1
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
2
|
Ackermann-Gäumann R, Lang P, Zens KD. Defining the "Correlate(s) of Protection" to tick-borne encephalitis vaccination and infection - key points and outstanding questions. Front Immunol 2024; 15:1352720. [PMID: 38318179 PMCID: PMC10840404 DOI: 10.3389/fimmu.2024.1352720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Tick-borne Encephalitis (TBE) is a severe disease of the Central Nervous System (CNS) caused by the tick-borne encephalitis virus (TBEV). The generation of protective immunity after TBEV infection or TBE vaccination relies on the integrated responses of many distinct cell types at distinct physical locations. While long-lasting memory immune responses, in particular, form the basis for the correlates of protection against many diseases, these correlates of protection have not yet been clearly defined for TBE. This review addresses the immune control of TBEV infection and responses to TBE vaccination. Potential correlates of protection and the durability of protection against disease are discussed, along with outstanding questions in the field and possible areas for future research.
Collapse
Affiliation(s)
- Rahel Ackermann-Gäumann
- Microbiologie, ADMED Analyses et Diagnostics Médicaux, La Chaux-de-Fonds, Switzerland
- Swiss National Reference Center for Tick-transmitted Diseases, La Chaux-de-Fonds, Switzerland
| | - Phung Lang
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Kyra D. Zens
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Illarionova V, Rogova A, Tuchynskaya K, Volok V, Rogova Y, Baryshnikova V, Turchenko Y, Litov A, Kalyanova A, Siniugina A, Ishmukhametov A, Karganova G. Inapparent Tick-Borne Orthoflavivirus Infection in Macaca fascicularis: A Model for Antiviral Drug and Vaccine Research. Vaccines (Basel) 2023; 11:1754. [PMID: 38140159 PMCID: PMC10747564 DOI: 10.3390/vaccines11121754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) and Powassan virus (POWV) are neurotropic tick-borne orthoflaviviruses. They cause mostly asymptomatic infections in hosts, but severe forms with CNS involvement can occur. Studying the early stages of viral infections in humans is challenging, and appropriate animal models are essential for understanding the factors determining the disease severity and for developing emergency prophylaxis and treatment options. In this work, we assessed the model of the early stages of TBEV and POWV mono- and co-infections in Macaca fascicularis. Serological, biochemical, and virological parameters were investigated to describe the infection, including its impact on animal behavior. Viremia, neutralizing antibody dynamics, and viral load in organs were chosen as the main parameters distinguishing early-stage orthoflavivirus infection. Levels of IFNα, monocyte count, and cognitive test scores were proposed as additional informative indicators. An assessment of a tick-borne encephalitis vaccine using this model showed that it provided partial protection against POWV infection in Macaca fascicularis without signs of antibody-dependent enhancement of infection.
Collapse
Affiliation(s)
- Victoria Illarionova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1 bd. 3, Moscow 119991, Russia
| | - Anastasia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Ksenia Tuchynskaya
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Viktor Volok
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Research Institute for Systems Biology and Medicine (RISBM), Laboratory of Infectious Immunology, Moscow 117246, Russia
| | - Yulia Rogova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Victoria Baryshnikova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Yuriy Turchenko
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biochemistry, Moscow 108819, Russia; (V.B.); (Y.T.)
| | - Alexander Litov
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| | - Anna Kalyanova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
| | - Alexandra Siniugina
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Aydar Ishmukhametov
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Moscow 108819, Russia;
| | - Galina Karganova
- FSASI “Chumakov FSC R&D IBP RAS” (Institute of Poliomyelitis), Laboratory of Biology of Arbovirus, Moscow 108819, Russia; (V.I.); (A.R.); (K.T.); (V.V.); (Y.R.); (A.L.); (A.K.)
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia;
| |
Collapse
|
4
|
Tang J, Fu M, Xu C, Xue B, Zhou A, Chen S, Zhao H, Zhou Y, Chen J, Yang Q, Chen X. Development of a novel virus-like particle-based vaccine for preventing tick-borne encephalitis virus infection. Virol Sin 2023; 38:767-777. [PMID: 37328107 PMCID: PMC10590693 DOI: 10.1016/j.virs.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an important tick-borne pathogen that poses as a serious public health concern. The coverage and immunogenicity of the currently available vaccines against TBEV are relatively low; therefore, it is crucial to develop novel and effective vaccines against TBEV. The present study describes a novel strategy for the assembly of virus-like particles (VLPs) by co-expressing the structural (core/prM/E) and non-structural (NS2B/NS3Pro) proteins of TBEV. The efficacy of the VLPs was subsequently evaluated in C57BL/6 mice, and the resultant IgG serum could neutralize both Far-Eastern and European subtypes of TBEV. These findings indicated that the VLP-based vaccine elicited the production of cross-subtype reactive antibodies. The VLPs provided protection to mice lacking the type I interferon receptor (IFNAR-/-) against lethal TBEV challenge, with undetectable viral load in brain and intestinal tissues. Furthermore, the group that received the VLP vaccine did not exhibit significant pathological changes and the inflammatory factors were significantly suppressed compared to the control group. Immunization with the VLP vaccine induced the production of multiple-cytokine-producing antiviral CD4+ T cells in vivo, including TNF-α+, IL-2+, and IFN-γ+ T cells. Altogether, the findings suggest that noninfectious VLPs can serve as a potentially safe and effective vaccine candidate against diverse subtypes of TBEV.
Collapse
Affiliation(s)
- Jielin Tang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Muqing Fu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Chonghui Xu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Bao Xue
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Anqi Zhou
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Sijie Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - He Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yuan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jizheng Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qi Yang
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xinwen Chen
- Guangzhou National Laboratory, Guangzhou, 510005, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China; State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Vaccination against Tick-Borne Encephalitis (TBE) in Italy: Still a Long Way to Go. Microorganisms 2022; 10:microorganisms10020464. [PMID: 35208918 PMCID: PMC8880353 DOI: 10.3390/microorganisms10020464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
Tick-borne encephalitis (TBE) is endemic in several European countries, and its incidence has recently increased. Various factors may explain this phenomenon: social factors (changes in human behavior, duration and type of leisure activities and increased tourism in European high-risk areas), ecological factors (e.g., effects of climate change on the tick population and reservoir animals), and technological factors (improved diagnostics, increased medical awareness). Furthermore, the real burden of TBE is not completely known, as the performance of surveillance systems is suboptimal and cases of disease are under-reported in several areas. Given the potentially severe clinical course of the disease, the absence of any antiviral therapy, and the impossibility of interrupting the transmission of the virus in nature, vaccination is the mainstay of prevention and control. TBE vaccines are effective (protective effect of approximately 95% after completion of the basic vaccination—three doses) and well tolerated. However, their uptake in endemic areas is suboptimal. In the main endemic countries where vaccination is included in the national/regional immunization program (with reimbursed vaccination programs), this decision was driven by a cost-effectiveness assessment (CEA), which is a helpful tool in the decision-making process. All CEA studies conducted have demonstrated the cost-effectiveness of TBE vaccination. Unfortunately, CEA is still lacking in many endemic countries, including Italy. In the future, it will be necessary to fill this gap in order to introduce an effective vaccination strategy in endemic areas. Finally, raising awareness of TBE, its consequences and the benefit of vaccination is critical in order to increase vaccination coverage and reduce the burden of the disease.
Collapse
|
6
|
Food-Borne Transmission of Tick-Borne Encephalitis Virus—Spread, Consequences, and Prophylaxis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19031812. [PMID: 35162837 PMCID: PMC8835261 DOI: 10.3390/ijerph19031812] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Tick-borne encephalitis (TBE) is the most common viral neurological disease in Eurasia. It is usually transmitted via tick bites but can also occur through ingestion of TBEV-infected milk and dairy products. The present paper summarises the knowledge of the food-borne TBEV transmission and presents methods for the prevention of its spread. The incidence of milk-borne TBE outbreaks is recorded in central, eastern, and north-eastern Europe, where Ixodes ricinus, Ixodes persulcatus, and/or Dermacentor reticulatus ticks, i.e., the main vectors of TBEV, occur abundantly. The growing occurrence range and population size of these ticks increases the risk of infection of dairy animals, i.e., goats, sheep, and cows, with viruses transmitted by these ticks. Consumers of unpasteurised milk and dairy products purchased from local farms located in TBE endemic areas are the most vulnerable to alimentary TBEV infections. Familial infections with these viruses are frequently recorded, mainly in children. Food-transmitted TBE can be monophasic or biphasic, and some of its neurological and psychiatric symptoms may persist in patients for a long time. Alimentary TBEV infections can be effectively prevented by consumption of pasteurised milk and the use of TBEV vaccines. It is recommended that milk and dairy products should be checked for the presence of TBE viruses prior to distribution. Protection of dairy animals against tick attacks and education of humans regarding the epidemiology and prophylaxis of TBE are equally important.
Collapse
|
7
|
Delimitation of the Tick-Borne Flaviviruses. Resolving the Tick-Borne Encephalitis virus and Louping-Ill Virus Paraphyletic Taxa. Mol Phylogenet Evol 2022; 169:107411. [PMID: 35032647 DOI: 10.1016/j.ympev.2022.107411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/22/2021] [Accepted: 12/27/2021] [Indexed: 11/22/2022]
Abstract
The tick-borne flavivirus (TBFV) group contains at least 12 members where five of them are important pathogens of humans inducing diseases with varying severity (from mild fever forms to acute encephalitis). The taxonomy structure of TBFV is not fully clarified at present. In particular, there is a number of paraphyletic issues of tick-borne encephalitis virus (TBEV) and louping-ill virus (LIV). In this study, we aimed to apply different bioinformatic approaches to analyze all available complete genome amino acid sequences to delineate TBFV members at the species level. Results showed that the European subtype of TBEV (TBEV-E) is a distinct species unit. LIV, in turn, should be separated into two species. Additional analysis of TBEV and LIV antigenic determinant diversity also demonstrate that TBEV-E and LIV are significantly different both from each other and from the other TBEV subtypes. The analysis of available literature provided data on other virus phenotypic particularities that supported our hypothesis. So, within the TBEV+LIV paraphyletic group, we offer to assign four species to get a more accurate understanding of the TBFV interspecies structure according to the modern monophyletic conception.
Collapse
|
8
|
Bhatia B, Meade-White K, Haddock E, Feldmann F, Marzi A, Feldmann H. A live-attenuated viral vector vaccine protects mice against lethal challenge with Kyasanur Forest disease virus. NPJ Vaccines 2021; 6:152. [PMID: 34907224 PMCID: PMC8671490 DOI: 10.1038/s41541-021-00416-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/18/2021] [Indexed: 12/02/2022] Open
Abstract
Kyasanur Forest disease virus (KFDV) is a tick-borne flavivirus endemic in India known to cause severe hemorrhagic and encephalitic disease in humans. In recent years, KFDV has spread beyond its original endemic zone raising public health concerns. Currently, there is no treatment available for KFDV but a vaccine with limited efficacy is used in India. Here, we generated two new KFDV vaccine candidates based on the vesicular stomatitis virus (VSV) platform. We chose the VSV-Ebola virus (VSV-EBOV) vector either with the full-length or a truncated EBOV glycoprotein as the vehicle to express the precursor membrane (prM) and envelope (E) proteins of KFDV (VSV-KFDV). For efficacy testing, we established a mouse disease model by comparing KFDV infections in three immunocompetent mouse strains (BALB/c, C57Bl/6, and CD1). Both vaccine vectors provided promising protection against lethal KFDV challenge in the BALB/c model following prime-only prime-boost and immunizations. Only prime-boost immunization with VSV-KFDV expressing full-length EBOV GP resulted in uniform protection. Hyperimmune serum derived from prime-boost immunized mice protected naïve BALB/c mice from lethal KFDV challenge indicating the importance of antibodies for protection. The new VSV-KFDV vectors are promising vaccine candidates to combat an emerging, neglected public health problem in a densely populated part of the world.
Collapse
Affiliation(s)
- Bharti Bhatia
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Kimberly Meade-White
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA.
| |
Collapse
|
9
|
Blahove MR, Carter JR. Flavivirus Persistence in Wildlife Populations. Viruses 2021; 13:v13102099. [PMID: 34696529 PMCID: PMC8541186 DOI: 10.3390/v13102099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
A substantial number of humans are at risk for infection by vector-borne flaviviruses, resulting in considerable morbidity and mortality worldwide. These viruses also infect wildlife at a considerable rate, persistently cycling between ticks/mosquitoes and small mammals and reptiles and non-human primates and humans. Substantially increasing evidence of viral persistence in wildlife continues to be reported. In addition to in humans, viral persistence has been shown to establish in mammalian, reptile, arachnid, and mosquito systems, as well as insect cell lines. Although a considerable amount of research has centered on the potential roles of defective virus particles, autophagy and/or apoptosis-induced evasion of the immune response, and the precise mechanism of these features in flavivirus persistence have yet to be elucidated. In this review, we present findings that aid in understanding how vector-borne flavivirus persistence is established in wildlife. Research studies to be discussed include determining the critical roles universal flavivirus non-structural proteins played in flaviviral persistence, the advancement of animal models of viral persistence, and studying host factors that allow vector-borne flavivirus replication without destructive effects on infected cells. These findings underscore the viral–host relationships in wildlife animals and could be used to elucidate the underlying mechanisms responsible for the establishment of viral persistence in these animals.
Collapse
|
10
|
Tuchynskaya K, Volok V, Illarionova V, Okhezin E, Polienko A, Belova O, Rogova A, Chernokhaeva L, Karganova G. Experimental Assessment of Possible Factors Associated with Tick-Borne Encephalitis Vaccine Failure. Microorganisms 2021; 9:1172. [PMID: 34072340 PMCID: PMC8229799 DOI: 10.3390/microorganisms9061172] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022] Open
Abstract
Currently the only effective measure against tick-borne encephalitis (TBE) is vaccination. Despite the high efficacy of approved vaccines against TBE, rare cases of vaccine failures are well documented. Both host- and virus-related factors can account for such failures. In this work, we studied the influence of mouse strain and sex and the effects of cyclophosphamide-induced immunosuppression on the efficacy of an inactivated TBE vaccine. We also investigated how an increased proportion of non-infectious particles in the challenge TBE virus would affect the protectivity of the vaccine. The vaccine efficacy was assessed by mortality, morbidity, levels of viral RNA in the brain of surviving mice, and neutralizing antibody (NAb) titers against the vaccine strain and the challenge virus. Two-dose vaccination protected most animals against TBE symptoms and death, and protectivity depended on strain and sex of mice. Immunosuppression decreased the vaccine efficacy in a dose-dependent manner and changed the vaccine-induced NAb spectrum. The vaccination protected mice against TBE virus neuroinvasion and persistence. However, viral RNA was detected in the brain of some asymptomatic animals at 21 and 42 dpi. Challenge with TBE virus enriched with non-infectious particles led to lower NAb titers in vaccinated mice after the challenge but did not affect the protective efficacy.
Collapse
Affiliation(s)
- Ksenia Tuchynskaya
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Viktor Volok
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Victoria Illarionova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Egor Okhezin
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexandra Polienko
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Oxana Belova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Anastasia Rogova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Liubov Chernokhaeva
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
| | - Galina Karganova
- FSBSI “Chumakov FSC R&D IBP RAS”, 108819 Moscow, Russia; (K.T.); (V.V.); (V.I.); (E.O.); (A.P.); (O.B.); (A.R.); (L.C.)
- Department of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
11
|
Vorovitch MF, Grishina KG, Volok VP, Chernokhaeva LL, Grishin KV, Karganova GG, Ishmukhametov AA. Evervac: phase I/II study of immunogenicity and safety of a new adjuvant-free TBE vaccine cultivated in Vero cell culture. Hum Vaccin Immunother 2020; 16:2123-2130. [PMID: 32429733 PMCID: PMC7553679 DOI: 10.1080/21645515.2020.1757990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/24/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
Approximately 10,000 cases of tick-borne encephalitis (TBE), a serious disease of the central nervous system caused by tick-borne encephalitis virus (TBEV), are registered worldwide every year. Vaccination against TBE remains the most essential measure of preventing the disease. Unlike available TBE vaccines, a new inactivated lyophilized candidate vaccine Evervac is produced in Vero continuous cell culture and its final formulation does not include aluminum-based adjuvants. To study the safety and immunogenicity of Evervac, healthy adults 18-60 y of age were immunized twice at 30-d intervals. The study was single-blind, randomized, comparative, controlled, and was conducted in TBE-endemic areas. The commercial lyophilized vaccine TBE-Moscow was used as a comparison treatment. The subjects were observed for incidence, severity, and duration of adverse reactions. It was shown that the severity of local and systemic reactions in the Evervac vaccine group was mild to moderate. There were no significant differences in the incidence of adverse reactions between the Evervac and TBE-Moscow vaccine groups. Immunization with Evervac produced a significant increase in geometric mean titer (GMT) of anti-TBEV antibodies in both initially seronegative and seropositive recipients. The seroconversion rate for the initially seronegative recipients was 69% (GMT = 1:214) after the first dose and reached 100% after the second dose. In these parameters, there were no significant differences between the study and control vaccine groups. Thus, the adjuvant-free Vero-based vaccine Evervac was well tolerated, had low reactogenicity, induced a pronounced immune response, and was overall non-inferior to the commercial adjuvanted TBE vaccine used as a control.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Karina G. Grishina
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Viktor P. Volok
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Liubov L. Chernokhaeva
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Konstantin V. Grishin
- TBE Vaccine Department, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
| | - Galina G. Karganova
- Laboratory of Biology of Arboviruses, Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Aidar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
12
|
Immunogenicity and safety of the tick-borne encephalitis vaccination (2009–2019): A systematic review. Travel Med Infect Dis 2020; 37:101876. [DOI: 10.1016/j.tmaid.2020.101876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
|
13
|
Costantini M, Callegaro A, Beran J, Berlaimont V, Galgani I. Response letter: "Predicted long-term antibody persistence for a tick-borne encephalitis vaccine: results from a modeling study beyond 10 years after a booster dose following different primary vaccination schedules". Hum Vaccin Immunother 2020; 16:2282-2284. [PMID: 32810427 PMCID: PMC7560907 DOI: 10.1080/21645515.2020.1798713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
| | | | - Jiří Beran
- Vaccination and Travel Medicine Centre , Hradec Králové, Czechia.,Department for Tropical, Travel Medicine and Immunization, Institute for Postgraduate Medical Education , Prague, Czechia
| | | | | |
Collapse
|
14
|
Kubinski M, Beicht J, Gerlach T, Volz A, Sutter G, Rimmelzwaan GF. Tick-Borne Encephalitis Virus: A Quest for Better Vaccines against a Virus on the Rise. Vaccines (Basel) 2020; 8:E451. [PMID: 32806696 PMCID: PMC7564546 DOI: 10.3390/vaccines8030451] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV), a member of the family Flaviviridae, is one of the most important tick-transmitted viruses in Europe and Asia. Being a neurotropic virus, TBEV causes infection of the central nervous system, leading to various (permanent) neurological disorders summarized as tick-borne encephalitis (TBE). The incidence of TBE cases has increased due to the expansion of TBEV and its vectors. Since antiviral treatment is lacking, vaccination against TBEV is the most important protective measure. However, vaccination coverage is relatively low and immunogenicity of the currently available vaccines is limited, which may account for the vaccine failures that are observed. Understanding the TBEV-specific correlates of protection is of pivotal importance for developing novel and improved TBEV vaccines. For affording robust protection against infection and development of TBE, vaccines should induce both humoral and cellular immunity. In this review, the adaptive immunity induced upon TBEV infection and vaccination as well as novel approaches to produce improved TBEV vaccines are discussed.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Thomas Gerlach
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany;
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-University (LMU) Munich, Veterinaerstr. 13, 80539 Munich, Germany;
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation (TiHo), Buenteweg 17, 30559 Hannover, Germany; (M.K.); (J.B.); (T.G.)
| |
Collapse
|
15
|
Perfilyeva YV, Shapiyeva ZZ, Ostapchuk YO, Berdygulova ZA, Bissenbay AO, Kulemin MV, Ismagulova GA, Skiba YA, Sayakova ZZ, Mamadaliyev SM, Maltseva ER, Dmitrovskiy AM. Tick-borne pathogens and their vectors in Kazakhstan - A review. Ticks Tick Borne Dis 2020; 11:101498. [PMID: 32723625 DOI: 10.1016/j.ttbdis.2020.101498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/10/2020] [Accepted: 06/21/2020] [Indexed: 12/16/2022]
Abstract
Tick-borne diseases (TBDs), in particular Crimean-Congo hemorrhagic fever (CCHF) and tick-borne encephalitis (TBE), have been found to be expanding beyond their traditional geographic locations in Kazakhstan, which led to increased awareness and concern against TBDs in recent years. The tick fauna of Kazakhstan includes more than 30 species of human-biting ixodid ticks, recognized as carriers of a number of dangerous infectious pathogens that cause CCHF, TBE, tularemia, tick-borne rickettsioses and Lyme borreliosis. This paper presents the current knowledge of the main vectors of tick-borne pathogens (TBP) occurring in Kazakhstan, as well as a review of recent studies of ticks performed with the use of molecular methods being currently developed and widely utilized by Kazakh epidemiologists.
Collapse
Affiliation(s)
- Yuliya V Perfilyeva
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan.
| | - Zhanna Zh Shapiyeva
- Scientific Practical Center for Sanitary Epidemiological Expertise and Monitoring, 84 Auezov St., Almaty, 050008, Kazakhstan
| | - Yekaterina O Ostapchuk
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan
| | - Zhanna A Berdygulova
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty, 050040, Kazakhstan
| | - Akerke O Bissenbay
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan; Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, Almaty, 050040, Kazakhstan
| | - Maxim V Kulemin
- Anti-Plague Station, 114 Dulati St., Shymkent, 160013, Kazakhstan
| | - Gulnara A Ismagulova
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan
| | - Yuriy A Skiba
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan
| | - Zaure Z Sayakova
- M. Aikimbayev Kazakh Scientific Center for Quarantine& Zoonotic Diseases, 14 Zhahanger St., Almaty 050054, Kazakhstan
| | - Seidigapbar M Mamadaliyev
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan
| | - Elina R Maltseva
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan
| | - Andrey M Dmitrovskiy
- National Center for Biotechnology, Central Reference Laboratory, 14 Zhahanger St., Almaty, 050054, Kazakhstan.
| |
Collapse
|
16
|
Vorovitch MF, Maikova GB, Chernokhaeva LL, Romanenko VV, Karganova GG, Ishmukhametov AA. Comparison of the Immunogenicity and Safety of Two Pediatric TBE Vaccines Based on the Far Eastern and European Virus Subtypes. Adv Virol 2019; 2019:5323428. [PMID: 31933642 PMCID: PMC6942698 DOI: 10.1155/2019/5323428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/12/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Up to 10,000 cases of tick-borne encephalitis are registered annually, 20% of which occur in children under 17 years of age. A comparison of the immunogenicity and safety between a new pediatric Tick-E-Vac vaccine based on the TBEV strain Sofjin and FSME-IMMUN Junior vaccine was performed in the Sverdlovsk region. The vaccine strains differ from strains of the Siberian subtype of TBEV that dominates in the region. The study was performed on 163 children aged 1 to 15, who received one of the vaccines according to either a conventional or rapid vaccination schedule. Immunogenicity was assessed based on the seroprotection rates and titers of virus-neutralizing antibodies. There were no significant differences in either the immunogenicity or reactogenicity of the pediatric vaccines based on strains of the Far Eastern or European subtypes of TBEV. Under both vaccination schedules, 30 days after the second injection, seroprotection rates were 100% for Tick-E-Vac and greater than 95% for FSME-IMMUN Junior, while the geometric mean titer of TBEV-neutralizing antibodies was at least 2,4 log10 (1 : 250) for either vaccine. Fourteen days after the second injection according to the rapid schedule, seroprotection rates were significantly lower, ranging from 50% to 63% regardless of the vaccine used. The observed adverse reactions were mild or moderate for both vaccines under both vaccination schedules, with total adverse event rates of less than 25%. Reactogenicity was not associated with the gender or age of the recipients. There were no statistically significant differences in the incidence of adverse reactions between the group of subjects who were baseline seronegative or seropositive. However, 14 days after the second vaccine injection according to the rapid schedule, a statistically significant difference in nAbs titers was identified between groups of children with and without reported reactions.
Collapse
Affiliation(s)
- Mikhail F. Vorovitch
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Galina B. Maikova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Liubov L. Chernokhaeva
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
| | - Victor V. Romanenko
- Federal Budgetary Healthcare Institution “Center for Hygiene and Epidemiology in the Sverdlovsk Region”, 620078 Yekaterinburg, Russia
| | - Galina G. Karganova
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aydar A. Ishmukhametov
- Federal State Budgetary Scientific Institution “Chumakov Federal Scientific Center for Research and Development of Immune-and-biological Products of Russian Academy of Sciences” (FSBSI “Chumakov FSC R&D IBP RAS”), 108819 Moscow, Russia
- Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
17
|
Reusken C, Boonstra M, Rugebregt S, Scherbeijn S, Chandler F, Avšič-Županc T, Vapalahti O, Koopmans M, GeurtsvanKessel CH. An evaluation of serological methods to diagnose tick-borne encephalitis from serum and cerebrospinal fluid. J Clin Virol 2019; 120:78-83. [PMID: 31590114 DOI: 10.1016/j.jcv.2019.09.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 09/14/2019] [Accepted: 09/19/2019] [Indexed: 12/30/2022]
Abstract
BACKGROUND Tick-borne encephalitis (TBE) is an infectious disease endemic to large parts of Europe and Asia. Diagnosing TBE often relies on the detection of TBEV-specific antibodies in serum and cerebrospinal fluid (CSF) as viral genome is mostly not detectable once neurological symptoms occur. OBJECTIVES We evaluated the performance of TBEV IgM and IgG ELISAs in both serum and CSF of confirmed TBEV patients and discuss the role of (CSF) serology in TBEV diagnostics. STUDY DESIGN For the assay evaluation we collected specimen from confirmed TBEV patients. Assay specificity was assessed using sera from patients with a related flavivirus infection or other acute infection. A selected ELISA assay was used to analyze TBEV-specific antibodies in CSF and to evaluate the use in confirming TBE diagnosis. RESULTS In this study the overall sensitivity of the IgM TBEV ELISAs was acceptable (94 -100 %). Four out of five IgM ELISA's demonstrated an excellent overall specificity from 94 -100% whereas a low overall specificity was observed for the IgG TBEV ELISAs (30-71%). Intrathecal antibody production against TBEV was demonstrated in a subset of TBE patients. CONCLUSIONS In four out of five ELISAs, IgM testing in serum and CSF of TBE patients is specific and confirmative. The lack of IgG specificity in all ELISAs emphasizes the need of confirmatory testing by virus neutralisation, depending on the patient's background and the geographic location of exposure to TBEV. A CSF-serum IgG antibody index can support the diagnosis specifically in chronic disease or once IgM has disappeared.
Collapse
Affiliation(s)
- Chantal Reusken
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2); Centre for infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Marrit Boonstra
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sharona Rugebregt
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Sandra Scherbeijn
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Felicity Chandler
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, Ljubljana, Slovenia
| | - Olli Vapalahti
- Deptartment of Virology and Veterinary Biosciences: University of Helsinki, and HUSLAB, Helsinki University Hospital, Finland
| | - Marion Koopmans
- Erasmus University Medical Center, Department of Viroscience, Rotterdam, the Netherlands(2)
| | | |
Collapse
|
18
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
19
|
Tick-borne encephalitis in Europe and Russia: Review of pathogenesis, clinical features, therapy, and vaccines. Antiviral Res 2019; 164:23-51. [PMID: 30710567 DOI: 10.1016/j.antiviral.2019.01.014] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/10/2018] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
Tick-borne encephalitis (TBE) is an illness caused by tick-borne encephalitis virus (TBEV) infection which is often limited to a febrile illness, but may lead to very aggressive downstream neurological manifestations. The disease is prevalent in forested areas of Europe and northeastern Asia, and is typically caused by infection involving one of three TBEV subtypes, namely the European (TBEV-Eu), the Siberian (TBEV-Sib), or the Far Eastern (TBEV-FE) subtypes. In addition to the three main TBEV subtypes, two other subtypes; i.e., the Baikalian (TBEV-Bkl) and the Himalayan subtype (TBEV-Him), have been described recently. In Europe, TBEV-Eu infection usually results in only mild TBE associated with a mortality rate of <2%. TBEV-Sib infection also results in a generally mild TBE associated with a non-paralytic febrile form of encephalitis, although there is a tendency towards persistent TBE caused by chronic viral infection. TBE-FE infection is considered to induce the most severe forms of TBE. Importantly though, viral subtype is not the sole determinant of TBE severity; both mild and severe cases of TBE are in fact associated with infection by any of the subtypes. In keeping with this observation, the overall TBE mortality rate in Russia is ∼2%, in spite of the fact that TBEV-Sib and TBEV-FE subtypes appear to be inducers of more severe TBE than TBEV-Eu. On the other hand, TBEV-Sib and TBEV-FE subtype infections in Russia are associated with essentially unique forms of TBE rarely seen elsewhere if at all, such as the hemorrhagic and chronic (progressive) forms of the disease. For post-exposure prophylaxis and TBE treatment in Russia and Kazakhstan, a specific anti-TBEV immunoglobulin is currently used with well-documented efficacy, but the use of specific TBEV immunoglobulins has been discontinued in Europe due to concerns regarding antibody-enhanced disease in naïve individuals. Therefore, new treatments are essential. This review summarizes available data on the pathogenesis and clinical features of TBE, plus different vaccine preparations available in Europe and Russia. In addition, new treatment possibilities, including small molecule drugs and experimental immunotherapies are reviewed. The authors caution that their descriptions of approved or experimental therapies should not be considered to be recommendations for patient care.
Collapse
|
20
|
Vojtek I, Buchy P, Doherty TM, Hoet B. Would immunization be the same without cross-reactivity? Vaccine 2018; 37:539-549. [PMID: 30591255 DOI: 10.1016/j.vaccine.2018.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 01/08/2023]
Abstract
"Cross-reactivity" (the observed immune response against pathogen types not specifically targeted by the vaccine antigen composition) and "cross-protection" (clinical protection against related non-vaccine microorganism types) are vaccinology concepts that are attracting renewed interest in the context of disease prevention. National health authorities are collecting mounting evidence of the importance of cross-reactivity. For some vaccines, this has been substantiated by cross-protection data from clinical studies and/or post-licensure data, where their introduction into immunization programmes has shown beneficial impacts on disease caused by related non-vaccine microorganisms. This knowledge has influenced the way new vaccines are designed, developed, and evaluated in real-life settings. Some of the new vaccines are now designed with the specific aim of having a greater breadth of protection. Ideal vaccine antigens therefore include epitopes with conserved homology across related pathogen types, because it is not always possible to include the antigens of all the individual types of a given pathogen species. The use of novel adjuvants with greater immunostimulatory properties can also contribute to improved overall vaccine cross-reactivity, as could the use of antigen delivery platforms. The growing body of evidence allows us to better understand the full impact of vaccines - beyond vaccine-type disease - which should be taken into consideration when assessing the full value of vaccination programmes.
Collapse
Affiliation(s)
- Ivo Vojtek
- GSK, Avenue Fleming 20, 1300 Wavre, Belgium.
| | | | | | | |
Collapse
|
21
|
Maikova GB, Chernokhaeva LL, Rogova YV, Kozlovskaya LI, Kholodilov IS, Romanenko VV, Esyunina MS, Ankudinova AA, Kilyachina AS, Vorovitch MF, Karganova GG. Ability of inactivated vaccines based on far‐eastern tick‐borne encephalitis virus strains to induce humoral immune response in originally seropositive and seronegative recipients. J Med Virol 2018; 91:190-200. [DOI: 10.1002/jmv.25316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/02/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Galina B. Maikova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
| | - Liubov L. Chernokhaeva
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
| | - Yulia V. Rogova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
| | - Liubov I. Kozlovskaya
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
- Institute for Translational Medecine and Biotechnology, Sechenov First Moscow State Medical UniversityMoscow Russia
| | - Ivan S. Kholodilov
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
| | - Victor V. Romanenko
- Hygienic and Epidemiological Center of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing in Sverdlovsk RegionEkaterinburg Russia
| | - Mariya S. Esyunina
- Office of the Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing in Sverdlovsk RegionEkaterinburg Russia
| | - Anna A. Ankudinova
- Ekaterinburg Scientific Research Institute of Virus Infections, Federal Service for Surveillance on Consumer Rights Protection and Human WellbeingEkaterinburg Russia
| | - Anna S. Kilyachina
- Ekaterinburg Scientific Research Institute of Virus Infections, Federal Service for Surveillance on Consumer Rights Protection and Human WellbeingEkaterinburg Russia
| | - Mikhail F. Vorovitch
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
- Institute for Translational Medecine and Biotechnology, Sechenov First Moscow State Medical UniversityMoscow Russia
| | - Galina G. Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, FSBSI “Chumakov FSC IBP RAS,”Moscow Russia
- Institute for Translational Medecine and Biotechnology, Sechenov First Moscow State Medical UniversityMoscow Russia
| |
Collapse
|
22
|
Chernokhaeva LL, Rogova YV, Kozlovskaya LI, Romanova LI, Osolodkin DI, Vorovitch MF, Karganova GG. Experimental Evaluation of the Protective Efficacy of Tick-Borne Encephalitis (TBE) Vaccines Based on European and Far-Eastern TBEV Strains in Mice and in Vitro. Front Microbiol 2018; 9:1487. [PMID: 30061869 PMCID: PMC6054986 DOI: 10.3389/fmicb.2018.01487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/14/2018] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE), caused by the TBE virus (TBEV), is a serious public health threat in northern Eurasia. Three subtypes of TBEV are distinguished. Inactivated vaccines are available for TBE prophylaxis, and their efficacy to prevent the disease has been demonstrated by years of implication. Nevertheless, rare TBE cases among the vaccinated have been registered. The present study aimed to evaluate the protective efficacy of 4 TBEV vaccines against naturally circulating TBEV variants. For the first time, the protection was evaluated against an extended number of phylogenetically distinct TBEV strains isolated in different years in different territories. The protective effect did not strongly depend on the infectious dose of the challenge virus or the scheme of vaccination. All vaccines induced neutralizing antibodies in protective titers against the TBEV strains used, although the vaccines varied in the spectra of induced antibodies and protective efficacy. The protective efficacy of the vaccines depended on the individual properties of the vaccine strain and the challenge virus, rather than on the subtypes. The neutralization efficiency appeared to be dependent not only on the presence of antibodies to particular epitopes and the amino acid composition of the virion surface but also on the intrinsic properties of the challenge virus E protein structure.
Collapse
Affiliation(s)
- Liubov L. Chernokhaeva
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Yulia V. Rogova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Liubov I. Kozlovskaya
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Lidiya I. Romanova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Dmitry I. Osolodkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia
| | - Mikhail F. Vorovitch
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Galina G. Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products Russian Academy of Science, Chumakov FSC R&D IBP RAS, Moscow, Russia
- Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
23
|
Lashkevich VA, Karganova GG. ON MODERN APPROACHES TO CREATION OF A SINGLE-CYCLE VACCINE AGAINST TICK-BORNE ENCEPHALITIS. Vopr Virusol 2018; 63:101-105. [PMID: 36494935 DOI: 10.18821/0507-4088-2018-63-3-101-105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 06/17/2023]
Abstract
In Russia, about 2000 people get tick-borne encephalitis (TBE) every year. Almost none of them are vaccinated. For the prevention of TBE, inactivated vaccines (IVTBE) are used. IVTBE are safe and protect from TBE not less than 95% of vaccinated. The disadvantages of IVTBE are the need for numerous intramuscular injections by medical personnel, the high cost of vaccination and the vaccination refusals. A new vaccine against TBE should not be inferior to IVTBE in its safety and efficacy, should cause long-term immunity after a single application, and, preferably, be effective after oral administration. Currently, genetic engineering methods for producing replication-defective (single-cycle) flaviviruses that can serve as the basis for creating new types of safe vaccines similar in many characteristics to classic live vaccines based on attenuated strains of viruses have been proposed. The possibility of infecting humans with TBE by the use of milk of naturally infected animals, as well as the experience of using experimental live TBE vaccines, are prerequisites for the creation of a safe oral single-dose TBE vaccine.
Collapse
Affiliation(s)
- V A Lashkevich
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences
| | - G G Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune and Biological Products of Russian Academy of Sciences
| |
Collapse
|
24
|
He X, Zhao J, Fu S, Yao L, Gao X, Liu Y, He Y, Liang G, Wang H. Complete Genomic Characterization of Three Tick-Borne Encephalitis Viruses Detected Along the China-North Korea Border, 2011. Vector Borne Zoonotic Dis 2018; 18:554-559. [PMID: 29742014 DOI: 10.1089/vbz.2017.2173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) causes neurological infections with serious sequelae in Europe and Northeast Asia. In China, the major epidemic areas are along the borders with Russia and North Korea. Although several TBEV isolates have been reported, the biological characteristics of the Chinese strains, especially those along the China-North Korea border, are unclear. In this study, we detected seven TBEV fragment sequences in 602 adult Dermacentor silvarum collected in the Changbai Mountain area of Jilin Province on the China-North Korea border and characterized the genome of three TBEV strains (JLCB11-08, JLCB11-35, and JLCB11-40). These three TBEV strains belong to the TBEV-Far Eastern (TBEV-FE) genotype and clustered most closely with the Svetlogorie and Kavalerovo strains from Russia. In addition, the TBEV strains from Northeast China clustered geographically within the TBEV-FE subtype branch. These findings will facilitate further research on the distinct genetic groupings of TBEV strains in China.
Collapse
Affiliation(s)
- Xiaoxia He
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Junwei Zhao
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Shihong Fu
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Lisi Yao
- 3 Chinese Academy of Inspection and Quarantine , Beijing, People's Republic of China
| | - Xiaoyan Gao
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Yan Liu
- 4 School of Basic Medical Sciences, Harbin Medical University , Harbin, People's Republic of China
| | - Ying He
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Guodong Liang
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| | - Huanyu Wang
- 1 Department of Viral Encephalitis, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China .,2 State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention , Beijing, People's Republic of China
| |
Collapse
|
25
|
Animal Models for Dengue and Zika Vaccine Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:215-239. [PMID: 29845536 DOI: 10.1007/978-981-10-8727-1_16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The current status of animal models in the study of dengue and Zika are covered in this review. Mouse models deficient in IFN signaling are used to overcome the natural resistance of mice to non-encephalitic flaviviruses. Conditional IFNAR mice and non-human primates (NHP) are useful immuno-competent models. Sterile immunity after dengue vaccination is not observed in NHPs. Placental and fetal development in NHPs is similar to humans, facilitating studies on infection-mediated fetal impairment.
Collapse
|
26
|
Veje M, Studahl M, Johansson M, Johansson P, Nolskog P, Bergström T. Diagnosing tick-borne encephalitis: a re-evaluation of notified cases. Eur J Clin Microbiol Infect Dis 2017; 37:339-344. [PMID: 29188467 PMCID: PMC5780526 DOI: 10.1007/s10096-017-3139-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/06/2017] [Indexed: 12/30/2022]
Abstract
We set out to investigate the serological response of TBE virus (TBEV)-specific IgM and IgG antibodies in stored serum and cerebrospinal fluid (CSF) in notified TBE patients, in order to confirm or reject the diagnosis. We applied the ELISA methods used in clinical practice, Enzygnost and Immunozym, and assessed RT-PCR as a diagnostic tool. A total of 173 TBE cases were notified to the Public Health Agency. Samples from 129 patients were eligible for the study. Stored serum samples were found for 111 patients and CSF samples for 88 patients. All serum samples were analyzed with both Enzygnost and Immunozym, as well as an additional 140 control samples. CSF samples, including samples from ten controls, were analyzed with Immunozym. RT-PCR for TBEV was performed on 126 serum, two whole blood, 96 CSF, two feces and four nasopharynx samples. Only two of 111 notified patients lacked detectable TBEV IgM in serum, from whom one sample was RT-PCR positive. According to the ECDC definition, 117/129 (90.7%) of the reported TBE cases were confirmed. Positive RT-PCR results were obtained in eight patients, one from whole blood and eight from serum samples. Four out of eight of the RT-PCR positive patients were TBEV-IgM positive and none had detectable TBEV-specific IgG. All of the tested CSF, feces and nasopharynx samples were RT-PCR-negative. TBEV-specific IgG was detected in 88.4% and IgM in 31.6% of the CSF samples. RT-PCR on serum samples and CSF IgG antibodies can be used as complementary methods in TBE diagnostics, not least early in the disease course.
Collapse
Affiliation(s)
- Malin Veje
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maja Johansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Patrik Johansson
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Nolskog
- Department for Communicable Disease Control in Western Gotaland, Skövde, Sweden
| | - Tomas Bergström
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Chrdle A, Chmelík V, Růžek D. Tick-borne encephalitis: What travelers should know when visiting an endemic country. Hum Vaccin Immunother 2017; 12:2694-2699. [PMID: 27715427 PMCID: PMC5085011 DOI: 10.1080/21645515.2016.1218098] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Tick-borne encephalitis (TBE) is an acute febrile illness with neurological manifestations that is prevalent in forested areas of moderate climate in Europe and Asia. TBE virus is transmitted by ticks and rarely by unpasteurized milk and dairy products. The disease burden is attributed mainly to resulting long-term disability, especially in individuals over 50 y of age. Currently, there is no causative treatment, but a very effective vaccination is available with a good safety profile. The vaccination requires 3 basic doses to be fully effective and regular boosters afterwards. An accelerated vaccination schedule enables a patient to reach reasonably protective titres within 3 to 4 weeks from the first injection. The risk of travel-related TBE is estimated to be less than the risk of acquiring typhoid fever while visiting highly endemic regions in South Asia, but more than the risk of acquiring Japanese encephalitis, meningococcal invasive disease, or rabies. The pre-travel risk assessment of acquiring TBE should consider known risk factors which include 1) the country and regions to be visited; 2) April to November season; 3) altitude less than 1500 m above the sea level; 4) duration of stay; 5) the extent of tick-exposure associated activities including leisure and professional outdoor activities within the endemic area; and 6) age and comorbidities of the traveler. A major challenge, however, is the very low awareness of the risk of contracting TBE in those who travel to industrialized European countries.
Collapse
Affiliation(s)
- Aleš Chrdle
- a Department of Infectious Diseases , Ceske Budejovice Hospital , České Budĕjovice , Czech Republic.,b Tropical and Infectious Disease Unit, Royal Liverpool University Hospital , Liverpool , UK
| | - Václav Chmelík
- a Department of Infectious Diseases , Ceske Budejovice Hospital , České Budĕjovice , Czech Republic
| | - Daniel Růžek
- c Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, and Veterinary Research Institute , Brno , Czech Republic
| |
Collapse
|
28
|
Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, Levchenko I, Strle F, Steiner I. EAN consensus review on prevention, diagnosis and management of tick‐borne encephalitis. Eur J Neurol 2017; 24:1214-e61. [DOI: 10.1111/ene.13356] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/01/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P. Taba
- Department of Neurology and Neurosurgery University of Tartu Tartu Estonia
| | - E. Schmutzhard
- Department of Neurology Medical University Innsbruck Innsbruck Austria
| | - P. Forsberg
- Department of Clinical and Experimental Medicine and Department of Infectious Diseases Linköping University Linköping Sweden
| | - I. Lutsar
- Department of Microbiology University of Tartu Tartu Estonia
| | - U. Ljøstad
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Å. Mygland
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - I. Levchenko
- Institute of Neurology Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine Kharkiv Ukraine
| | - F. Strle
- Department of Infectious Diseases University Medical Centre Ljubljana Ljubljana Slovenia
| | - I. Steiner
- Department of Neurology Rabin Medical Center Petach Tikva Israel
| |
Collapse
|
29
|
A comparative analysis on the physicochemical properties of tick-borne encephalitis virus envelope protein residues that affect its antigenic properties. Virus Res 2017. [PMID: 28625666 DOI: 10.1016/j.virusres.2017.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This work is dedicated to the study of the variability of the main antigenic envelope protein E among different strains of tick-borne encephalitis virus at the level of physical and chemical properties of the amino acid residues. E protein variants were extracted from then NCBI database. Four amino acid residues properties in the polypeptide sequences were investigated: the average volume of the amino acid residue in the protein tertiary structure, the number of amino acid residue hydrogen bond donors, the charge of amino acid residue lateral radical and the dipole moment of the amino acid residue. These physico-chemical properties are involved in antigen-antibody interactions. As a result, 103 different variants of the antigenic determinants of the tick-borne encephalitis virus E protein were found, significantly different by physical and chemical properties of the amino acid residues in their structure. This means that some strains among the natural variants of tick-borne encephalitis virus can potentially escape the immune response induced by the standard vaccine.
Collapse
|
30
|
Vorovitch MF, Maikova GB, Chernokhaeva LL, Romanenko VV, Ankudinova AV, Khapchaev YK, Karganova GG, Ishmukhametov AA, Drozdov SG. Immunogenicity and safety of the adult tbe vaccine «tick-e-vac». Vopr Virusol 2017; 62:73-80. [PMID: 36494931 DOI: 10.18821/0507-4088-2017-62-2-73-80] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Indexed: 12/13/2022]
Abstract
About 3,000 cases of TBE are registered annually in the Russian Federation. Vaccination is the main way to prevent the tick-borne encephalitis disease. Comparative study of the reactogenicity and immunogenicity of a new vaccine «Tick-E-Vac» was held. Volunteers aged from 16 years old were twice immunized with the vaccines «Tick-E-Vac» or «Encevir» derived from strains of Far East subtype of TBE virus, according to standard and emergency schemes. The clinical study was randomized, comparative, blind, and controlled. The frequency, intensity, time of occurrence, and duration of local and general reactions had been recorded. The titers of antiviral antibodies in ELISA had been determined to assess the immunological efficacy of vaccination. According to the results of the clinical study, the severity of local and general reactions in initial seronegative recipients was weak or moderate. The symptoms were usually manifested within 1-2 days after injection and persisted for not more than 4 days, after which time the symptoms disappeared. There was no statistically significant difference in the reactogenicity of the vaccines after the first and after the second injection. The reactogenicity also did not depend on the gender of recipients. After the first immunization, the level of seroprotection was not less than 43%; the average geometric titer of antibodies (GTA), not less than 1:200. After the second injection, the level of seroprotection reached 90-100%; GTA, not less than 1:500. The data on the reactogenicity and immunogenicity to the original seropositive recipients is not significantly different from the data for the initial seronegative recipients. The data indicate weak reactogenicity of the vaccines «Tick-E-Vac» and «Encevir». Double vaccination with an interval of 14 or 30 days leads to the formation of expressed immune response. Thus, differences in the level of seroprotection and in antiviral titers in the cases of the standard and emergency vaccination schedules are not statistically significant. The correlation between the development in recipients of local and general symptoms and the immunological efficacy of the vaccines has not been identified.
Collapse
Affiliation(s)
- M F Vorovitch
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - G B Maikova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - L L Chernokhaeva
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - V V Romanenko
- Center for Hygiene and Epidemiology in the Sverdlovsk Region
| | - A V Ankudinova
- Center for Hygiene and Epidemiology in the Sverdlovsk Region
| | - Y K Khapchaev
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - G G Karganova
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - A A Ishmukhametov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| | - S G Drozdov
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences
| |
Collapse
|
31
|
Maikova GB, Chernokhaeva LL, Vorovitch MF, Rogova YV, Karganova GG. [Vaccines based on the Far-Eastern and European strains induce the neutralizing antibodies against all known tick-borne encephalitis virus subtypes]. Vopr Virusol 2016; 61:135-139. [PMID: 36494948 DOI: 10.18821/0507-4088-2016-61-3-135-139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022]
Abstract
Serum of children aged 1 to 16 obtained in the course of clinical trials conducted in the sverdlovsk region in 2011 was used to study the post-vaccination immunity. Children were immunized twice with vaccines against the tick-borne encephalitis (TBE) Tick-E-Vak on the basis of the strain sofjin of the Far-Eastern subtype and FSME-IMMUN Junior based on the neudorfl strain of the european subtype. According to the plaque reduction neutralization test (PRNT), both vaccines have a high immunogenicity: after 30 days since two-time vaccination in the sera of 100% of children immunized with the vaccine Tick-E-Vak and in the 95% of children immunized with the vaccine FSME-IMMUN Junior antibodies (AT) against strain sofjin were identified in protective titers, whereas 24.5% and 21.4% of children, respectively, had antibody titers higher than 1:10000. selected sera of recipients with titers from 1:25 to 1:1000 were examined in the PRNT in a single experiment using the sofjin (Far-Eastern subtype), absettarov (European subtype) and Vasilchenko (Siberian subtype) strains. The two vaccines induced AT against the representatives of all three subtypes.
Collapse
Affiliation(s)
- G B Maikova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides
| | | | - M F Vorovitch
- Chumakov Institute of Poliomyelitis and Viral Encephalitides
| | - Y V Rogova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides
| | - G G Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides
| |
Collapse
|