1
|
Sinilaite A, Doyon-Plourde P, Young K, Harrison R. Summary of the National Advisory Committee on Immunization (NACI) Statement-Recommendations on Fractional Influenza Vaccine Dosing in the Event of a Shortage: Pandemic preparedness. CANADA COMMUNICABLE DISEASE REPORT = RELEVE DES MALADIES TRANSMISSIBLES AU CANADA 2023; 49:90-98. [PMID: 38298904 PMCID: PMC10826877 DOI: 10.14745/ccdr.v49i04a01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Background At the commencement of a pandemic, it is important to consider the impact of respiratory infections on the health system and the possibility of vaccine shortages due to increased demand. In the event of an influenza vaccine shortage, a strategy for administration of fractional influenza vaccine doses might be considered. This article reviews the available evidence for efficacy, effectiveness, immunogenicity and safety of fractional influenza vaccine dosing, and summarizes the National Advisory Committee on Immunization (NACI) recommendations on fractional dosing strategies by public health programs in Canada. Methods Two rapid literature reviews were undertaken to evaluate the efficacy, effectiveness, immunogenicity and safety of fractional influenza vaccine dosing via the intramuscular or intradermal route. The NACI evidence-based process was used to assess the quality of eligible studies, summarize and analyze the findings, and apply an ethics, equity, feasibility and acceptability lens to develop recommendations. Results There was limited evidence for the effectiveness of fractional influenza vaccine dosing. Fractional dosing studies were primarily conducted in healthy individuals, mainly young children and infants, with no underlying chronic conditions. There was fair evidence for immunogenicity and safety. Feasibility issues were identified with intradermal use in particular. Conclusion NACI recommended that, in the event of a significant population-level shortage of influenza vaccine, a full-dose influenza vaccine should continue to be used, and existing vaccine supply should be prioritized for those considered to be at high risk or capable of transmitting to those at high risk of influenza-related complications or hospitalizations. NACI recommended against the use of fractional doses of influenza vaccine in any population.
Collapse
Affiliation(s)
| | | | - Kelsey Young
- NACI Secretariat, Public Health Agency of Canada
| | - Robyn Harrison
- NACI Influenza Working Group Chair at the time of the NACI Statement writing
- University of Alberta, Alberta Health Services, Edmonton, AB
| |
Collapse
|
2
|
Rouphael NG, Lai L, Tandon S, McCullough MP, Kong Y, Kabbani S, Natrajan MS, Xu Y, Zhu Y, Wang D, O'Shea J, Sherman A, Yu T, Henry S, McAllister D, Stadlbauer D, Khurana S, Golding H, Krammer F, Mulligan MJ, Prausnitz MR. Immunologic mechanisms of seasonal influenza vaccination administered by microneedle patch from a randomized phase I trial. NPJ Vaccines 2021; 6:89. [PMID: 34262052 PMCID: PMC8280206 DOI: 10.1038/s41541-021-00353-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
In a phase 1 randomized, single-center clinical trial, inactivated influenza virus vaccine delivered through dissolvable microneedle patches (MNPs) was found to be safe and immunogenic. Here, we compare the humoral and cellular immunologic responses in a subset of participants receiving influenza vaccination by MNP to the intramuscular (IM) route of administration. We collected serum, plasma, and peripheral blood mononuclear cells in 22 participants up to 180 days post-vaccination. Hemagglutination inhibition (HAI) titers and antibody avidity were similar after MNP and IM vaccination, even though MNP vaccination used a lower antigen dose. MNPs generated higher neuraminidase inhibition (NAI) titers for all three influenza virus vaccine strains tested and triggered a larger percentage of circulating T follicular helper cells (CD4 + CXCR5 + CXCR3 + ICOS + PD-1+) compared to the IM route. Our study indicates that inactivated influenza virus vaccination by MNP produces humoral and cellular immune response that are similar or greater than IM vaccination.
Collapse
Affiliation(s)
- Nadine G Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia.
| | - Lilin Lai
- Emory Vaccine Center, Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia
| | - Sonia Tandon
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia.,Laney Graduate School, Emory University, Atlanta, Georgia
| | - Michele Paine McCullough
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yunchuan Kong
- Laney Graduate School, Emory University, Atlanta, Georgia
| | - Sarah Kabbani
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Muktha S Natrajan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yongxian Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Yerun Zhu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Dongli Wang
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Jesse O'Shea
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Amy Sherman
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, School of Medicine, Emory University, Atlanta, Georgia
| | - Tianwei Yu
- Laney Graduate School, Emory University, Atlanta, Georgia
| | | | | | - Daniel Stadlbauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Surender Khurana
- Division of Viral Products Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Hana Golding
- Division of Viral Products Center for Biologics Evaluation and Research, FDA, Silver Spring, MD, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark J Mulligan
- New York University Langone Medical Center, Alexandria Center for Life Sciences, New York, NY, USA
| | - Mark R Prausnitz
- Micron Biomedical, Inc., Atlanta, Georgia.,School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
3
|
Egunsola O, Clement F, Taplin J, Mastikhina L, Li JW, Lorenzetti DL, Dowsett LE, Noseworthy T. Immunogenicity and Safety of Reduced-Dose Intradermal vs Intramuscular Influenza Vaccines: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2035693. [PMID: 33560425 PMCID: PMC7873776 DOI: 10.1001/jamanetworkopen.2020.35693] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
IMPORTANCE Low-dose intradermal influenza vaccines could be a suitable alternative to full intramuscular dose during vaccine shortages. OBJECTIVE To compare the immunogenicity and safety of the influenza vaccine at reduced or full intradermal doses with full intramuscular doses to inform policy design in the event of vaccine shortages. DATA SOURCES MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials were searched for studies published from 2010 until June 5, 2020. STUDY SELECTION All comparative studies across all ages assessing the immunogenicity or safety of intradermal and intramuscular influenza vaccinations were included. DATA EXTRACTION AND SYNTHESIS Data were extracted by a single reviewer and verified by a second reviewer. Discrepancies between reviewers were resolved through consensus. Random-effects meta-analysis was conducted. MAIN OUTCOMES AND MEASURES Primary outcomes included geometric mean titer, seroconversion, seroprotection, and adverse events. RESULTS A total of 30 relevant studies were included; 29 studies were randomized clinical trials with 13 759 total participants, and 1 study was a cohort study of 164 021 participants. There was no statistically significant difference in seroconversion rates between the 3-µg, 6-µg, 7.5-µg, and 9-µg intradermal vaccine doses and the 15-µg intramuscular vaccine dose for each of the H1N1, H3N2, and B strains, but rates were significantly higher with the 15-µg intradermal dose compared with the 15-µg intramuscular dose for the H1N1 strain (rate ratio [RR], 1.10; 95% CI, 1.01-1.20) and B strain (RR, 1.40; 95% CI, 1.13-1.73). Seroprotection rates for the 9-µg and 15-µg intradermal doses did not vary significantly compared with the 15-µg intramuscular dose for all the 3 strains, except for the 15-µg intradermal dose for the H1N1 strain, for which rates were significantly higher (RR, 1.05; 95% CI, 1.01-1.09). Local adverse events were significantly higher with intradermal doses than with the 15-µg intramuscular dose, particularly erythema (3-µg dose: RR, 9.62; 95% CI, 1.07-86.56; 6-µg dose: RR, 23.79; 95% CI, 14.42-39.23; 9-µg dose: RR, 4.56; 95% CI, 3.05-6.82; 15-µg dose: RR, 3.68; 95% CI, 3.19-4.25) and swelling (3-µg dose: RR, 20.16; 95% CI, 4.68-86.82; 9-µg dose: RR, 5.23; 95% CI, 3.58-7.62; 15-µg dose: RR, 3.47 ; 95% CI, 2.21-5.45). Fever and chills were significantly more common with the 9-µg intradermal dose than the 15-µg intramuscular dose (fever: RR, 1.36; 95% CI, 1.03-1.80; chills: RR, 1.24; 95% CI, 1.03-1.50) while all other systemic adverse events were not statistically significant for all other doses. CONCLUSIONS AND RELEVANCE These findings suggest that reduced-dose intradermal influenza vaccination could be a reasonable alternative to standard dose intramuscular vaccination.
Collapse
Affiliation(s)
- Oluwaseun Egunsola
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Fiona Clement
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - John Taplin
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Liza Mastikhina
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Joyce W. Li
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Diane L. Lorenzetti
- Department Community Health Sciences, University of Calgary Alberta, Canada
- Health Sciences Library, University of Calgary, Alberta, Canada
| | - Laura E. Dowsett
- Department Community Health Sciences, University of Calgary Alberta, Canada
| | - Tom Noseworthy
- Department Community Health Sciences, University of Calgary Alberta, Canada
| |
Collapse
|
4
|
Schnyder JL, De Pijper CA, Garcia Garrido HM, Daams JG, Goorhuis A, Stijnis C, Schaumburg F, Grobusch MP. Fractional dose of intradermal compared to intramuscular and subcutaneous vaccination - A systematic review and meta-analysis. Travel Med Infect Dis 2020; 37:101868. [PMID: 32898704 PMCID: PMC7474844 DOI: 10.1016/j.tmaid.2020.101868] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Vaccine supply shortages are of global concern. We hypothesise that intradermal (ID) immunisation as an alternative to standard routes might augment vaccine supply utilisation without loss of vaccine immunogenicity and efficacy. METHODS We conducted a systematic review and meta-analysis searching Medline, Embase and Web of Science databases. Studies were included if: licensed, currently available vaccines were used; fractional dose of ID was compared to IM or SC immunisation; primary immunisation schedules were evaluated; immunogenicity, safety data and/or cost were reported. We calculated risk differences (RD). Studies were included in meta-analysis if: a pre-defined immune correlate of protection was assessed; WHO-recommend schedules and antigen doses were used in the control group; the same schedule was applied to both ID and control groups (PROSPERO registration no. CRD42020151725). RESULTS The primary search yielded 5,873 articles, of which 156 articles were included; covering 12 vaccines. Non-inferiority of immunogenicity with 20-60% of antigen used with ID vaccines was demonstrated for influenza (H1N1: RD -0·01; 95% CI -0·02, 0·01; I2 = 55%, H2N3: RD 0·00; 95% CI -0·01, 0·01; I2 = 0%, B: RD -0·00; 95% CI -0·02, 0·01; I2 = 72%), rabies (RD 0·00; 95% CI -0·02, 0·02; I2 = 0%), and hepatitis B vaccines (RD -0·01; 95% CI -0·04, 0·02; I2 = 20%). Clinical trials on the remaining vaccines yielded promising results, but are scarce. CONCLUSIONS There is potential for inoculum/antigen dose-reduction by using ID immunisation as compared to standard routes of administration for some vaccines (e.g. influenza, rabies). When suitable, vaccine trials should include an ID arm.
Collapse
Affiliation(s)
- Jenny L Schnyder
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis A De Pijper
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Hannah M Garcia Garrido
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Joost G Daams
- Medical Library, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands
| | - Abraham Goorhuis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Cornelis Stijnis
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands
| | - Frieder Schaumburg
- Institute of Medical Microbiology, University Hospital Münster, Domagkstraße 10, 48149, Münster, Germany
| | - Martin P Grobusch
- Centre for Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Division of Internal Medicine, Amsterdam UMC, Amsterdam Infection & Immunity, Amsterdam Public Health, University of Amsterdam, Meibergdreef 9, 1100 DD, Amsterdam, Netherlands.
| |
Collapse
|
5
|
Forster AH, Witham K, Depelsenaire ACI, Veitch M, Wells JW, Wheatley A, Pryor M, Lickliter JD, Francis B, Rockman S, Bodle J, Treasure P, Hickling J, Fernando GJP. Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial. PLoS Med 2020; 17:e1003024. [PMID: 32181756 PMCID: PMC7077342 DOI: 10.1371/journal.pmed.1003024] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 μg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 μg/dose); or IM injection of H1N1 HA antigen (15 μg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 μg of HA to the FA or 15 μg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 μg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 μg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 μg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 μg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 μg HA injected IM. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550.
Collapse
Affiliation(s)
| | | | | | - Margaret Veitch
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - James W. Wells
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, TRI, Brisbane, Queensland, Australia
| | - Adam Wheatley
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | | | | | - Barbara Francis
- Avance Clinical Pty Ltd, Thebarton, South Australia, Australia
| | - Steve Rockman
- Department of Microbiology and Immunology, University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Jesse Bodle
- Seqirus Pty Ltd, Parkville, Victoria, Australia
| | - Peter Treasure
- Peter Treasure Statistical Services Ltd, Kings Lynn, United Kingdom
| | | | - Germain J. P. Fernando
- Vaxxas Pty Ltd, Brisbane, Queensland, Australia
- The University of Queensland, School of Chemistry & Molecular Biosciences, Faculty of Science, Brisbane, Queensland, Australia
| |
Collapse
|
6
|
Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270:184-202. [DOI: 10.1016/j.jconrel.2017.11.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022]
|
7
|
Kumar A, McElhaney JE, Walrond L, Cyr TD, Merani S, Kollmann TR, Halperin SA, Scheifele DW. Cellular immune responses of older adults to four influenza vaccines: Results of a randomized, controlled comparison. Hum Vaccin Immunother 2017. [PMID: 28635557 DOI: 10.1080/21645515.2017.1337615] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cellular immunity is important for protection against the serious complications of influenza in older adults. As it is unclear if newer influenza vaccines elicit greater cellular responses than standard vaccines, we compared responses to 2 standard and 2 newer licensed trivalent inactivated vaccines (TIVs) in a randomized trial in older adults. Non-frail adults ≥ 65 y old were randomly assigned to receive standard subunit, MF59-adjuvanted subunit, standard split-virus or intradermal split-virus TIV. Peripheral blood mononuclear cells (PBMC) harvested pre- and 3-weeks post-vaccination were stimulated with live A/H3N2 virus. PBMC supernatants were tested for interleukin 10 (IL-10) and interferon gamma (IFN-γ), and lysates for granzyme B (GrB). Flow cytometry identified CD4+ and CD8+ T- cells expressing intracellular IL-2, IL-10, IFN-γ, GrB, or perforin. Differences following immunization were assessed for paired subject samples and among vaccines. 120 seniors participated, 29-31 per group, which were well matched demographically. Virus-stimulated PBMCs were GrB-rich before and after vaccination, with minimal increases evident. Immunization did not increase secretion of IFN-γ or IL-10. However, cytolytic effector T-cells (CD8+GrB+perforin+) increased significantly in percentage post-vaccination in all groups, to similar mean values across groups. CD4+GrB+perforin+ T-cells also increased significantly after each vaccine, to similar mean values among vaccines. Vaccination did not increase the low baseline percentages of CD4+ or CD8+ T-cells expressing IFN-γ, IL-2 or IL-10 . In conclusion, participants had pre-existing cellular immunity to H3N2 virus. All 4 vaccines boosted cellular responses to a similar but limited extent, particularly cytolytic effector CD8+ T-cells associated with clinical protection against influenza.
Collapse
Affiliation(s)
- Arun Kumar
- a Health Sciences North Research Institute , Sudbury , Ontario , Canada
| | - Janet E McElhaney
- a Health Sciences North Research Institute , Sudbury , Ontario , Canada.,b Northern Ontario School of Medicine , Sudbury , Ontario , Canada.,c VITALITY Research Center , Vancouver Coastal Health Research Institute , Vancouver , BC , Canada.,d Public Health Agency of Canada/Canadian Institutes of Health Research Influenza Research Network (PCIRN), Dalhousie University , Halifax , NS , Canada
| | - Lisa Walrond
- e Regulatory Research Division , Biologics and Genetic Therapies Directorate Health Canada , Ottawa , Canada
| | - Terry D Cyr
- e Regulatory Research Division , Biologics and Genetic Therapies Directorate Health Canada , Ottawa , Canada
| | - Shahzma Merani
- a Health Sciences North Research Institute , Sudbury , Ontario , Canada
| | - Tobias R Kollmann
- d Public Health Agency of Canada/Canadian Institutes of Health Research Influenza Research Network (PCIRN), Dalhousie University , Halifax , NS , Canada.,f Vaccine Evaluation Center , University of British Columbia , Vancouver , BC , Canada
| | - Scott A Halperin
- d Public Health Agency of Canada/Canadian Institutes of Health Research Influenza Research Network (PCIRN), Dalhousie University , Halifax , NS , Canada.,g Canadian Center for Vaccinology , Dalhousie University , Halifax , NS , Canada
| | - David W Scheifele
- d Public Health Agency of Canada/Canadian Institutes of Health Research Influenza Research Network (PCIRN), Dalhousie University , Halifax , NS , Canada.,f Vaccine Evaluation Center , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
8
|
Microneedle patches for vaccination in developing countries. J Control Release 2015; 240:135-141. [PMID: 26603347 DOI: 10.1016/j.jconrel.2015.11.019] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/31/2015] [Accepted: 11/17/2015] [Indexed: 12/17/2022]
Abstract
Millions of people die of infectious diseases each year, mostly in developing countries, which could largely be prevented by the use of vaccines. While immunization rates have risen since the introduction of the Expanded Program on Immunization (EPI), there remain major challenges to more effective vaccination in developing countries. As a possible solution, microneedle patches containing an array of micron-sized needles on an adhesive backing have been developed to be used for vaccine delivery to the skin. These microneedle patches can be easily and painlessly applied by pressing against the skin and, in some designs, do not leave behind sharps waste. The patches are single-dose, do not require reconstitution, are easy to administer, have reduced size to simplify storage, transportation and waste disposal, and offer the possibility of improved vaccine immunogenicity, dose sparing and thermostability. This review summarizes vaccination challenges in developing countries and discusses advantages that microneedle patches offer for vaccination to address these challenges. We conclude that microneedle patches offer a powerful new technology that can enable more effective vaccination in developing countries.
Collapse
|
9
|
Zhang L, Wang W, Wang S. Effect of vaccine administration modality on immunogenicity and efficacy. Expert Rev Vaccines 2015; 14:1509-23. [PMID: 26313239 DOI: 10.1586/14760584.2015.1081067] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The many factors impacting the efficacy of a vaccine can be broadly divided into three categories: features of the vaccine itself, including immunogen design, vaccine type, formulation, adjuvant and dosing; individual variations among vaccine recipients and vaccine administration-related parameters. While much literature exists related to vaccines, and recently systems biology has started to dissect the impact of individual subject variation on vaccine efficacy, few studies have focused on the role of vaccine administration-related parameters on vaccine efficacy. Parenteral and mucosal vaccinations are traditional approaches for licensed vaccines; novel vaccine delivery approaches, including needless injection and adjuvant formulations, are being developed to further improve vaccine safety and efficacy. This review provides a brief summary of vaccine administration-related factors, including vaccination approach, delivery route and method of administration, to gain a better understanding of their potential impact on the safety and immunogenicity of candidate vaccines.
Collapse
Affiliation(s)
- Lu Zhang
- a 1 Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China.,b 2 China-US Vaccine Research Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China
| | - Wei Wang
- c 3 Wang Biologics, LLC, Chesterfield, MO 63017, USA ; Current affiliation: Bayer HealthCare, Berkeley, CA 94710, USA
| | - Shixia Wang
- d 4 Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|