an immune cell attack to the central nervous system. Current therapeutic programs for MS focus in immunosuppression and more recently in the use of immunomodulatory molecules. These therapeutic approaches provide significant improvements in the management of the disease, but are frequently associated with an increased susceptibility of opportunistic infection. In this commentary, we highlight the application of nano and micro-technologies as emerging and innovative solutions for MS therapy with the potential to restore immune homeostasis via antigen-specific interactions. Furthermore, we propose and discuss the usage of a minimally invasive approach, namely microneedle patches, as a new therapeutic route. Microneedle patches for the delivery of specific antigens to restore immunotolerance in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Liliana R Pires
- a International Iberian Nanotechnology Laboratory , Braga , Portugal
| | - Fernanda Marques
- b Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,c ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - João Carlos Sousa
- b Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,c ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - João Cerqueira
- b Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho , Braga , Portugal.,c ICVS/3B's - PT Government Associate Laboratory , Braga/Guimarães , Portugal
| | - Inês Mendes Pinto
- a International Iberian Nanotechnology Laboratory , Braga , Portugal
| |
Collapse
|